Compilateurs
et interpretes

Jerzy Karczmarczuk

Departement d’'Informatique, Université de Caen

Caen, Janvier 2002

2

Copyright (© Jerzy Karczmarczuk, 2001/2002

Table des matieres

1

Introduction 7
1.1 Objectif du cours : Pourquoi apprendre la compilation? 7
1.2 EXErCICES o ot e 8
Classification générale des langages : survol de la tour Babel 11
2.1 Catégoriesclassiques e e e 11
2.2 Programmationimpérative 11
2.2.1 Co-procédures etquasi-parallélisme 13
222 Exemples e e 14
2.3 Programmation fonctionnelle 14
2.3.1 Programmation par€SSEUSE it e e e 15
2.3.2 Continuations o e 16
2.4 Programmation logique 17
2.41 ExemplesdesprogrammeenProlog 18
2.4.2 Programmationparcontraintes 19
2.5 Programmationparobjets 20
251 Quelquesexemples 20
2.6 Programmation pilotée parles événements e 21
2.7 Dataflow et langages graphiques/visuels L o o 22
2.8 Autres schémas de classification et paradigmes de programmation 23
2.8 1 TYPES . .o e 24
2.9 Notrelangagedetravail 25
2.10 EXErCICeS . . . v i i e e e e 25
Machines virtuelles et exécution des programmes par I'ordinateur 33
3.1 Entre compilation etinterprétation 33
3.2 Expressions fonctionnelles et évaluationrécursive 33
3.2.1 Interprete descendant®cheme L. 33
3.3 Linéarisation du code et machinesawpile 36
3.3.1 Cahierdescharges e 36
3.3.2 Codagedelamachine 38
3.3.3 Mécanismesdécisionnels 40
3.4 Gestion explicitede lapiledesretours e 42
3.4.1 Omissionimportante 45
3.4.2 Conseils pourlesirrécupérables 45
3.5 \Variante Indirectthreadedcode L 46
3.5.1 Co-procédures 50
3.6 Lecompilateur: premiéretentative 51
3.7 EXEICICES . . . o o i 52

TABLE DES MATIERES

4.2

4.3

4.4

51

5.2

53

54

55

6.1

6.2
6.3

7.1
7.2

7.3

8.1
8.2
8.3

Les taches et la structure d'un compilateur 59

4.1 Un peudanatomie etde physiologie 59
4.1.1 Lelexique. e 60
4.1.2 Syntaxe et Sémantique : introduction oo 62
4.1.3 LexetYacc—premierscommentaires 63
4.1.4 Qu'est-ce queloptimisation L 64
Intégration d’'un compilateur 65
4.2.1 Intégrationprocédurale 65
4.2.2 Transducteurs de flux, ou «pipelining» 65
Organisation de latable dessymboles L. 66
4.3.1 Techniquesdehachage 67
EXErcices 68

Analyse syntaxique | — Techniques fonctionnelles 71
Grammaires @iarsing 71
51.1 Exemple 71
Stratégies duparsing e 73
5.2.1 Stratégiedescendante e 73
5.2.2 Techniquesascendantes e 74
Philosophie du parsing fonctionnel oo 74
5.3.1 Qulest-Ce qUUN PArSEUI? i i i i e e e 75
5.3.2 Objectifsfinaux e 75
Composition des parseurs fonctionnels 0o 77
541 Premierspas o o o e 77
5.4.2 Seéquences, filtres, alternatives, itérations 78
5.4.3 Sérialisation sans mémoire e e e e 80
5.4.4 Encoreunexemple:listesProlog, 81
EXErciCes e 82

Analyse syntaxique |l — développement et optimisation 85
Analyse des expressions algébriques 85
6.1.1 Premier essai, opérations Booléenneso 85
6.1.2 Arithmétique et problémes avec larécursivité agauche 87
6.1.3 Quelquesoptimisations e e 89
Opérateurs de précédence et associativité quelconques 89
EXErCiCes e 92

Informations complémentaires sur les parseurs descendants 94
Diagrammes syntaxiques oo e 94
Optimisation classique des parseursdescendants 94
7.2.1 Eliminationdelarécursivite 96
7.2.2 Tableaux PREMIER et SUIVANT e 96
EXErcices e 97

Stratégie ascendante d’analyse syntaxique 99
Idéegénérale 99
Grammaires d'opérateurs e e e e e 100
Parseurs LR e 101
8.3.1 Construction des tableauxde parsing 103
EXErcices e 103

8.4

TABLE DES MATIERES 5

9 Sémantique 105
9.1 Grammaires attribuées et décorées 105
9.1.1 \Valeursdesnombres 105
9.1.2 ConstanCe e e e e e 106
9.1.3 Tempsdevie e 107
9.1.4 Formatage 2-dimensionnelle des formules mathématiques 107
9.2 EXEICICES . . .t v it e e e 109
10 Lestypes 110
10.1 Qu'est-ce qu'untypeetquelestsonrdle 110
10.1.1 Inférence automatique des types, systeme H-M 111
10.1.2 StructuresS COMpOSIteS o e e e 111
10.1.3 Quelques généralisations possibleso 111
11 Deux mots sur I'analyse lexicale 113
11.1 Qulest-ce qUUNIEXEME 113
11.1.1 Catégorieslexicales i e e e 113
11.2 Expressionsrégulieres e 114
11.2.1 AUtOMALES o e 114
12 Gestion de mémoire dynamique 116
12.1 Allocationdutas e e e 116
12.2 Compteursde références 117
12.3 Ramasse-miettes «marquage etbalayage» oo 117
12.3.1 Optimisation de Schorr-Waite 119
12.3.2 Problemes avec le compactage de lamémoire 120
12.4 Ramasse-mietteS COPIBUr o e 120
12.4.1 Ramasse-miettes générationnel Lo 121
12.4.2 GCpourlesdonnées «binaires» 121
12.4.3 GCentempsréel: ramassageincrémental 122
12.4.4 Algorithmede Baker 123
13 Macros et pre-traitement 124
13.1 Transformations SOUrCE —SOUICE v v v i v e e e e e e e e 124
13.2 Macros etlangages-amibes L 126
13.3 EXErCICES o o 126
14 Modéles de code plus sophistiqués 128
14.1 Evaluateureval-apply e 128
14.2 Machine SECD e 129
14.3 EXEICICES o o o i e e e 131
15 Omissions 133
15.1 GENEralites 133
15.2 Grammaires etparsing i i e e e e e e e e e 133
15.3 Sémantique et générationducode 134
15.4 Modélesd’'exécution e 134
15.5 Run-timeet I'interfacage 135
I5.6 Varia. o e 135
A Introduction a la véritableprogrammation fonctionnelle et a Haskell 136
A.1 Pratique de la programmationenHaskell o Lo 136
A2 Lessentiel 138
A.2.1 Récursivité et processusitératifs 140
A.2.2 Evaluation par€SSEUSE v i i i e e 141
A.2.3 Déstructuration automatique desarguments 142

A.2.4 Quelques exemples de programmesiaskell 142

TABLE DES MATIERES

A3 Langagedebase. 143
A3 1 Opérations 143
A.3.2 Typesdedonnéesprédéfinis 144
A.3.3 Lutilisation de I'évaluation paresseuse v 145

A4 Structuresdecontrdle e 146
A.4.1 Clauses, gardesetfiltrage 146
A.4.2 Fonctions d'ordre SUPEMIEUr o o i i 147

A5 Typesdéfinis par l'utilisateur 148
A5.1 TYpes-SYNONYMES o o o i e e e e e e e e e e e 150
A.5.2 Introduction & l'inférence automatique destypes 150

A.6 Intermezzo : exemples fonctionnels trés spécifiques 151
A.6.1 Combinateursde CUrry 151
A.6.2 Arithmétiqgue de Peano-Church. 152
A.6.3 Nombres de Peano-Church et combinateursdeCurry 154
A.6.4 Lexponentiation e 154
A.6.5 Soustraction e 155

A7 EXEICICES . . . o o e 155

Introduction a la programmation en Haskell (11) 157

B.1 Surchargedestypes 157
B.1.1 Surcharge automatique des constantes numériques 158

B.2 Classesdetypes e 158
B.2.1 Restrictionssurlestypes e 159
B.2.2 Classesde COnStructeurs 159
B.2.3 Fonctionsd’affichage 161

B.3 Modules e 161
B.3.1 Clausaleriving 162

B.4 Continuations: du fonctionnel a l'impératif 162

B.5 Lestableaux e 164

B.6 EXEICICES o o i e e 165

Intermezzo monadique 167

C.1 Introduction e e 167
C.1.1 Etles monades moinstriviales? 168
C.1.2 Monades arbitraires etcombinateurs L Lo oL 168

C.2 Exemples de monades non-triviales L 170
C.2.1 EXCeptions e e e 170
C.2.2 Monade non-déterministe 171
C.23 Monadedutracing o o 173
C.2.4 Etatsettransformateurs. v i 174
C.25 Monade CPS e 175

C.3 Systemel/OdeHaskell e 177
C.3.1 Notation«do» e 177
C.3.2 Flotsstandard 178
C.3.3 Fichiers e 179

C.4 EXEICICES . . . v o e e e e e e 179

Chapitre 1

Introduction

1.1 Objectif du cours : Pourquoi apprendre la compilation?

La plupart des logiciels de haut niveau assure quelques possibilités de dialogue avec I'utilisateur et doit étre
capable de comprendre quelques instructions formulées dans un langage formalisé. Nous avons des tableurs ou
des traitements de texte équipés avec des macro-processeurs puissants et capables de comprendre les formules
mathématiques assez complexes ; systémes graphiques ou gestionnaires de bases de données qui communiquent
avec l'utilisateur dans des véritables langages de programmation de haut niveau (SQL), etc. Des éditeurs de
texte évolués comme Emacs ou Word sont étendus par des interprétes des langages uriigrsel8asic.

Il'y a des implantations des langages de programmation, comme par ex&chgiee concuespécialement

pour étendre les fonctionnalités des paquetages plus spécififareme-Elk est utilisé dans un paquetage
d’animation (AL) et dans un modeleur 305ced. Une autre variante d8cheme (Guile) était utilisée dans

le logiciel de traitement d'imageS&IMP comme son langage de scriptage. Les applications qui sont pro-
grammables eBcheme, doivent incorporer le compilateur et la machine virtuelle (interpréte) appropriée. Les
systéemes de mise en page (comAieX) sont également des compilateurs — ils transforment le texte source,
symbolique, en instructions de rendu graphique des textes et des images, «exécutées» ensuite par les pilotes
des imprimantes, les pilot&ostScript résidant dans I'ordinateur, ou par des pilotes de sortie vidéoplugs

in des navigateurs Web comrh&etscape sont des interpréetes des langages spécifiques, corohfiek, et le

noyau deNetscape contient la machine virtuelle diava et I'interpréte dwavaScript, etc.

D’autre part il est évident que les systemes d'interfagage graphiqgues comme X-Window System, Microsoft
Windows ou le systéme Maclntosh ont besoin de «scripts» (programmes exécutés par l'interface utilisateur ou
l'interpréte des commandes — le «shell») capables d’automatiser les taches répétitives et de prendre quelques
décisions dépendantes du contexte de I'intéraction. Comme il a été souligné ci-dessus, tous les éditeurs sérieux,
comme Emacs sont programmables. Il ne s’agit pas d’ajouter simplement des macros au texte, mais de per-
mettre a l'utilisateur de lancer I'exécution d’'un autre programme, de récupérer le courrier, d’établir une com-
munication vocale, de trier une petite base de données, etc. On a besoin des scripts pour intégrer plusieurs
applications, par exemple une calculatrice symbolique avec un logiciel de rendu graphique Gownphat,

ou pour écrire les programmes CGI (exécutés sur le site serveur par une commande incluse dans une page
HTML et lancée par un client distant). Des langages corferg, Tcl/Tk ou Python servent principalement

a cela. A présent nous avons de nouveaux langages a objets denbyeet aussiPHP. Donc, les inter-
pretes/compilateurs sont vraiment omniprésents. . .

La programmation devient de plus en plus intégrée et visuelle. On a besoin de langages nouveaux pour
décrire les sceénes 3D et permettre I'intéraction avec le mod@&(, X3D, etc.). Méme la description des
textureconstitue un langage de programmation (langage des «shaders»). Le monde XML évolue vite : nous
avons déja des langages de description de structures chimiques, ou de la phonologie et morphologie de la parole
humaine.

On a souvent besoin de pouvoir décrireprabléme stratégiqudans un langage formalisé afin de préciser les
modalités de sa solution automatique. On développe donkadgages logiquesdes langages ou il est plus

facile de coder I'heuristique, I'apprentissage, I'acces aux bases de données déductives, la coopération entre
experts/agents distribués, etc. Les langages «classiques» sont ici beaucoup moins commodes.

8 Introduction

Enfin, on a besoin de langages (et de compilateurs spécialisés) pour le parallélisme, simulation, création mu-
sicale, communication multi-médiatique, organisation des hyper-textes, etc. Ajoutons a cela les langages de
description de styles (CSS2 et ultérieurs), un langage de modélisation structurelle (UML), etc. Nous avons
méme des langages et les descriptions syntaxiques des systémes biologiques évolutifs comme les systéemes
de Lindenmayer, utilisés pour la modélisation des plantes. Il existe des langagedasiflewqui ne sont

pas basés sur des phrases linéaires, mais ou les programmes ont forme de graphes, et ces langages sont loin
de I'abstraction académiquekhoros, Simulink, UML, ProGraph, Data Explorer, etc. sont des langages
pratiques, voire méme industriels.

Donc, notre programme dépasse le sujet contenu dans le tifemgilation>. Nous allons parler de langages
de programmation en général, de leur sémantique et de leurs styles, de techniques d'implantatamhies
virtuelleset — si le temps nos permet — de l'interfagaljeus allons traiter des modéles concrets !

Credoreligieux no. 1 : On ne peut vraiment apprendre la compilation des langages de programmation, que Si
on en connait quelques uns.

Les besoins des utilisateurs des ordinateurs évoluent, et les langages de programmation aussi. A présent ils sont
plutdt orientés vers une bonne conceptualisation, lisibilité, sécurité, et surtout sur la puissance sémantique qui
détermine notre liberté d’expression, que vers une utilisation extrémement intense des ressources matérielles,
comme des registres, transferts des octets entre les zones de mémoire, etc. Les assembleurs restent utiles a ceux
qui envisagent le codage du noyau dur d'un systeme d’exploitation embarqué, ou I'économie de mémoire et la
vitesse sont essentielles, voire critiques.

Les techniques de génération du code présentés ici viseront plutbtaadsnes virtuelles— interpretes,
gue directement le silicium, car ainsi il sera plus facile d’aborder la sémantique et la pragmatique qui permettent
d’évaluer et de comparer les langages. Le code de bas ndgtanmportant, car, finalement, les ordinateurs
marchent grace aux instructions exécutées directement par le matériel, mais nous n’avons pas le temps de
traiter tout, et surtout le domaine qui n'appartient plus a l'informatique au sens large, mais a l'ingénierie
des architectures d'ordinateurs. Un étudiant en Informatique devra probablement un jour construire un petit
compilateur et/ou interpréte, car telles sont les tendances d’aujourd’hui. Par contre, les chances qu’il construise
un compilateur dont le code-cible est I'assembleur de bas niveau, sont trés faibles.

Ces notes contiennent de nombreux exemples du code édraskell — un langage fonctionnel purLa
connaissance de ce langage est absolument incontournable pour pouvoir suivre ce couts. polycopié
contient donc une introductiontaskell, mais il ne remplacera pas la documentation ! D’autres langages dont
nous auronvraimentbesoin :

e Scheme (ou Lisp), car ce langage constitue une base «classique» de programmation fonctionnelle, et
grace a la simplicité sémantique de son modele : le calcul lambda, il sert souvent a implanter beau-
coup d’autres paradigmes, notamment la programmation a objets, logique, etc., au moins a des buts
pédagogiques.

e PostScript (ou Forth). Ces langages sont adaptés a des machines virtuelles a pile, relativement simples,
programmables en code postfixe. Ceci sera notre machine virtuelle — cible privilégiée.

Un autre avertissement semble utile : les exercices inclus dans ces notes doivent étre pris au sérieux. lls
font partie intégrale du cours, et quelques techniques de programmation ne seront expliqués qu’a travers eux.
Quelques exercices ne seront pas accompagnés de réponses, et ceci peut suggérer que nous avons peut-étre
envie de les utiliser comme sujet d’examen. ..

Cette version de notes n’inclut plus la bibliographie ni la «Webographie» consacrée a la compilation, langages,

etc. Notre polling effectué pendant 3 ans a démontré que les étudiants ne s’en serdertopaglle pourrait

étre utile, bien sir, par exemple on peut trouver sur I'lnternet presque tous les ingrédients du devoir (ou méme le

devoir complet), mais laissons cette recherche aux lecteurs. Si quelqu’un veut des références bibliographiques,
priere de s’adresser persennellement a I'auteur.

1.2 Exercices

Q1. Quel est 'avantage de connaitre plus de cing (ou dix?) langages de programmation? Quel est le prix a
payer? (Eviter la réponse triviale — on devient trés savant, mais il faut du temps pour apprendre tout. . .)

1.2 Exercices 9

R1

Q2

R2.

Q3.
R3.

Q4.

RA4.

Q5.
R5.

. Pas de réponse unique. Trouvez vos réponses individuelles. Voici les nétres :

e Avantages.Si un probléme calculatoire, algorithmique, de représentation,teis.complexe se
pose, il est plus facile de trouver un style, un langage convenable, qui économise le plus le temps
humain méme si l'implantation du langage est trés inefficace. Ici, ce facteur d’économie peut
atteindre plusieurs centaines : des heures plutét que des semaines, et ceci peut récompenser aussi
la «perte» du temps d’apprentissage. Ensuite, une bonne connaissance de plusieurs styles permet
de choisir et d'inventer quelque chose de propice si le circonstances exigent la construction du
compilateur d’un petit langage intégré a une application trés spéciale.
Il'y a aussi le plaisir créatif indépendant de la vision strictement instrumentale des langages.

e Handicaps.On s’égare ! C’est un peu comme une tentative de pratiquer tous les sports a la fois.
On risque de ne rien faire vraiment bien... Ensuite, on risque de confondre les langages et de
coder des «monstres de Frankenstein» inutilisables. Cependant ce risque n’est pas trés grand, si
I'apprentissage est accompagnié par une raisonnable pratique.

Aussi, on tombe facilement dans le piége du perfectionnisme et on commence a éldlorer
— Mon Nouveau Langage de Programmati@@eci n’est pas mauvajser se et peut aboutir a une
these et & autres succes personnels, mais ce langag@rsti condamné a étre oublié, sauf les
cas extrémement rares, car la concurrence est trop forte.

. Mentionnez au moins une douzaine de conventions différentes utilisées pour dénatemdesntaires
dans des divers langages de programmation.

Cherche et tu trouveradviais n'oubliez pas Fortran ni Cobol.
Qui est l'auteur et le titre du tableau sur la premiére page de ces notes?
Oui, vous avez gagné.

Fermez les yeux et citez au moins une cinquantaine de langages de programmation dont vous avez
entendu parler.

Toute I'idée ici est de ne pas tricher, et de pouvoir dire au moins 20 empteposde chacun de ces
langages. Voici quelques suggestions : Basic, Pascal, C, C++, Simula, FORTRAN, Cobol, Lisp, (et
Scheme), Smalltalk, Modula, Perl, Python, Sather, Ruby, Icon, Snobol4, TCL, SML, Haskell, CAML,
Prolog, Mercury, Clean, Miranda, Eiffel, Algol, CLP, Sisal, Matlab, FORTH et PostScript, MetaPost,
TeX, PL/I, Java, JavaScript, Ada, APL, Hope, Id, Self, Occam, SQL, PHP, Erlang, Awk, Life, plus une
autre trentaine d’assembleurs, sans compter les langages graphiques comme UML, WIT, Simulink, Pro-
Graph or Khoros, et sans compter les langages de description/marquage (plutdt que de programmation):
VRML, SVG, X3D, HTML, etc.) Et encore des langages spécialisés, par exemple les langages de Calcul
Formel : Maple, MuPAD, Magma, Axiom, GAP, etc.

Et maintenant, poses vous-méme une question !

OK, voici une proposition Je n’ai pas beaucoup de temps, mais j'aimerais apprendre quelques lan-
gages de programmation élégants et puissamtsne sont pas enseignés idvez-vous une suggestion?

Pourquoi pas?

e O’Caml. C’estun langage fonctionnel moderne, typé, avec une couche orientée-objet trés prononcé.
Le compilateur est trés efficace. Il a été utilisé a des buts assez compliqués, comme la construction
d’'un lanceur de rayons, ou il a gagné (en fait, I'équipe d’Inria a gagné) avec d’'autres langages au
niveau de vitesse et facilité de programmation. C’est un produit francais, ce qui facilitera votre
acces a la documentation.

e Mercury. C’est un langage logique (ou, un peu : logico-fonctionnel), mais tyjpéaicoumplus
rapide queProlog. Recommandé pour des personnes qui s'intéressent a l'intelligence artificielle.

e Python. Orienté-objet, petit et transparent, facile, et vraiment universel comme un langage de
scripting Il peut remplacer Perl partout.

10 Introduction

Q6. Voici une anecdote historique. Quel est son rapport avec ce cours?

Quand la dynastie des Jagellons, rois de Pologne, s’est éteinte au 17 siécle, les Polonais ont eu une idée
formidable et moderne : organiser une monarchie démocratique, avec les rois élus. Et ils en ont élu
une douzaine, dont le premier, Alexandre d’Anjou, au bout de quelques mois s’est enfuit avec la caisse,
pour rentrer en France et devenir Henry Ill. Mais les autres n’étaient pas toujours meilleurs. Aprés
une fructueuse élection 'ambassadeur de Venise écrivit a son souverain, le Dbgg Patonais ont

élu un nouveau roi. Un personnage trés intelligent et savant. Il parle couramment 7 langues ! Mais,
malheureusement, il n'a rien a dire..

R6. Aucun rapport. Tous les étudiants ont toujours beaucoup de choses a dire, méme si cela ne se voit pas.

Chapitre 2

Classification générale des langages :
survol de la tour Babel

2.1 Catégories classiques

Cette section contient une revue de plusieurs langages de programmation, leur comparaison et évaluation (tres
superficielle).

Il y a des visions trés différentes guiocessus calculatoireLe comportement de I'ordinateur qui pilote une
navette spatiale n’est pas le méme que celui de la machine qui aide un physicien-théoricien a trouver les tores
de Kolmogorov-Arnold-Moser, bien que dans les deux cas on peut chercher le régime dans lequel la solution de
guelques équations différentielles soit stable. Les buts pratiques sont différents. Il faut donner la préférence a :
I'efficacité? la sécurité? l'intéractivité? la facilité du codage pour des non-spécialistes? Les mémes questions
se posent dans le domaine des langages et leur compilateurs. Un langage «ami de tous» n’existe pas, les
différences sémantiques sont importantes et influencent le style et la syntaxe. Il n’y a pas de solutions-miracle.
La création des nouveaux langages ne se terminera jamais.

Par convention on divise le monde des langages de programmation en quelques catégories non-exclusives. On
parle par exemple ddangages impératifs, logiques ou fonctionne]Jsmais la couche fonctionnelle existe

dans presque tout langage, sauf les assembleurs les plus primitifs et quelques langages descriptifs (statiques),
car cette couche fonctionnelle n’est rien d’autre que la capaciéatiier les expressions en appliquant les
opérateurs Un vrai langage de programmation possede plusieurs couches. Donc, le «catalogue» ci-dessous
n'est pas du tout une classification des langages ! Au lieu de parler le «langages fonctionnels» nous aurions
db mentionner desouchessémantiques : impérative, fonctionnelle, logique, etc. Le langage est considéré
fonctionnel si sa couche fonctionnelle prédomine, si elle est bien exposée syntaxiquement, et conditionne le
style global des programmes écrits dans ce langage, ainsi que le modeéle d’exécution du programme (le modéle
de la machine virtuelle). Mais — répétons — tout langage impératif est d’habitude un peu fonctionnel, et la
programmation par objets peut se faire en style procédural (impératif, comrBenalitalk), fonctionnel
(quelques extensions dcheme , ouHaskell), ou méme logique (extensions objetrolog).

Si on veut réellement en deux mots préciser les différences fondamentales entre ces catégories de langages
on pourra formuler ceci de maniére comme ci-dessous. Cependant, la couche fonctionnelle de la programma-
tion sera couverte de manidreaucougplus compléte plus tard, car tout notre cours est basé sur des techniques
fonctionnelles.

2.2 Programmation impérative

Un langage impératif est un langageateanmandegou instructions, ou directives, ou actions, etc.) On modifie

les variables (ou registres), on construit des itérateurs (boucles) ou autres structures de contrdle qui se réduisent
aux branchements. Les valeurs des variables contitugatdu systéme, et les instructions modifient cet état.

Un registre particulier, le «<compteur du programme» adresse l'instruction qui sera exécutée, et si le programme
modifie explicitement la valeur de ce registre, ceci constitimdachementSans branchements, le compteur

du programme est auto-incrémenté.

11

12 Classification générale des langages : survol de la tour Babel

C’est la catégorie «classique» des langages ; le code compilé est de bas niveau, adapté aux architectures
des processeurs (architecture de von Neumann), et il doit étre rapide. Exemples : C, Pascal, Ada, Fortran.

Dans le modéle de von Neumann le programme stocké dans la mémoire est une liste linéaire d’instructions.
La machine exécute une boucle : aprés la modification du compteur du programme on continue. Il y a toujours
une instruction a exécutdra machine ne s’arréte jamais Le branchement inconditionnel ou conditionnel :
selon la valeur Booléenne d’un des registres, on effectue ou pamnohementle goto, une instruction dont
'argument est I'adresse d’une autre instruction est la structure de contréle fondamentale.

Si l'adresse passéegnto préceéde 'adresse actuelle, on peut fermer une boucle classique. Mais un pro-
grammeur typigue, intéressé par les résultats finaux ne doit pas traiter ce progra@me en

while(x>2)
{faire(x,g(x)); x=h(x);}

comme I'abréviation de

boucle: z=x-2;
if(z<=0) goto bfin;
faire(x,9(x));
x=h(x);

bfin:

car psychologiquement c’est totalement inutile. Il faut, bien sr, comprendre la sémantique de la boucle, et non
pas sa forme décortiquée de bas niveau.

Cependant les concepteurs et réalisateurs de compilateurs ne sont pas des programmeurs typiques. lls
doivent savoir traduire les constructions de haut niveau en concepts appartenant au modele d’exécution. Ceci
est vital, indépendamment des différences syntaxiques entre langages.

Alors, un petit récapitulatif. La machine virtuelle de plus bas niveau, un interpréte impératif «plat» doit
permettre

e L'adressage des zones mémoire contenant les instructions.

e Auto-incrémentation (exécution séquentielle des instructions) et modification dynamique du compteur
des instructions, le branchement (goto).

Au moins un mécanisme décisionnekifoto).

L'adressage des emplacements des données (registres, variables).

Récupération des données, leur transfert.
¢ Modification des données (primitives) par le processeur (p. ex. I'arithmétique).

Ceci n’épuise pas les notions appartenant au modele impératif. Il faut ajouter au moins la possibilité de con-
struire des procédures, c’'est a dire d’automatisgole avec retour. Il faut donc pouvaatocker quelque part
I'adresse d’une instructiarde la traiter comme donnée.

EnFortran antédiluvien les procédures (subroutines) n’étaient pas récursives, et chaque procédure prévoy-
ait un emplacement statique dans son segment de données pour y stocker I'adresse de retour de ce procédure
au module appelant. Le code de I'instructiall f parg se compilait comme

e Récupérer I'adresse de la procédure appglée

e Récupérer 'emplacement du segment de donnéeasaerespondant a I'adresse de retour, disons, le
registreRET.

e Stocker dans ce registre la valeur du compteur-programme (I'instruction suivante a exécuter, appartenant
a la procéduré).

e Exécutemgoto g
tandis que le retour de la procédure se réduisait a

e Récupérer la valeur stockée daRET, et effectuer legoto.

2.2 Programmation impérative 13

Dans ce modele toutes les données étaient statiques, et chaque procédure travaillait dans son «monde privé»,
ou, éventuellement dans une zone accessible globalement.

La possibilité d’opérer avec des procédures récursives impligpmtaction de I'adresse de retauke pro-

tocole standard, utilisé par pratiquement toutes les implantations des langages admettant la récursivité est basé
sur lapile des retours Au lieu de stocker I'adresse de retour dans une zone statique appartenant au module
appelé, chaque appel réserve un segment du tableau géré par le systéme et structuré comme une pile. L'adresse
de retour est stockée sur ce segment. Chaque retour détruit le dernier segment alloué.

Bien sur, les langages traditionnels, disposant des procédures parametrées prévoient également I'allocation
d’'un segment de données ou on stocke les arguments et les données locales. Cette zone de mémoire est aussi
structurée comme une pile. Conceptuellement ce segment est indépendant du flot de contréle, méme si la pile
des retours et la pile des données souvent fonctionnent en synchronie. Nous verrons toutefois, qu'il est plus
facile de construire des machines virtuelles si on garde I'indépendance des deux objets.

2.2.1 Co-procédures et quasi-parallélisme

Notons que les branchements et les boucles ajoutées aux appels procéduraux n’épuisent pas toutes les structures
de contrdle disponibles dans quelques langages. Un mécanisme particulierement intéressant pour la simulation
de systémes dynamiques esttaprocéduregui permet la réalisation de collaboratispmétriqueentre deux

modules : comme dans un jeu avec deux partenaires qui jouent leur coups en alternance. Avec I'appel standard
simoduleA appelle module3, il empile I'adresse de retour et continue I'exécution apres le retod.epipelle

de nouveawd, un nouveau empilement a lieu. Comment alors organiser un jeu binaire, ou les deux modules
représentent les joueurs : chacun joue a son tour, change I'état global du systeme (I'échiquier par exemple, ou
la trajectoire de la balle), et passe la main a I'adversaire. Comparez les deux dessins sur la Fig. (2.1).

]]
|
[~

/

\

N\

Fig. 2.1: Procédures et co-procédures

La co-procéduralisation consiste a respecter les regles suivantes :

e Sile moduleA n’a jamais été appelé, son lancement (appel) se déroule (pratiquement) de maniére stan-
dard, comme s'il était une procédure normale.

e Si maintenantd veut passer le contréle 3, il exécute le branchement, mais avatdcke I'adresse de
retour dans sa proprezone de donnéesou dans une structure globale, spéciale, balisée et identifiable
comme appartenant.

e QuandB veut «retourner» d, il fait la méme chose — brancheddapres avoir stocké I'adresse de retour.

e Lere-lancement du module partenaire (I'exécution de I'instruggsnmeé) est un branchement indirect,
le code qui récupere le controle vérifie d’abord si une adresse de retour co-procédural n’a pas été stockée
au préalable, et si c’est le cas, un branchement secondaire a lieu.

14 Classification générale des langages : survol de la tour Babel

La technigue de co-procéduralisation est trés importante dans la simulation, et constitue une alternative aux flux
(pipes) permettant d’'établir une collaboration symétrique entre les modules du compilateur. Les co-procédures
constituent aussi une variante de réalisation du parallélisme, et donc son implantation est importante pour la
compilation des langages paralléles (et pour comprendre le fonctionnement des systémes d’exploitation).

Ce qui sera intéressant pour nous est le fait que les co-procédures et méme le brangberpessedent
des modeles fonctionnelles (méme si ces modeéles ne sont pas toujours pratiguement efficaces)le&n fait,
langages fonctionnels sont suffisamment puissants pour pouvoir modéliser les constructions impBtaisves
ceci est loin d'étre facile !

2.2.2 Exemples

La majorité des langages sur le marché est impérati@ C++, Java, Ada, Oberon (une évolution de
Modula), etc. Le modéle impératif se combine avec la programmation par objet de plusieurs facons différentes :
C++, Eiffel etSmalltalk sont tous des langages impératifs a objets, mais assez diffé/@mialltalk est méme
tresdifférent).

La popularité des langages impératifs est le résultat du fait que les assembleurs sont impératifs, et d’'une
illusion (justifiée historiguement) qu’'un langage impératif est toujours plus efficace qu’'un langage fonctionnel
ou logique.

Ainsi, souvent les langages interprétés ou I'efficacité brute du code est un facteur secondaire, comme les
langages de programmation scientifiqudatlab, IDL, etc., ou les langages de calcul form&aple, Axiom,
Magma, etc., sont des langages impératifs, dont la syntaxe ressemble a la faasidal, méme si plusieurs
parmi eux sont basés sur des machines virtuelles fonctionnelles, notamment sur I'inlegmrese pareil. La
psychologie conservatrice a gagné sur la logique. . .

Les langages interprétés congus pour écrire des scripts (et partiellement remplacer les langages de comman-
des du systeme d’exploitation) comiRerl sont aussi impératifs. L'auteur avoue ne pas comprendre pourquoi
Perl est devenu si populaire. Sa structure syntaxique est laide, et son déboguage pénible. Mais sa gestion des
chaines de caracteres et expressions réguliéres est tres riche, et la coopération avec le systéme d’exploitation
(gestion des fichiers et des processus) est mise au point. En tout cas, d’'autres langages (paPgiemnple
possedent déja presque toutes les fonctionnalité2edy et le langagéHP remplace actuellement les scripts
CGil classiques.

Un de nos langages préféréscon qui a un goQt fonctionnel trés prononcé, et est un de trés rares langages
avec des structures de contrdle non-déterministes (ce qui I'approche aux langages logiques), a été bati comme
langage impératif qui ressembléCa car son auteur, Ralph Griswold, un excellent pédagogue, croyait que ceci
était mieux adapté a la psychologie humaine.

Une autre raison de cette popularité est la tradition académique, toujours présente ici ou la : on enseigne trop
souvent la compilation comme un processus qui doit obligatoirement apres toutes les optimisations générer un
code linéaire impératif, style assembleur, exécuté par la machine «matérielle». Pas besoin de dire que dans
de tels établissements les chances de créer un nouveau langage de programmation et de son compilateur sont
plutdt minces. ..

Credoreligieux no. 2 : Ceux qui enseignent la compilation et passent 90% de leur temps a discuter la syntaxe
des langages de la famillReascal, et pour qui le seul code-cible est I'assembleur, iront tous en enfer. (Ou,
peut-étre, ils sont déja Ia, sans le savoir. . .)

2.3 Programmation fonctionnelle

La machine qui exécute un programme fonctionnel «focalise son attention» sur le coespptsBion objet
qui engendre unealeur. Nous avons donc les constantes littérales : nombres, chaines de caractéres (consid-
érées comme atomiques ou comme des listes de caractéres), etc. Les fonctions seront elles aussi des valeurs,
desobjets fonctionnels Il existe également des variables qui donnentrd@asaux valeurs, et leur usage im-
plique I'existence déenvironnement permettant d’établir le rapport entre un nom et la valeur correspondante.
Cet environnement replace partiellement la notion d’état impératif.
Dans un langagpurement fonctionnel on n’a pas le droit de changer les valeurs des variables, une variable
est synonymique avec sa valeur, un peu comme en mathématiques. La récursivité terminale (itérative) est le

2.3 Programmation fonctionnelle 15

seul moyen d’implanter les boucles, et lors de la nouvelle instance de cette «boucleeuuetevariable
remplace I'ancienrfe On construit des fonctions dont les arguments (et les résultats) sont aussi des fonctions,
ce qui permet la construction de structures de contrble trés compactes et beaucoup plus riches (continuations,
monades, filtres) que celles dans des langages impératifs. Fonctions peuvent étre composées, et — ce qui est
essentiel pour tout programmeur — dans un langage fonctionnel on peut fermetures(ang.closure$: ob-
jets fonctionels qui «attrappent» I'environnement dans lequel ils sont définis, pouvant ainsi stocker des données
arbitraires. On verra plusieurs exemples de ces constructions.

On utilise fréquemment l'allocation dynamique de mémoire, et ces langages sont gourmands en mé-
moire. Exemples : Haskell, ML (variantes SML ou CAML), Hope, Erlang, et parties «puredisgu
ou Scheme. Cependant ce fait n’a rien a voir avec le fait que le langage soit fonctionfala utilise
I'allocation/déallocation dynamique de mémoire également.

Les nouveaux langages fonctionnels sstatiguement typésommeC, Java ou Pascal, contrairement au
Lisp, mais la discipline formelle sur laquelle repose les définitionsldskell etc., permetinférence automa-
tique de typesOn n’a pas besoin de déclarations (sauf dans quelques cas ambigus, et pour la documentation).

Le fait que les objets fonctionnels soient des données comme les autres implique I'existence de fonctions
anonymes. EScheme ces deux définitions sont équivalentes :

(define (f x y) (sart (+ (* x x) (*'y ¥)))

(define f
(lambda (x y) (sart (+ (* x x) (*'y ¥))

On peut dire «la fonctiof», maisf n’est qu’une variable dont la valeur est une fonction. Ceci est trés différent
de la situation eI€ ou la procédure est attachée a son nom de maniére irrévocable.

La nécessité d’opérer uniquement avec des données immuables et applications fonctionnelles n'empéche
pas I'usage des variables locales, par exemple la construction

(let ((x (sin (/ pi 4)))
(y (sqrt 2.0)))
(* x (exp (+ xy))

peut étre reformulée comme

(lambda (x y) (* x (exp (+ x Y))))
(sin (/ pi 4))

(sgrt 2.0)

)

La constructiorietrec (ou let en Haskell) est plus délicate, et sera discutée ultérieurement. Rappelons que
letrec permet de définir des objets récursifs, et ceci impliqgue que la variable dafitseque sa définition
appartient aumémesnvironnement, ce qui empéche la translatioteembda comme ci-dessus.

En général, la suite de cette section recommandée au lecteur est 'annexe constaskediu Ici nous
mentionnerons encore quelques généralités, et passons aux autres choses.

2.3.1 Programmation paresseuse

Scheme, comme la totalité des langages impératifs appartient a la catégorie des lasgagssdont la

définition informelle est la suivante : si la fonctighs'applique a ses arguments, p. ek(x,y, z), 'ordre
d’évaluation est le suivant : d’abord on évalugy, et z, et ensuite on appliqug aux valeurs des arguments.

Ces valeurs peuvent étre des nombres, des références (pointeurs, etc.) des objets composites, etc., mais elles
sont statiques. Si I'évaluation de, disopgchoue a cause d’une erreur arithmétique ou autre, I'application de

f maura jamais lieu. Tout appel récursif force I'évaluation de I'argument qui contient I'appel de la fonction
récursive, donc on esibligé de stocker les valeurs intermédiaires et les adresses de retour sur une pile, sauf
dans le cas de récursivité terminale.

Iméme si cette variable dénote un tableau de 1000000 éléments. La recopie intégrale d’une telle structure de données quand on change
un seul élément serait extrémement pénalisant. Il existe donc quelques astuces d’optimisation discutées plus tard

16 Classification générale des langages : survol de la tour Babel

Mais Haskell (commeClean, ou une version délope) est un langagearesseux(ou non-strict), ou
I'évaluation des arguments d'une fonction a lieu si, et seulement sjuatdla fonction a besoin de cet
argument, quand il est effectivement utilisé. Avant cela I'expression-argument est compilée, transformée en un
fragment de code appelé souventienk, et ce code est passé a la fonction appelante. Quand la fonction a
besoin de I'argument, elle déclenche automatiquement I'exécution du thunk. D’habitude la valeur retournée
par le thunk, le remplace, donc toute évaluation ultérieure n'a plus besoin d exécuter I'expression différée.

Si un langage est réellement fonctionnel, c’est-a-dire s'il permet la création des objets fonctionnels quel-
congues, la paresse peut étre aisément implémentée. Par exerSoleeeme il existe unemacro-instruction
delay expr , qui transforme I'expresssion en thunk. La procéduree force I'évaluation du thunk. Re-
gardez le programme suivant :

(define (integs n)
(cons n (delay (integs (+ n 1)))))

(define ints (integs 0))

(define (tail 1) (force (cdr 1)))
(define (take m 1)
(if = mO0) ()
(cons (car 1) (take (- m 1) (tail 1)))))

La fonctionintegs est récursivesans clause terminale- elle représente une liste infinie de nombres a partir
den. Mais aucun débordément n’a lieu, la formelay «protégexintegs (+ n 1)) de déclencher une

fuite en avant, qui doit forcément se terminer par le débordement de la pile. On construibligetdifféré un

thunk qui rend sa valeur quand il est forcé. A ce moment-la ce thunk génére un nouveau chainon dans la liste,
et il cache derriére sa nouvelle instance, avec I'argumen®.

La réalisation dudelay en Scheme est relativement simple : on transforme une forme quelcoegpe
en (lambda () expr) . Le thunk n’est rien d’autre qu’'une fonction anonyme sans parameétres, dont
I’évaluation produit le résultat souhaité. La vémempléteest, bien sdr, plus élaborée, le thunk est une struc-
ture auto-modifiable : la forme lambda aprés I'évaluation «écrase soi-méme», et remplace son corps par le
résultat.

Il doit étre évident, que la présence de fonctions différées, qui peuvent étre lancées dans un contexte quel-
congue, a n'importe quel moment, demande que les fonctions soit relativement pures, sans effets de bord, sinon
le déboguage peur étre impossible. Pour cette raison la programmation paresseuse est restreinte au monde de
la programmation fonctionnelle.

En Haskell touteexpression est différée, on n'a pas besoin de la fatelay, ni du forcing. Dans quelles
circonstances ce protocole peut ait#isé dans la compilation?

1. D’abord, les fonctions paresseuses peuvent représentstrlesures de contrdle Une forme genre
(if condition alors_instr sinon_instr) vérifie la condition toujours quanifl est exé-
cuté, mais ensuite on évalue une et une seule de deux expressions qui suivent. Leur représentation par
thunks est assez naturelle.

2. Les listes ou autres structures paresseuses dans des programmes foncempiatsnt les boucles,
ou autres processus itératifsau lieu de faire quelque chose dans une boucle, on génére des instances
nouvelles de maniére paresseuse. Ceci est souvent plus facile a déboguer qu’un programme dynamique.

2.3.2 Continuations

Le concept de continuations est trés important, et constitue un pont entre la programmation fonctionnelle et
impérative. La continuation est le «futur» d’'un calcul, c’est la réponse a la question «qu’est-ce qu’on fait a
présent», aprés avoir évalué une expression. Les continuations peuvent modéliser les branchements, et aident
a gérer le non-déterminisme.

Nous verrons des réalisations concrétes de continuatiodsaskell, mentionnons ici deux contextes dans
lesquels on voit les continuations dans la pratique de la programmation.

2.4 Programmation logique 17

1. Le style CPSContinuation Passing StyleSi dans un style applicatif classique I'expressjdm) signi-
fie : appliquer la fonctiorf a la valeur dex, I'expression CPS équivalente aura la forfi{e, ¢), ouc est
une autre fonctionla continuation def, qui récupére la valeur du résultat, et en fait quelque chose. Une
continuation peut a la fin appeler une autre, ensuite une autre, etc., jusqu’a la fin du programme, quand
on récupere la réponse finale.

L'enchainement des continuations dans un programme fonctionnel remplace I'enchainement (sérialisa-
tion, séquentialisation) des instructions dans un programme impératif ! Les continuations réellement
constituent le modéle fonctionnel du branchengatb.

Une fonction peut constituer une partie de sa propre continuation, et ceci correspond aux appels récursifs.
En général, si le style CPS est poussé a I'extréméerécursion devient terminale ! Ceci ne signifie pas

que I'on peubptimisertout appel récursif, en évitant I'usage de la pile, la pile (ou autre structure équiva-
lente, comme une liste stockée sur le tas) servira toujours pour la sauvegarde des structures intermédiaires
en cas de besoin, mais son usage devient plus explicite.

Les continuations et le CPS sont des outils de construction de compilateurs assez populaires. Andrew
Appel a écrit un livre entier consacré a la construction des compilateurs a I'aide des continuations.

2. Continuations «de 1-ére classe»,aall-with-current-continuation (ou call/cc) enScheme. Ce con-
cept est une structure de contrdle trés puissante, presque la plus puissante qui existe dans le monde de
programmation. Elle est malheureusement trés rarement enseighé call/cc peut «attraper» la con-
tinuationcourante le futur du calcul qui se déroule au moment de son appel, et de I'eemballer» dans un
objet fonctionnel, une donnée qui peut étre réactivée plus tard.

Ainsi, on peut stocker la continuation couramateantde déclencher un calcul tres long et profond, et
quand a I'intérieur de ce calcul on découvre gu’il n’a plus de sens, on relance cette continuation, ce qui
fait abandonner tout et monter jusqu’a la surface du programme, a I'endroit qui a apliele

On peut aussi appeleall/cca I'intérieur d’un calcul, exporter le résultat (la continuation) et faire d’autre
chose. Plus tard on réactive ce calcul en relancant la continuation sauvegardée.

Ce mécanisme est une version de haut niveau, structurée, et sémantiquement propre d’un mécanisme
d’échappement e@ connu sous le nom deetjmp / longjmp.

Les exercices qui suivent ce chapitre demandent la réalisation de quelques probléiaeskall le lecteur
doit donc — si tels sont ses besoins — lire 'annexe.

2.4 Programmation logique

Les langages logiques, comrReolog ou Mercury se rapprochent un peu des langages fonctionnels, mais ici
le concept fondamental est uredation entre deux objets, p. ex. entre un symbole et une valeur numérique ou
structurale : ceci peut étre considéré comme une affectation, mais logiquement c’est une équivalence.

Ces langages sont souvent non-déterministes, et offrent la possibilité de lancer la recherche d’une solution
alternative d’un probléme stratégique. On a pensé (la 5-éme Génération au Japon) que ces langages deviendront
trés populaires, car leur force d’expression est tres grande. Malheureusement ce réve a échoué, partiellement
a cause de l'inefficacité des implantations. La situation évolue toutefois, et quelques implantafoomde
ou Mercury, qui sont des variantes des langages logiduessgagnent du terrain. C’est la catégorie propice a
la construction et gestion des bases de données, ou a la programmation par contraintes.

De plus en plus souvent on parle des langages hybrides (surtout logico/fonctionnels) avec la couche logique
trés importante Life, Oz, Leda ou Opal. Le Prolog reste néanmoins le langage logique numéro 1. (En plus,

il existe en plusieurs dialectes.)

\oici les traits caractéristiques de cette catégorie. Nous n’allons pas parler de structures syntaxiques, seule-

ment souligner ce qui peut étre intéressant de point de vue de la compilation.

e Le langage est statique, comme les langages fonctionnels. On n’a pas le droit de modifier une variable,
elle se confond sémantiquement avec sa valeur. Toutefolr@ng il existe le concept deariable
logiquenon-instanciée : une variable qui n’a pas de valeur, mais qui occupe de la place, et qui peut étre
équivalencée a une autre variable.

18 Classification générale des langages : survol de la tour Babel

e Les boucles classiques sont réalisées par des appels récursifs terminaux, mais il existe une autre caté-
gorie de boucleson-déterministegui utilise lebacktracking: On récupére une solution, on la rejette
(aprés l'avoir — éventuellement — sauvegardé de maniéere persistante), et on demande au systéme une ou
plusieurs solutions alternatives (dont le nombre peut étre infini).

e Le mécanisme décisionnel fondamental eshification (=) des termes simples et composites qui au-
tomatise la construction et I'analyse (décomposition) des données, par exemple I'unification combinée
Z=.[F,X,a] , Z=g(p(A,Y),Y) instancie automatiquement les variables suivantes :

=
Y
X

g
a
p(A,a).

ce qui rend la programmation dProlog trés compacte. Lunification est une sorte d'équivalence.
p(A)=p(B) ssiA=B. L'unificationf(x)=g(A) échoue La notion d’échec eRrolog est fondamental

pour la construction de structures de contréle. Quand I'échec se produit, le programme «retourne sur ses

pas» au point, ou il avait une décision non-déterministe a prendre. Il marque les chemins parcourus, et en
choisit un autre. Cette technigue est connue au moins depuis les temps de Thésée, Minotaure, et Ariane.

e La dépendance fonctionnelle entre données=(f(x)) s’est généralisée emrlation plus universelle,
et la représentation linguistique d’une relation estpuédicatqui a la forme d'un terme, par exem-
ple r(x,y,[2,2]). Un prédicat qui réalise une relation peut représenter une fonction, par exemple
plus(A,B,C) qui modélise I'énoncé C=A+B ou peut dénoter une contrainte ou un attribut (pro-
priété) : negative(X) , etc. Dans urProlog interprété les prédicats sont souvent représentés par des
termes (spécialement optimisés).

En fait, on a besoin de techniques un peu spéciales pour compiler le non-déterminisme et I'unification compléte
de manierefficace Trop souvent les cours universitaires classiques de compilation ignorent ce domaine. Nous
n'avons pas le temps de le traiter non plus, il faut cependant remarquer qu’un progrés formidable a été fait —
grace awcontinuationset a la construction d’une machine virtuelle trés simple, mais puissante : WAM — la
machine abstraite de Warren, les implantationBidog jadis rares, sont devenues des exercices standard pour
les étudiants. En particulier, la construction d’'une machine non-déterministe a I'aide d’un langage fonctionnel
paresseux, est un vrai plaisir intellectuel, et il existe au moins trois implantatidhrelbg réalisés elaskell.

2.4.1 Exemples des programme en Prolog

Le seul but de cette section est de permettre voir comment réaliser quelques structures sémantiques nondéter-
ministes. Plus tard nous allons les codehaskell. Construisons un programme Brolog qui générdoutes

les permutations des éléments d’'une liste, par exefafdec] donne les3! = 6 permutationsibe, acbh, bac,

bea, cab etcba. L'algorithme sergrésenté de maniére non-déterministet cet exercice doit obligatoirement

étre bien assimilé par le lecteur. La compréhension du non-déterminisme est fondamentale pour la construction
des analyseurs syntaxiques, cap&singtres souvent est non-déterministe.

Le raisonnement non-déterministe (logique) signifie simplement qu’on pose des questions, qui admettent
plusieurs réponses. Le programme doit (éventuellement) trouver tout@sodgrammation(ou le style) non-
déterministe est basée sur le principe suivant : on analyssolution,quelconquearbitraire, inconnue, et a
partir de cette solution (partielle) on génére une, ou plusieurs autres. Une vision un peu Science-fiction peut
étre utile : imaginez que I'ordinateur posé devant un probleme non-déterministe qui possede deux solutions,
déclenche le clonage du monde entier en deux exemplaires. Dans I'un de deux la machine fournit la réponse
numéro 1, dans l'autre — la numéro deux. Si ces réponses provoquent autres clonages, on obtient une ar-
borescence de taille arbitraire. Le processus est supervisé par un «démiurge» extérieur, capable de récupérer
toutesles solutions et de les projeter dans le «monde réel». Répétons : le non-déterminisme ist@stdm
programmation La réalisation effective de ce «clonage» utilisbéektracking

Construisons d’abord un prédicdinsertion non-déterministérien a voir avec I'insertion discriminée,
utilisée dans le tri par insertion). Cette insertion met un nouveau élément dans umeitigterte oy par
exemple a la téte, ou a l'intérieur. Appelons le prédicat correspomus@, Lst,Res)

nondetins(X,Lst,[X|Lst]).
nondetins(X,[Y|Q][Y|R]) :-nondetins(X,Q,R).

2.4 Programmation logique 19

La forme[A|B] estle méme quéA:B) enHaskell. La premiére ligne (la premiere clause) du prédicat

ins signifie que le résultgheutétre obtenu par la mise d¢a la téte de la liste. Si on rejette cette solution,
c’est-a-dire si on en cherche une autre, 'argum¢dbit se trouver a I'intérieur de la nouvelle liste; alors la

téte originale doit rester sur place. On la sépare, I'appel récursif iXsguelque part dans la queue (on obtient
unesolution quelconquég, et il suffit de réinsérer la tété.

Le prédicat qui génére les permutations est encore plus simple. La permutation de la liste vide est toujours

vide. Sinon, séparons la téte, trouvange permutation quelconquie la queue, et réinsérons la téte, mais
n’importe oudans le résultat. Voici le code :

permut([],[])-
permut([X|Q],R) :- permut(Q,R1),nondetins(X,R1,R).

Dans la pratique la machine non-déterministe opére de fagon suivante : un résultat est généré, et éventuellement
affiché, ce qui constitue une sauvegarde permanente — une valeur affichée ne peut ples étre «oubliée». Ensuite
la machine «oublie» tout son état interne, effectubdektracking efface les piles, remonte le graphe (arbre)
décisionnel, et suit une autre branche.

L'analyse syntaxique posséde le c6té non-déterministe, et nous aurons besoin de coder de telles opérations.
Mais nous ne voulons pas de «magie» trop évidente, il serait utile de pouvoir réaliser le non-déterminisme de
maniere classique. Bien sdr, on peut mettre toutes les solutions dans une liste.

2.4.2 Programmation par contraintes

Ce sous-domaine a évolué partiellement a partir des langages logiques, et s’est partiellement inspiré par des
applications numériques. Il s’agit de rendre symétrique une relation, par exphap{é,B,C) . On peut
imaginer que si la sémantique d’une telle clause représente I'assig@atnB mais si les variableA et C

sont connues, & — inconnue, la machine «comprendra» qu'il s’agit de I'instrucBsiC-A.

Les langages a contrainte3L(P, Bertrand, Eclipse) et plusieurs autres sont capables de résoauwt@ma-
tiqguementes équations numériques ou logiques (dans des domaines finis). Limportance de cette catégorie
ne cesse pas d’augmenter. Les sous-systemes de programmation par contrainteSeona&in@u ses suc-
cesseurs) sont devenus incontournables dans la construction des interfaces utilisateur. (Et servent — par exemple
— a placer automatiquement ou presque, les composantes : boutons, menus, zones texte etc. dans la fenétre ap-
plication, en respectant des contraintes géométriques). Les modéliseurs 3D exploitent aussi trés intensément
ce style. (MaisGarnet n’est pas un langage : c’est une puissante librairie d’interfacag@®mermon Lisp. Il
est actuellement obsoléte, mais son success&nnulet existe, et il est utilisée dans le monGe+).

La vraie compilation (avec optimisation et linéarisation) de ces langages est en générale si difficile, que la
plupart du travail est effectué lors de I'exécution du programme. Linterpréte des contraintes doit étre assez
intelligent et disposer de plusieurs «solveurs» des équations, des paquetages numériques, des modules de par-
cours des graphes, etc. Cette catégorie de langages comme peu d’autres démontre que la zone de démarcation
entre les compilateurs et les interpretes est vraiment floue. . .

Notre langage favori qui appartient & ce domaine, et qui a été exploité pour programmer quelques graphes
inclus dans ces notes dadietaPost. Ce langage, construit par John Hobby, est une distillation du langage
Metafont de Donald KnuthMetafont a été congu pour générer des familles entiéres de polices de caracteres.

Le créateur précisait quelques attributs géométriques de la police, parfois sous forme d’équations : «ces deux
lignes doivent étre paralleles», etc., et le paquetage construisait le jeu de caracteres complet. Malheureusement,
Metafont est resté inconnu, car combien de créateurs de polices y a-t-il dans le monde?

Cependant léangageest vraiment universel et facildMetaPost est un macro-processeur permettant a
l'utilisateur 'usage des structures lexico-syntaxiques cordmee qui signifie3*x dans des langages plus
classiques, et ou la bouder i=1 upto 9 n’est pas une construction primitive, mais une macro ou on a
défini

def upto = step 1 until enddef;
Un tel massacre syntaxique n’est pas possible dans les langages structurés classiques.

La compilation des contraintesdeur transformation ecode exécutableécessite une analyse profonde des
relations syntaxiques. La formfe+B+C=D*En’est plus une arborescence qui permet au générateur du code

de «ramasser» les sous-expressions et de construire le résultat final, car on ne saitipagjuelles sont

les sous-expressions connues. Cette classe de langages est un terrain formidable pour I'analyse sémantique
profonde et pour les exercices en parcours des graphes.

20 Classification générale des langages : survol de la tour Babel

2.5 Programmation par objets

La programmation OO, les objets, les messages et méthodes — tout ceci est devenu malheureusement un super-
domaine rempli de slogans et défini de fagon incongrue. Le lecteur ca@walet nous n'avons pas besoin
de définir les concepts de base. Il faut rappeler que la technique est née avec le Bingadge et a été
développée de maniere exhaustive dans le cadre du lasgagktalk. (Simula 67 était d'ailleurs le premier
langage populaire avec des co-procédures, tres commodes pour I'implantation de la simulation de systémes
dynamiques.)

L'idée de bas niveau est simple : si nous avons la possibilité de construiectass les données com-
posites, nous pouvons prévoir qu’'un ou plusieurs champs de nos données soi@mictessqui «savent»
comment traiter ces données (les autres champs) de maniére spécifique, appropriée. La donnée s’appelle désor-
maisobjet L'appel de la fonction qui est attachée a notre objet-donnée s’exprime céemmei du message
a l'objet. Ce message déclenche I'exécution d'uméthode On voit qu'un bon langage fonctionnel permet
aisément la construction de systemes a objets. En effet, le nombre de paquetagesi§fDdépasse une
centaine, leur construction est devenu un exercice pédagogique classique.

La vraie puissance des langages OO est la généricité — la possibilité de grouper des objetsdasscdgsi
partagent les mémes fonctionnalités, et I'héritage : un mécanisme permettant de construire des sous-classes,
de spécifier des objets un peu différents des autres, avec des méthodes particuliéres, mais qui peuvent automa-
tiqguement «hériter» le comportement de leurs «ancétres» — d’autres objets, définis au préalable.

Les méthodes d’'implantation de I'héritage sont nombreuses. Supposons que les @bjgtappartient
aux classes(etY, et ces deux classes définissent la méthfid@ne de ces classes peut étre la sous-classe
de l'autre). L'appel «interne» (défini dans la classe du «réceptgiir»)) d’'une méthode peut étre réalisé de
maniéere suivante :

e Le compilateur géneére le cogéself, .. .), ouselfest le récepteur ou y du «<messagesp.

e S'iln'y a pas d’ambiguité, le compilateur, sachant quelle est la classe du récepteur, connait la procédure
attachée au norfi. L'appel est compilé normalement.

e Sile recepteur peut appartenitXaou aY’, et on ne peut résoudre ce dilemme statiquement, I'appel ne
peut étre compilé directement. La méthgtdevient «virtuelle». Ceci implique les surcharges spatiales
et temporelles suivantes :

— Chaque objet (structure de données) appartenant a une classe qui dispose de méthodes virtuelles
possede un champ de plus — la référence vedictionnaire de méthodes virtuellesin tableau
associatif stocké dans la classe de I'objet. (En fait, la classe en tant qu’objet «physgle»
dictionnaire des méthodes virtuelles).

— La compilation de I'appel développéf{self, . ..) contient un code indirect : on récupere le dictio-
nnaire accessible paelf on décode I'objet procédural attach¢ et on I'appelle.

La compilation des langages OO peut étre donc assez facile, si toute décision est laissé a la machine virtuelle,
mais elle peut contenir des optimisations extrémement importantes, et partiellement a cause de cela les compi-
lateurs deC++ sont trés grands. ..

2.5.1 Quelques exemples

Les langages a objets sont si nombreux, qu’une litanie de noms ne servira a rien. Le langage dominant pour
les grands programmes &3+ qui doit sa popularité principalement au fait que son ancétre : le lar@age

est si populaire. C’est un langage riche et difficile a maitriser. Pour construire un compilatet déaliste

il faut une équipe de personnes tres compétentes (cependdegigmoriginal est I'ceuvre d’'une personne :
Bjarne Stroustrup. Ce méme Stroustrup avoue publiguement qu'’il est loin de maitriser toutes les intrications
du langage...).

Actuellement une bonne partie du «marcl@&»+ diverge dans la direction diava, qui est (d’habitude)
interprété, alors plus lent, et un peu plus pauvre au niveau de syntaxe (pas de surcharge des opérateurs, pas
d’héritage multiple, etc.), mais qui est bien adapté a la construction des programmes sécurisés. |l faut noter que
Microsoft s’est engagé récemment dans la construction d'une «plate-forme virtmelte» la définition d'un
noyau intermédiaire entre le hardware et des langages évolués, qui pourra faciliter la compilation de tous les

2.6 Programmation pilotée par les événements 21

langages imaginables. Mais les spécialistes affirment, que ce noyau semble étre vraiment bienJagtapté a
beaucoup moins aux langages fonctionnels (par exemple).

Comme il a été dit, les langages fonctionnels constituent une bonne plate-forme pour implanter les langages
a objets. Parmi eux, la position privilégié par le nombre d’utilisateurs est occup€d @8 (Common Lisp
Object Systein La syntaxe reste presque la méme quésp, ce qui n'est pas trés clair, maid.OS a ses
inconditionnelsLisp, Scheme, et autres langages de cette famille ont donné naissance a des langages a objets
innombrables.

Les langages fonctionnels modernes reconstruisent ses systemes de typage hiérarchique (qui réalise le poly-
morphisme restreint et I'héritage) de maniére différente. Les langages cQhjaetive CAML, Haskell ou
Clean méritent aussi d’appartenir un peu a la famille OO.

Depuis quelques années un autre langage a obfython fait une belle carriére. Le langage est simple
et joli, et trés transparent. On peut I'apprendre en quelques jours, et écrire des applications graphiques tres
performantes. Il remplace de plus en plus souvent le lanBage Python, grace a sa transparence est utilisé
dans quelques établissements comme le langage-modéle sur lequel les étudiants agimgriaatdtion des
langages a objets.

Il faut mentionner ici le langagEiffel, qui a ses partisans déclarés. Ce langage a été congu par Bertrand
Meyer, un Francais (comme le nom du langage le suggeére). Biiéés est développé surtout aux Etats Unis.

Un autre langage pragmatique, sans trop d’ambitions théoriques est apparu réceRoiBntdéveloppé
surtout au Japon. Encore plus facile que Python, mais — selon I'auteur de ces notes — moins intéressant. C'est
un langage de genre «quick-and-dirty», programmation facile et rapide pour les gens qui ne veulent apprendre
rien qui dépasse leurs objectifs immédiats.

Notons que I'ancétre des langages OSmalltalk vit actuellement une visible renaissance. Il existe au moins
3 implantations commerciales sérieuses (comme Visual Works, disponible aussi gratuitement), et deux implan-
tations sérieuses gratuites : GNU Smalltalk, qui permet de faire beaucoup d’expériences de programmation, et
Squeak — une vraie merveille, avec une couche graphique étonnante, multi-plate-forme, et qui posséde déja
plusieurs milliers de supporters. Lintérét pour la compilation de ce langage (et ses implantations) est qu’une
bonne partie de la machine virtuelle sous-jacente et du compilateur ont été écemktalk, ce qui permet
leur analyse et expérimentation.

Par contre, l@remierlangage qui mérite étre appelé un langage a obj8tmula 67 a été complétement
oublié. Ceci estdommage, cdimula était également le premier langage relativement populaire, qui permettait
la programmation dans Igtyle co-procéduraltrés intéressant et important pour la simulation des systémes
guasi-paralléles. Actuellement aucun langage populaire ne gére des co-procédures de maniére si instructive et
transparente.

2.6 Programmation pilotée par les événements

Ce modéle est vraiment différent de la «programmation classique», et jusqu’aujourd’huiatezsenten-

seigné. Méme si dans le cadre de la programmation OO on parle d’envoi de messages d'un objet a l'autre, il
s'agit toujours d’un appel de type procédural, synchrone, avec I'empilement de I'adresse du module envoyant.
Si I'objet X envoie le message a l'objet Y, cela veut dire qu’une fonction (méthode) dans la classe de I'objet Y
est appelée par une fonction appartenant au contexte X, et c’est tout.

Par contre, la programmation par événements constitue réellement I'envoi des messages au sens intuitif,
proche du modele co-procédural. Quand vous envoyez un message, vous continuez votre travail la ou vous
I'avez suspendu. Au lieu de déclencher explicitement une activité de la part du module appelé, I'appelant place
dans unéfile globale d’événements message (descripteur d’'une activité future) destiné a un ou plusieurs
récepteurs, et poursuit I'exécution de son code.

La machine virtuelle d’'un tel systéeme dispose d'un «dispatcher» global qui lit la file des événements,
décode ses éléments et appelle les procédures concernées. Tout ceci se déiehdesate contrblee la part
du programme utilisateur. Les événements peuvent étre «artificiels», des messages de nature quelconque que
remplacent les appels procéduraux, mais également «naturels», émis, par exemple, par la procédure systeme
qui contréle la souris et le clavier.

La programmation événementielle est devenu incontournable pour la création des interfaces graphiques et pour
la simulation. Dans d’autres contextes, par exemple dans l'intelligence artificielle, on exploite des principes

22 Classification générale des langages : survol de la tour Babel

analogues : la technique du «tableau-nobba¢kboard, ou les modules-experts envoient indépendamment
leurs propositions de solution d'un probleme global vers une zone de ressources partagées.

Les langages spécifiquement orientés-événement sont rares. On peut mentionrangm,lée langage
descriptingdu paquetage multi-médiatiqirector (aucun progres récent...).

Cependant un nouvel élan a été donné a la programmation événementielle par les techniques de program-
mation graphique. Un de meilleurs systéemes de programmation scientifijattab est équipé a présent avec
un sous-systeme qui s’appefi¢ateflow, et qui permet d'organiser graphiquement, dans un style trés intuitif
et élégant la totalité de transitions entre les éléments d’'un systéme comptateflow est une évolution du
Simulink, un langage graphique tygataflow appartenant a la famille mentionnée ci-dessous.

2.7 Dataflow et langages graphiques/visuels

La programmation classique impérative est basée sur le paradigemnttéle le programme détermine la

suite des événements et distribue les taches aux modules subordonnés. La vision fonctionnelle ou logique n’est
pastres différente de celle-la, bien que ciblée plus sur les relations entre données. Méme la programmation
par objets, qui semble se concentrer sur les données est orientée réellement vers I'exécution des procédures-
méthodes ; seulement ces méthodes sont attachées aux données. Mais, justement, la vision orienté données
semble étre mieux adaptée a I'organisation de plusieurs logiciels qui soit modélisent le monde «réel», soit
enchainent des opérations complexes sur des structures complexes, par exemple effectuent la segmentation
d’'images.

La programmatiordataflow est une autre approche. Chaque module (fonction, procédure, prédicat —
choisissez le terme le plus convenable, dépendant du modeéle d'implantation), peut étre visualisé comme un
«boitier» avec un certain nombre d’entrées et de sorties.

Les entrées correspondent aux arguments d’entrée, et les sorties — aux arguments calculés par la procédure,
ou a la valeur (éventuellement multiple) retournée par la fonction. Les boitiers sont liés par des lignes comme
dans un circuit électronique, et ainsi un systeme plus complexe est construit a partir de boitiers plus primitifs.
Tout paquetage de ce genre prévoit un nombre important de boitiers primitifs : le module d’affichage du résultat
(textuel ou graphique), le multiplexeur qui transforme plusieurs lignes élémentaires en une vectorielle (ou vice-
versa), et les «prises» d’entrée et de sortie qui permettent la construction d’une librairie de boitiers. Prenons un
exemple, un bloc de simulation montré sur la Fig. (2.2). Les diagrammes peuvent étre rédigés et parametrés.

oooo
X >+ {1
L
- —-+ Pilot g forze (g - |:|
Filot
Stick Input Lak
Filot & force
®_ Nz pilot Seope
calculation
u Stick Input dn) —»@
1 -
—e{alpha (rad) Bevator Command (deg)) His{ | Bevator Deflection d (deg) Mz Filat(g)
Tast1
el (rEdizec) sertical Melocity w (ftisec) ——I
Contrall FAuctuator
antraller Model
S “wartical Gust wGust (ftisec
Angle of
Attack
g | Gust pl i " Pitch Rate q (radisec) |1
Rotary Gust qGust (rad/zec w| 100 —p®
o qGust +
9 alpha (rad)
Dyden Wind Mg Aircraft
izust Models Dynamics
hodel

Fig. 2.2: Un diagramme Simulink

L'exécution d'un programme est pilotée par les données. Quand un bloc termine son travail, les données sont
«pipelinées», injectées dans un autre bloc, qui a ce moment-la commence son exécution.

2.8 Autres schémas de classification et paradigmes de programmation 23

Le compilateurd’'un langagedataflowest trés particulier. Il s'agit de générer le code dont I'exécution
est déclenchée par la présence des données, et ce code est naturellement quasi-paralléle, alors adapté aux
architectures multi-processeurs, ce qui demande un systéme de simulation sur les architectures classiques. La
tache principale de la machiataflowest d’établir la synchronisation entre les boitiers, donc le code généré
par le compilateur est assez particulier.

Le succes grandissant de cette famille de langages (jadis considérée comme une invention académique de
guelgues informaticiens imaginatifs, mais pas treés pratiques), montre d’'une part que la prograwisisitm
basée sur les techniques d’interfacage modernes est trés importante.

D’autre part — et ceci est trés intéressant pour nous — la composition visuelle des modules logiciels com-
plexes peut nous inspirer a modéliser ainsi un compilateur !

Simulink est un produit commercial, disponible (aWdatlab) sur presque toutes les plates-formes populaires.
Linstitut INRIA a produit un paguetage gratuit qui ressemble beaucduatiab — SciLab. Ce systéme
possede également un langagaflow— SciCos, un peu moins complet qugmulink, mais aussi trés riche.
Il existent au moins trois grands paquetages de traitement de sighaux et images bdatdlsuiqui sont
facilement accessiblesSciCos, Khoros qui est commercialisé, mais dont la version pédagogique est gratuite
(pour les étudiants, a titre individuel), @M Data Explorer distribué selon les régles ddpen Source

Ce catalogue aurait pu étre beaucoup plus long et détaillé. Son but est de convaincre le lecteur d’une simple
chose : la compilation n’est pas et ne sera jamais un domaine fini. Puisque les nouveaux langages, styles, proto-
coles, sémantiques et techniques de gestion de mémoire apparaissent tous les ans, les techniques de compilation
doivent suivre ce développement.

2.8 Autres schémas de classification et paradigmes de programmation

Une autre classification est basée sur la vieille et mal comprise dichotomie : langage compilé — langage in-
terprété. C++ est compilé Perl ou Python sont interprétésLisp a été longtemps interprété, maintenant on
trouve des compilateurs (podiava et Perl aussi). Cette classification en principe est étrangere a notre philoso-
phie. Dans les livres on trouve souvent un slogan douteux : «Un interpréte exécute directement un programme
instruction par instructiorsans le traduire en code-machine, tandis qu’'un compilateur effectue d’abord cette
translation».

Tout langage est compilét interprété Compilé, car il faut traduire le texte-source d’un programme en code
interne. Il faut reconnaitre les lexemes et les transformer en atomes, il faut batir les arborescences syntaxiques,
appliquer les regles sémantiques spécifiques a chaque opérateur, optimiser le code, etc. On peut préciser que si
la compilation va jusqu’au bout et produit un code exécuté directement par le procesgérie| le langage

est compilé, et s'il s’agit du code intermédiaire : «bytecodes», liste des pointeurs ou autres structures de
données, alors le langage est interprété par une machine virtuelle de plus haut niveau. Mais il n'y a pas de ligne
de démarcation distincte entre les deux mondes. Un progralameepeut intégrebytecode®t procédures

écrites erC. Dans un programme «interprété» l'instruction :bigecodeou un pointeur aprées son décodage

lance I'exécution d'une suite d’'instructions en code machine. Dans un langage «compilé», mais orienté-objet,
I'exécution d’'une méthode virtuelle fait exactement la méme chose. Parfois mé@eoeriortran il est
avantageux pour le déboguage d’organiser I'architecture globale du programme comme une liste ou un tableau
d’adresses de procédures primitives. Quelques librairies graphiques, par exemple OpenGL, c@lées en
compilées, constituent les automats&s{e machingsqui sont des véritables interpretes.

En plus, I'exécution d’une instruction du code assembleur n’est rien d’autre que I'exécution d’'un micro-
programme cablé dans le silicium. Une micro-instruction se traduit par un «programme» style dataflow, mais
ou les données qui circulent sont des électrons, et les sommets du graphe représentant 'automate — des transis-
tors. Toute machine virtuelle a un certain nombre d’instructions primitives qui sont exécutées «par magie», et
cette magie est un programme de la machine en dessous, de plus bas niveau. Finalement on arrive au niveau des
transitions quantiques, et cette magie n’a aujourd’hui aucune explicatanot «magie» sera donc utilisé as-
sez souvent lors de ce cours, et il possede une signification technique et rationnelle : instructions etc. magiques
appartiennent a la couche plus basse que celle qui est actuellement discutée

24 Classification générale des langages : survol de la tour Babel

Donc la dichotomie compilé-interprété est une question de niveau de réalisation de la machine virtuelle.
Bref,

Credoreligieux no. 3 : on ne peut pas apprendre a construire les compilateurs, si on ne malitrise pas la
sémantique de la machigenceptuelle- ou le modele qui exécute le programme.

La compilation contient une partie passive, analytique ; le compilateurcdoiprendree texte-source,
attribuer une signification a tous les éléments du programme. Donc, la personne qui définit un langage, et qui
construit I'analyseur, doit savoir ce qu’elle fait, et ceci constitue I'essenazeatlono. 1. Le résultat de cette
compréhension par le compilateur est la synthése du code-cible par le module actif — le générateur du code, et
cette synthése ebexplicationde ce qui a été compris. Mais on ne peut expliquer le programme a une machine
ou a un humain, que si on connaiinlangage.

Si on enseigne la génération du code assembleur sans préciser les détails de la sémantique, de la signifi-
cation des instructions en assembleur, on n’enseigne qu’un rituel religieux. Si, comme nous le voulons — on
se concentre plutdt sur le code-cible interprété par des machines virtuelles de niveau intermédiaire, assurant
la portabilité et I'efficacité, comméava ou PostScript, il faut alors obligatoirement savoir comment ces ma-
chines marchent, et la meilleure facon de I'apprendre est d’en construire quelques unes. Voici lecseths du
no. 3.

D’autres critéres de classification des langages existent également. Parfois on distingue les langages universels
et les langages dédiés, spécifiques a un domaine, comme les langages de requétes de bases de données, ou
guelgues langages de calcul formel, riches en mathématiques et pauvres en organisations des données uni-
verselles et structures de contrdle. Mais une telle classification est toujours incompléte. Tout langage réputé
universel sera trop pauvre pour quelgu’un, par contre, il y aura toujours des optimistes incurables, qui pensent
gu’un langage de calcul formel comrvaple soit bon pour les lycéens (voir I'exercice). . .

Finalement, récemment une prolifération trés importantdategages de spécificatiameu lieu. La com-
plexité syntaxique d¥RML ou SGML et ses variantes (par exempfathML — langage de spécification des
structures mathématiques), est sérieuse, mais ce ne sont pas des véritables langages de programmation, car le
«code» est statique : la notionédaty est absente, et auctinx de donnéer’est généré. Le compilateur se
réduit a un parseur, et a la construction d’une structure de données de haut niveau.

Les concepts vraiment universels dans ce domaine sont peu nombreux. Chacun doit comprendre intuitive-
ment ce qui est une constante numérique, un caractere, ou une fonction. Mais le coadeyssdy’'est pas si
universel, car appartient a la description de bas niveau, comme le pointiagtructionest aussi un concept
du monde impératif, absent dans les langages fonctionnels.

2.8.1 Types

Mais le concept déype méme si pas tellement universel (le code assembleur peut voir toutes les données
comme séquences de bits) est si universel, que nous allons consacrer beaucoup d'attéypageaCeci
constitue une des bases de la sémantique des langages de programmation en général et facilite la compréhension
de la compilation des langages orientés-objet. On divise donc les langages en typés dynamighehnesnt;
Icon, Prolog, Perl, et typés staiquement (chaque variable se voit attribuer un type lors de la compilaion) :
Java, Haskell, etc. Les langages typés statiquement sont d’habitude plus efficaces (rapides), car on peut éviter
beaucoup de tests durant I'exécution du programme.

On parle souvent dpolymorphisme- la possibilité d’appliquer une fonction donnée a des arguments
hétérogénes, mais il ne faut pas confondre les deux catégories suivantes :

e La surcharge des opérateurs, la possibilité de pouvoir éctiyepour x etc. entiers ou réels, chaines
alphanumériques, ou hombres complexes. tct st le nom commun a des opératiaiféerentesqui
peuvent ne rien avoir en commun.

e Le vrai polymorphisme sémantique, par exemple I'extraction du second élément d’une liste :
(define (second) (car (cdr 1))
enScheme, et

second (_ : x:) =X

2.9 Notre langage de travail 25

enHaskell. La valeur retournée peut étre de type absolument quelconque, car la fonction ne I'utilise pas,
elle la transmet a son consommateur.

La surcharge (overloading) est un exercice relativement facile, c’est une question de renommage. L'implantation
du vrai polymorphisme est plus délicate, car une fonction polymorphe doit se compiler et s’exécuter correcte-
ment sans savoir quel est le type de données, ou sa représentation dans la mémoire. |l faut souligner : la fonction
ne vérifie pas le type dynamiquemeargmme les fonctions arithmétiqueslesp, mais l'ignore jusqu’a la fin.

La représentation des données peut et doit cacher les détails.

2.9 Notre langage de travall

Nos critéres de choix du langage proposé pour la présentation des algorithmes de compiaskell, et la
réalisation des machines virtuelles sont les suivants :

1. Syntaxe compacte et lisible ; pas trop des redondances, de surcharge syntaxique (c’est-a-dire : pas beau-
coup de mots-clé et d’autres verbosités), mais relativement intuitive.

2. Outils de construction ddonnéesaisonnables, car les données plutdt que les procédures déterminent si
un langage est approprié pour la construction des compilateurs ou des interprétes.

3. Accessible a tous, facile a apprendre, et suffisamment puissant pour démontrer quelques programmes
non-triviaux sans avoir besoin de bibliotheques chargées séparemment, ou des fichiers-entétes énormes.
Limplantation du langage doit évidemment étre gratuite et disponible sur toutes les plates-formes popu-
laires.

4. Universel, capable de permettre la discussion (et I'implantation) de structures pertinentes a d’autres lan-
gages.

5. Universel dans un autre sens, sans spécificités difficilement traduisibles dans d’autres langages. On sait
que les techniques duarsingnon-déterministe s’expliquent et se réalisent aisémemretog qui est
un langage non-déterministe. Mais ainsi nous n’apprendrons rien stalisationde bas niveau de ce
concept, et la traduction de notre parseuCeserait difficile.

Egalement, si pour construire la couche objet (les méthodes, I'héritage. ..) du langage compilé on utilise
les objets et les concepts du langage d'implantation, la technique peut étre élégante et efficace (une
bonne partie du compilateur-interprete®tmalltalk est écrite ersmalltalk), mais on sera «coincé» dans

ce langagé

2.10 Exercices

Q1. Est-ce que le langage++ est polymorphe? Justifier la réponse, éventuellement donner les exemples si
elle est positive.

R1. Analyser les pointeurs, peut-étre ici. Ailleurs on n'a pas beaucoup de chances pour trouver le vrai
polymorphisme erC++. Mais analyser aussi les instructions d’entrée/sortie formatée. En tout cas, le
vrai but de cette question est de forcer les lecteurs a se poser la question sur la vraie signification du mot
polymorphismequi parfois a d’autres signification (comme dans le jargondésgyn Patterns .).

Q2. Pourquoi Maple (ou un autre langage de calcul formel) n'est forcément pas adapté a l'initiation a la
programmation, p. ex. au Lycée?

R2. Bien s(r, nous n'attendont vraiment aucune réponse de la part des lecteurs, sauf si quelqu’un a déja eu
I'expérience avec un tel enseignement. Cet «exercice» est un peu anecdotique. ..

Le danger est le suivant : les éléves confondent treés vitevariable au sens classique dans la pro-
grammation, et une valeur «non-déterminée», un symbole, disqusreprésente une valeur algébrique

2Cette propriété ne sera pas respectée entiérentéamkell est un langagearesseux et les structures paresseuses sont difficilement
traduisibles eI ; ceci a déja été commenté, et sera encore discuté plus tard.

26

Classification générale des langages : survol de la tour Babel

Qs.

R3.

Q4.

RA4.

manipulée par des moyens formels. La distinction devient floue, et ceci constitue un obstacle dans
I'apprentissage des langages de programmation «normaux». A cause téapitamalgré ses avan-

tages (convivialité, bon support graphique) ne doit pas étre enseigné conpmegnlierlangage ! Les
jeunes qui débarquent en DEUG avec un tel bagage, ont la nécessité de «dé-apMaptiresoublier

une partie de leur initiation a I'informatique, sinon ils font des sottises pendant plusieurs semaines. ..

Essayer d’'optimiser, de linéariser le code de la fonction factorielle a I'aide de continuations. (Bien sdr,
on aura besoin de la connaissanceHaskell ici).

La définition standard de factorielle :

fac 0 = 1
fac n | n>0 = n*fac (n-1)

subira la transmutation par continuations classique. Définissons

facent 0 cnt = cnt 1
facent n cnt | n>0 = faccent (n-1) (\r -> cnt(r*n))

On voit que le futur de I'appel récursif de la fonctitat est la multiplication du résultat par, et cette
manipulation a été incorporée dans la continuation.

Ici la multiplication n’a pas été continuée, la modification est superficielle, et son objectif est de rendre

la factorielle récursive terminale. Ceci est une optimisation différente de celle connue — I'ajout d’'une
variable-tampon. Tampon ici serait plus économique, mais dans de trés nombreux cas la connaissance
de continuations peut sauver beaucoup de temps.

Comment réaliser le programme qui calcule les permutatiortdasiell? Ce langage est déterministe,
alors le non-déterminisme sera simulé par le retour dlisbede solutions individuelles. La liste vide
symbolise I'’échec : pas de solutions.

La convention est donc la suivante. Si une fonction «classique» renvoie urxolgstfonctions dans ce

style (que nous pouvons appefeonadiquepour des raisons qui seront expliquées plus tard) retournent

[X] :lerésultat stocké dans une liste. (On peut utiliser d’autres structures de données, par exemple des
arbres, mais les listes sont suffisamment universelles).

Commencgons par la transformation du prédRailog d'insertion non-déterministe. Rappelons que la
réponse non-déterministe était : mettre le nouvel élémaria téte pu séparer la téte existangeinsérer

X quelque part dans le restet restaurer la vieille tétg. Cette derniére opération n’est pas triviale, car
I'appel récursif (en italique ci-dessus) génere une liste de listes, un résultat non-déterministe.

Alors la premiére question importante se pose : comment appliquer une fonction (normale) a un objet

non-déterministe? Il faut I'appliquértous les élémentie la liste. Nous utiliserons donc la fonctionnelle
map, dont la définition doit étre connue :

map fun [1 = [
map fun(x:q) = (fun x) : map fun g

Voici donc la fonction d’'insertion non-déterministe. le lecteur voudra la comparer avec la variante en
Prolog :

ndins x |

| 1==[] [X]]

| otherwise = let (y:g)=l in
b map (v :) (ndins x q)

Passons aux permutations. La liste vide posséde une permutation triviale. Sinon, on peut enlever la
téte, trouver une permutation du reste, et réinsérer la téte n'importe ou. Il faut donc répondre a la sec-
onde question : comment appliquer une fonctiom-déterminist@ un argument déja non-déterministe?
D’abord on appliquenap de cette fonction a tous les éléments de la liste, mais ainsi le résultat est une
liste, dont les éléments sont des listes de listes. |l faut enlever le «parenthésage interne» redondant, aplatir
la liste en concaténant les listes internes. Il existe I'équivalent de la forlasprappend enHaskell,
I'opérateur de concaténatigh+) . Nous aurons

2.10 Exercices 27

permut [= [[]]
permut (x:q) =
flat (map (ins x) (permut q))

ouflat peut étre définie pdtat | = foldr (++) [] | , et le réducteur choisi ici pour varier
n'est plusfoldl , maisfoldr , récursif a droite, défini comme :

foldr f z [] =z
foldr f z (xixs) = f x (foldr f z xs)

(Cette définion sera encore discutée.)

Observation trés importante.Nous avons vu deux réducteurs d’opérateurs binaires sur des listes :
foldl etfoldr . On peutavoir —a juste titre — I'impression gioeédl est plus efficace, car c’est une
fonction récursive terminalefoldl applique I'opérateur entre la téte et une valeur initiale, et boucle
sur la queue de la liste, tandis gisddr s’applique a la queue de la liste avant d’appliquer I'opérateur
binaire a la téte et la réduction de la queue. Les deux réductions ci-dessous

1=[1,3,2,7,2,4,1,2,5,8,2]

foldr (+) O |
foldl (+) O I

a
b

donnent 37, maifoldl utilise la mémoire de maniére plus économique.

Cependant la réalité n'est pas toujours si simple, car il ne faut pas oublig¢dagkell est un langage

paresseuy, alors le deuxieme argument d#ansf x (foldr f z xs) sera évalué seulement si
f en a besoin. Ceci n'est pas toujours le cas. Voici la définition de la concaténation de deux listes par
foldr

11 ++ 12 = foldr (:) 12 11

qui est correcte méme si la lid2 est infinie. Le programme suivant est parfaitement correct, et donne
5, 7, 1, 1, 1] quand on demande la valeur dss .

uns = (1:uns)

a = foldr (1) uns [5,7]
res = take 5 a

Mais n'essayez pas d'afficharou uns, car I'affichage ne se termine jamais. La foncttake n |
prend les premierms éléments de la liste.

Si on utilise les listes pour implanter le backtracking, parfois on a besoin de toutes les solutions, et dans
ce contexte la sémantique paresseudelét ne sont pas utiles. Mais parfois on cher¢h@remiére
solution convenable parmi de trés nombreuses, peut-&tre parmi un nombre infini de solutions possibles.
La liste de solutions sera alors consommeée de maniére incrémentale, paresseuse, et évitdnment

reste la seule variante qui ne fait pas exploser la mémoire.

Q5. Construire la fonctiopowerset | qui prend un ensemble (réalisé comme une liste), et qui renvoie
'ensemble de tous les sous-ensembieson argument, en commencant par 'ensemble vide, et terminant
avec I'argument lui-méme.

R5. La stratégie est la suivante : on parcourt la listet on en construit par le choix non-déterminigtes
sous-liste quelconquéCe choix consiste & : soit prendre un élément, soit le rejeter. Voici la solution en
Prolog. Le prédicasousens(L,R) construitR comme un sous-ensemble lde

sousens([],[])- % Pas d'autre possibilité
sousens([X|Q],R):-

sousens(Q,L), % et ensuite:

(R=L; % X rejeté. ";" est l'alternative

R=[X]L]). % X accepté

28

Classification générale des langages : survol de la tour Babel

Q6.
R6.

Q7.
R7.

Q8.
R8.

Qo.

R9.

En Prolog quand I'utilisateur charge le fichier avec ce prédicat, et I'exécute en demandant I'évaluation

de sousens([a,b,c,d],R). , le systeme réponR=[] , et il attend la réaction du programmeur

qui peut I'accepter, ou taper le point-virgule qui redémarre la machine non-déterministe, et[alfiche

Ainsi nous pouvons récupérer les réponses une par une, mais il est possible de les ramasser ensemble en
tapant

bagof(Z,(sousens([a,b,c,d],2)),L). %% Ceci donne:

Z= x2235, %% n’'importe quoi, nom interne
L=[[l.[a].[b].[a,b].[c].[a,c].[b.c],[a,b,c] [d] [a,d],
[b,d],[a,b,d],[c,d],[a,c,d],[b,c,d],[a,b,c,d]]

En Haskell la stratégie sera exactement la méme. On construit la solution partielle sans la téte, et ceci
nous donne la moitié de la solution finale — tous les sous-ensembles qui ne contiennent pas la téte. Pour
construire les sous-ensembles qui la contiennent il suffit de I'ajouter, et de concaténer les deux parties

sousens [] = [[l]
sousens (x:I) = let part=sousens | in
part ++ map (x :) part

Question accessoire, obligatoire a tous ceux qui ont un miniediambition : Prouver que la cardinalité
du(sousens I) estégale ", oun estlalongueur de.

Construire la fonctioake

Ah, non, essayez vraiment vous-mé&me. Sivous n'avez pas le courage, regédtirmiard Preludele
Haskell. Cette fonction est prédéfinie.

Est-ce que I'expressidioldl (:) 11 12 est [égale? Non? Pourquoi? Comment y remédier?

L'erreur est déclenchée par le vérificateur des types. L'opér&deum’est pas symétrique, son premier
argument est un objet, et le second — une liste des objets du méme type. L'expression incriminée applique
cet opérateur dans mauvais sens. Par contre, ceci est fégdll (flip () 11 12 . Qu'est-ce

que cela donne?

Quel est letypede la fonctionins ?

Haskell nous dit :
ins = Eqa=>a->[a -> [a]]

alors : deux arguments, le premier d’'un type incoanet le second — une liste composée des éléments
du méme type. Le résultat est une liste de listes. Le pré&fixea => ... signifie queHaskell a bien
reconnuins comme une fonction polymorphe, mais il a automatiquement restreint leatpgde classe

de types qui admet la relation d’égalité. Pourquoi? Est-il possible d’enlever cette contrainte?

Construire une fonction edaskell (comb k 1) quigénére toutes leombinaisonsle k objets parmi
tousn éléments de la liste. (Leur nombre est égal au coefficient binomial de Newt@jg):

L'algorithme repose sur un choix itératif : il faut parcourir tout I'ensemblendabjets et soit choisir
(accepter) un objet, ou le refuser, comme gvewerset Le nombre de choix positifs doit étre égata

Si on rejette la téte, il faut choiskr éléments parmi les restants. Si on I'accepte, il faut encore en choisir
k — 1, et réinsérer la téte. le programme est d’une simplicité exemplaire :

comb k | =

let cmb k n |
| k<O =
| k==0 = ([
| k== = [|]

| otherwise = let (x:q)=l in
cmb k (n-1) g ++ map (x :) (cmb (k-1) (n-1) q)
in cmb k (length 1) |

2.10 Exercices 29

Q10.
R10.

Q11.
R11.

Le résultat concaténe les deux solutions partielles. Cette stratégie prouve accessoirement la validité du

théoréme
n n—1 n—1
= 2.1
Et, pour comparer, voici la solution érolog :

comb(K,L,R) :- length(L,N),cmb(K,N,L).
cmb(K,_,_,[]) :- K<O.
cmb(K,_,_,[[l) :- K=0.
cmb(K,N,[X|L],R) :- N1 is N-1,
(cmb(K,N1,L,R) ; K1 is K-1, cmb(K1,N1,L,R1), R=[X|R1]).

ou I'opérateur point-virgule dénote une alternative non-déterministe, ce qui est plus compact que I'écriture
de deux clauses séparées. Nous rappelons ®relog on générainesolution «quelconque» et on a

pas besoin de concaténer quoi que ce soit. L'opérassiarce I'évaluation arithmétique, I'opérateur

= est l'unification qui peut attribuer la structure a droite a la variable a gauche, mais ne déclenche pas
I'évaluation numérique.

Construire les combinateudsipl etcomp (le compositeur (.) avecsubs etconst .
Le duplicateur :
fxx=1fx (idx) =subs fid x

==> dupl f = subs f id
= flip subs id f

et doncdupl = flip subs id . La définition deid est déja connue. Et liip ? Rien de plus
simple :

flipf xy=Ffyx
= subs f (const x) y

==> flip f = (subs f) . const
Le compositeur est un peu plus tordu :

f (g x) = (const f x) (g X) = subs (const f) g X
==> comp f = subs (const f)

et I'élimination compléte dé , afin d’obtenir une définition combinatoire semble étre difficile. La
derniére forme se réduit a. .. :

comp f = subs (const f) = (comp subs const) f

oucomp = comp subs const , ce qui mene nulle part. ..
Ecrire une procédure de tri des listestémskell
Construisons le tri rapide des listegi{cksor). Rappelons le principe de cet algorithme :
e On choisit un élément quelconque de la collection, le «pivot». Pour des listes il est naturel de

prendre la téte, car elle est directement accessible.

e On partitionne la liste en deux sous-listes : le éléments petits, et éléments grands par rapport au
pivot.

e On effectue (récursivement) le tri des deux sous-listes.
e On concaténe les résultats, en mettant le pivot au milieu.

30

Classification générale des langages : survol de la tour Babel

Q12.
R12.

Q13.

R13.
Q14.

Voici le code qui utilise les compréhensions :

gsort [] = []
gsort [x] = [X]
gsort (x:I) =
gsort [p | p<-lp<=x] ++ [x] ++ gsort [g | g<-..g>X]

Il nest pas optimal. La liste-argument est parcourue et filtrée deux fois pour construire les sous-listes
contenant les éléments grands et petits. On peut faire mieux, voici le code optimisé :

gsortl [] =[]
gsortl (x:q) = gs q [] [] where
gs (a:aq) p g | a<=x = gs aq (a:p) 9
|otherwise = gs aq p (a:g)
gs [p g = gsortl p ++ (x : gsortl Q)

Cherchez d'autres optimisations, par exemple I'élimination de la concaténation par l'introduction d’un
argument-tampon.

Construire I'algorithme qui généteusles nombres premiers par la technique du crible d’Eratosthene.

Le crible prend une séquence de nombres entiers, met a part le premier élément, et élimine (filtre) tous
les multiples de cet élément du reste de la séquence. Ceci constitue une étape du filtrage. Si on répéte la
méme opération sur la queue, et si on continue, a la fin seulement les nombres premiers auront le droit
de rester dans la liste. Voici la procédure compléte :

prims = sieve [2 .] where
sieve (x.q) = X :
fiter (\m -> m 'mod’ x /=0) (sieve Q)

Laliste[2 ..] estune listgaresseusfinie: 2, 3, 4, ... qui est une abréviation idésFrom
2:

intsfFrom n = n : intsFrom (n+1)

Essayez d’optimiser cette solution.

Le «Prélude Standard» dtaskell contient une fonction qui combine ensemble deux listes, élément par
élément avec un opérateur binaire :

zipWith oper (x:xq) (y:yq) = oper x y : zipWith oper xq yq

Quel est le contenu de la liste paresseunystere définie ci-dessous
mystere = 0 : q where

g = zipWith (+) uns mystere

uns = 1 : uns

Pourquoi?
Pas de réponse ici. Veuillez tester ce programme. |l a déja été donné une fois comme sujet d’examen.

Regardez la définition de la fonctidifter . On note que 'appel récurdiiiter p xq est effec-
tué indépendamment de la conditipnx. Est-ce possible alors d’optimiser cette fonction de maniere
suivante :

filter p 1 =[]
fiter p (x:xg) = let rst = filter p xq
in if p x then pirst else rst

2.10 Exercices 31

R14.

Q15.

R15.

Q16.

R16.

Q17.

R17.

Oui c’est possible, mais il faut faire attention. La premiére solution est incrémentale, elle marche méme
avec les listes infinies, tandis que la solution «optimisée» dans ces circonstances déborde la pile. Elle est
récursive non-terminale, stricte: la queue est évaluée inconditionnellement. Donc ceci peut étre une
optimisation réelle si la liste est courte et si on sait que la totalité de la liste-source sera parcourue, et que
la totalité du résultat doit étre construite, et disponible en méme temps.

Une technique d’approximation de la fonction sinus exploite la récursivité et la formule de triplication
de l'angle :
sin(3z) = 3sin(z) — 4 (sin(z))® . (2.2)

Implanter cet algorithme ardaskell (Supposons que I'on doit implanter une librairie numérique standard
pourHaskell. ..). Ensuiteoptimizer la solution de fagon tres profonde : la fonction doit étéeative

Pour simplicité (pour ne pas étre obligé de réduire I'argument en utilisant les propriétés des fonctions
trigonométriques) on suppose que I'argument se trouve entre.0 et

Voici la solution triviale, qui arréte la récursion quand I'argument est trés petit :

epsilon = 0.000001
monsin x | x<epsilon = x
| otherwise = let z = monsin (x/3.0)
in z*(3.0 - 4.0*z*z)

L'optimisation consiste a observer qu'il suffit de réduire d’abord I'argument jusqu’a la valeur souhaitée
en comptant le nombre de réductions; et ensuite d’appliquer la formule(3... m fois.

msin X = ms x 0 where
ms x m | x>=epsilon = ms (x/3.0) (m+1)
| otherwise = mg x m
mgz 0=z
mg z m = mq (z*3.0 - 4.0*z*z)) (m-1)
Les listes contenant des chiffres, p. £x2,0,8,7,2,6] représentent dans cet exercice des entiers,
ici : 128726. Ecrire une fonction qui prend une liste de ce genre, et qui la transforme en un entier

numérique «normal». Ecrire aussi une fonction qui effectue la transformation inverse, qui transforme un
entier en liste.

Cette exercice constitue notre premiére construction garseur Voici une construction sérieuse. Pour
la lecture :

nombre | = nb I 0 where
nb 0 tmp = tmp
nb (x:xq) tmp = nb xq (10*mp + x)

Pour I'écritue on utilisera la fonction prédéfinie Hngs : divMod qui renvoie le résultat de la division
Euclidéenne et le reste de cette division de ces arguments dans une paire.

affiche n = aff n [] where
aff 0 buf = buf
aff n buf = let (d,r) = divMod n 10
in aff d (r:buf)

Et & présent construire une fonction capable d'ajouter deux nombres dans cette représentation «ex-
plosée». Ceci, bien évidemment, n'est pas la somme élément par élément, car il faut surveiller la retenue,
et en général les listes peuvent avoir des longueurs différentes.

La solution est un peu pénible car la retenue se propage de droite vers la gauche, il faut donc renverser
la liste pour avoir I'acces direct a son dernier élément. La fonction auxikaidigit ajoute un seul
chiffre a une liste.

32

Classification générale des langages : survol de la tour Babel

Q18.

R18.

Q19.
R19.

Q20.

R20.
Q21.
R21.

10

dbase

addigit ¢ [] = [c]
addigit ¢ (x:xq) =
let m = c+x
in if m<dbase then m:xq else (m-dbase) : addigit 1 xq

addlist 11 12 = reverse (addl O (reverse I1) (reverse 12)) where
addl c [] | = addigit c |
addl c |] addigit c |
addl ¢ (x:xq) (y:yq) =
let (d,r)=divMod (c+x+y) dbase
in r: addl d xq yq

Est-il possible d'écrire I'algorithme d’additiosans renverser les listeOn suppose que les deux ont la
méme longueur (sinon on peut compléter la plus courte par des zéros), et on exploite de maniére assez
agressive I'évaluation paresseuse.

Cherche et tu trouveragC’est une solution courte, mais un peu bizarre : il faut «kemprunter» la retenue
des chiffres qui n'ont pas encore été traités.

Essayez d’exprimer les fonctionnellespetfoldl parfoldr

Ceci est relativement simple, mais si on ne connait pas les «trucs du métier», la solution est difficile a
trouver. Voir le Prélude standard.

map f | = foldr \a b -> fa:b)[]I
foldl f z | = foldr \b ga->g (fab)idl z

La construction dunapest immédiate : I'élément initial est la liste vide, et le «pliage» consiste a ajouter
a cet élément les applications flea la liste initiale. D’ailleurs, on peut représenter cette fonction de
maniére plus compacte, en exploitant les combinateurs :

\ab->fa:b
\a > () (f &)
© .9

\ab->()(fahb
\a > () .) a =

Cool, non?

Lefoldl est un peu surprenant, car cette fonctionnelle doit étre récursive terminale (itérative), tandis
quefoldr empile les résultats intermédiaires. Analysez cette solution pour voir dans quel ordre cette
fonctionnelle réduit la liste : de droite ou de gauche.

Et comment implanter a travefsldr la fonction de filtrage :

filter _] =]
filter p (xxxq) | p x = x : filter p xq
| otherwise = filter p xq

fiter p = foldr \a b -> if p a then a:b else b) []
Trouver le type principal déoldl

Au travail, au travail !

Chapitre 3

Machines virtuelles et exécution des
programmes par l'ordinateur

3.1 Entre compilation et interprétation

Dans I'archive des messages envoyésausgrougJsenet consacré a la compilation, une série de questions

se répéte assez souvent : on enseigne la construction de compilateurtan@Qagé-ciblechoisir? Ceci doit

étre un langage de bas niveau pour que I'exécution du programme soit rapide. Assembleur? Alors lequel? Un
assembleur théorique, abstrait? Alors comment vérifier le code? Concret? Mais est-ce raisonnable de coincer
les étudiants dans une architecture spécifique qui peut provoquer une perte de temps non-négligeable?

De plus, — comme nous avons déja souligné — le développement de langages de programmation va dans un
autre sens]ava, Python, Prolog, etc. utilisent des instructioqsimitivesqui réalisent soit I'aiguillage indirect
caractéristique des langages a objets (avec des méthodes virtuelles), soit le non-déterminisme logique qui ne
peut étre réalisé au niveau assembleur, car demande la possibilité de fournir plusieurs réponses a une question.
La solution est de construire dpstitsinterprétes de bas niveaux — des machines virtuelles intermédiaires entre
le «matériel» (C’'est a dire : les microprogrammes qui exécutent les instructions assembleur), et un langage
évolué. (En tout cas il ne faut pas essayer de chercher trop d’affinités entre les significations du mot «virtuel»
dansmachines virtuellest méthodes virtuelles.

En utilisant le code intermédiaire nous montrerons qu'il n'y a pas beaucoup de différences conceptuelles
entre un interpréete et un compilateur. En fait, le compilatsiun interpréte qui «exécute» (ou évalue) le
programme, toutefois le résultat n'est pas une séquence finale de valeurs numériques ou graphiglges, mais
code de plus bas niveajui produira cette séquence de valeurs a I'aide d’un autre interpréte.

3.2 Expressions fonctionnelles et évaluation récursive

3.2.1 Interprete descendant erfscheme

Construisons un interpréte capable d’évaluer une expression arithmétique, par exemple

3.0
1.0-2.0 (2.0x +) — 2.0z (3.1)
y

Considérons cette expression comme une structure de données arborescente, obtenue par un analyseur syn-
taxique, ou codée explicitement par le programmeucisp. L'arbre syntaxique de I'expression (3.1) aura la

forme présentée sur la Fig. (3.1).

La premiére chose a établir est la classe de données primitives gérées par notre machine. Nous aurons les
constantes réelles et quelques variables symboliques, considérées ici pour simplicité comme des abréviations
des objets globaux. Ensuite il faut préciser la panoplie des opérateurs disponibles. Ici nous avons seulement les
opérateurs arithmétiquésnairessymbolisés par les caractéres spéciaux standard. Si nous construisions notre
interprete erscheme ou autre dialecte deisp, nous pourrions traiter les feuilles et les nceuds internes comme

des atomes, et écrire un évaluateur de listes imbriquées de genre

33

34 Machines virtuelles et exécution des programmes par I'ordinateur

Fig. 3.1: Arborescence syntaxique

C C1¢t2F0CFE2)03Y))(22)

La stratégie est évidente: si I'expression est une feuille, alors évaluons sa valeur, soit directement si c’est une
constante, soit en cherchant son association (nom — valeur) dans I'environnement courant. Si I'expression est
une liste (un nceud interne), évaluons récursivement les deux branches, et appliquons I'opérateur «par magie»
(en fait par l'aiguillage : si 'opérateur est 'atome-x appliquons la procédure d’addition, etc. — tout défini

dans le langage d'implantation, qui correspond a la machine de plus bas niveau. Pour que cet exercice soit
vraiment utile, il faut tenir compte de quelques généralisations possibles et quelques problémes d'implantation :

1. Il serait utile d’avoir des opérateurs d’arité quelconque, notamment les fonctions unaires smmme
exp, etc. Ceci est trivial, il suffit de récupérer tous les arguments et évaluer récursivement toutes les
branches avant d’appliquer I'opérateur. Mais il faudra les stocker quelque part.

2. Pour un langage de programmation sérieux il est indispensable de pouvoir exploiter les fonctions définies
par l'utilisateur. Nous allons traiter cette question en détail plus tard, mais le modele adapté a notre
machine descendante est simple, il n’est rien d’autre qu’'un modele du calcul lambda implanté déja dans
lespremiéres réalisations tlisp. Supposons avoir défini

(cube x) = (* x (* x x)

Quand l'interprete trouve la branche. (cube 1.5) ... sur l'arbre en train d’évaluation, il peut
vérifier quecube ne correspond a aucun opérateur magique, il doit alors étre défini par une construction
de genre

(define cube (lambda (x) (* x (* x X)))) ou en Haskell :

cube = \x > X * x * X

Linterpréete doit trouver dans I'environnement I'affectation de I'opérataure , comme de toute autre
variable. Le protocole a suivre est alors le suivant :
e On récupeére les parameétres de I'opérateur (xgi.:
e L'argument (ou les arguments) de I'opérateur sont évalués comme dans le cas de I'opérateur prim-
itif.
e Lesvaleurs — résultats de cette évaluation sont associées avec les parameétres dans I'environnement
actuel, qui doit donc étre dynamique, modifiable.

e La forme \ est évaluée comme toute autre expression. Les parameétres sont associés avec leurs
valeurs, et la procédure est effective.

e Le résultat est récupéré, et les associations des paramétres sont détruites.

3.2 Expressions fonctionnelles et évaluation récursive 35

3. Linterpréte conceptuel est «trop intelligent» et il sera lent, partiellement a cause de résolution dynamique
des types de donnéddaskell partage ave€ le typage statique.

Le type de données — feuilles — utilisé ici estrllon (au sens connu €B) de nombres flottants et de symboles.
Pour simplicité les symboles seront des chaines, etaskell ces chaines sont dbstesde caracteéres.

type String = [Char] Cette définition est standard
data Value = F Double | S String

ou les constructeurS et F sont des balisesdg9 identifiant les variantes de cette alternative. Un opérateur est
également un symbole. L'expression est une arborescence, dont le nceud interne cdaatiehoperateur, et

deux branches. (Si nous voulions généraliser a des opérateurs d’arité arbitraire, il faudrait remplacer les deux
branches par une liste de branches. Le §pping enHaskell est prédéfini.)

type Opsymb = String
data Expr = L Value | A Opsymb Expr Expr

La recherche des valeurs symboliques dans I'environnement peut étre réalisée a I'aide d'un tableau associatif
envir = [("x",2.5),("y",-1.0),("z",0.5)]

etc., avec la fonction de recherche correspondassec :: String -> Double dont la construction
est laissée au lecteur. Plus tard il nous faudra construire des tables de symboles plus réalistes. La magie des
opérateurs primitifs peut étre réalisée par la fonction d’aiguillage (adaptée aux opérateurs binaires)

evalpr : String -> Double -> Double -> Double
evalpr op x y =
case op of

"> X+y
Hxn > X*y
""o-> 0 xly
"> Xy

qui traite des valeurs déja décodées. Voici la fonction qui traite des valeurs générales, cherchées éventuellement
dans I'environnement global :

decodval : Value -> Double
decodval (F Xx) X
decodval (S c) assoc c¢ envir

(Ici les déclaration de type sont redondantes, mais peuvent pendant le développement du programme guider
I'ceil du programmeur, et éviter quelques fautes.) L'évaluateur récursif est tres simple :

eval : Expr -> Double
eval (L val) = decodval val
eval (A op vl v2) = evalpr op (eval vl) (eval v2)

Passons a une machine plus efficace, et transformons le schéma ci-dessopiateurqui génere un code
linéaire, destiné a une machine a pile, presque «professionnelle». Sile lecteur est intéressé par la vraie forme
de notre expression exemplaireldaskell, la voici :

A" (A" (L(F 1.0) (A ™" (L(F 2.0))
(A ™+ (A ™ (LFE 2.0)) (LS X))
(AT (LF 3.0) (LS "yN)))
(A ™" (L(F 2.0)) (LS "2Y)

donc, la lisibilité deHaskell par rapport &cheme est une propriété relative, elle s’applique aux programmes
et non pas aux données balisées. ..

Voici la définition de la fonction de recherclassoc , la plus primitive possible, linéaire. Nous suggérons au
lecteurformellemenide construire une version arborescente, dichotomique, sachant que les chaines peuvent
étre ordonnées. Bien s(r, on peut stocker sur un tel environnement aussi des opérateurs !

assoc :: String -> [(String,Double)] -> Double
assoc _ [] = error "Pas d'association !"

assoc ch ((sy,v):q) | ch==sy = v
| otherwise = assoc ch q

36 Machines virtuelles et exécution des programmes par I'ordinateur

Les machines récursives, arborescentes sont plus simples que les machines linéaires de bas niveau, présentées
ci-dessous. Elles sont parfois utilisées, car on peut les implanter en quelques lignes de code et insérer dans une
application quelconque, a condition que les expressions évaluées soient courtes (et que le noyau de I'application
sache gérer les listes et les arbres, donc, s'il dispose des procédures d’allocation et dé-allocation de mémoire,
et si la récursivité est bien implantée).

3.3 Linéarisation du code et machines a pile

La surcharge de I'interpréte ci-dessus est évidente, la structure arborescente des expressions exige son allo-
cation dans le tas, avec les pointeurs (ou «handles» : poignées), et en plus, I'évaluation récursive encombre la
pile systeme la pile qui appartient a la couche d’implantation. Les deux inefficacités disparaitront maintenant.
Nous allons transformer I'expression arborescente en code linéaire postfixe, ou I'opérateur suit ses opérandes.
Point besoin de parenthéses, notre expression exemplaire devient

[(Ll2f2fx[*[3]y[r[+[*[-]2]z]*]-]

La transformation de I'arbre en code postfixe est assez banale, il suffit de modifier trés Iégérement la fonction
eval . Sa structure reste essentiellement la méme, seulement au lieu d’évaluer le naeud, la fonction génere le
code pour les branches (alors elle s’appelle récursivement quand méme, mais nous allons optimiser cette récur-
sivité), ensuite elle concaténe les deux codes, et a la fin elle stocke I'opérateur derriére le code correspondant
aux branches. Les feuilles sqmesquedirectement insérées dans le code. Mais ce «presque» est important :

un nombre n’est pas une instruction.

L'évaluation de ce code a besoin d’'une autre machine virtuelle, de plus bas niveau, qui n’aura méme pas
besoin d’'étre récursive. Linterpréte parcourt le code «de gauche a droite». Si I'instruction courante contient
une donnée, sa valeur sera empilée sur une pile (privée) ; si c’est un opérateur, les deux (pour les opérateurs
binaires ;n pour les opérateurs-aires) derniéres valeurs sur la pile seront dépilées, I'opérateur appliqué, et le
résultat empilé de nouveau. Ici la suite d’'instructions sera : empilerd,, raultiplier 2 x =, empiler 3 ety,
exécuter la division, etc.

Le reste est le codage. Mais le code postfixe symbolisé ci-desshétesbgengil contient en vrac les
données et les opérateurs, et ceci n’est presque jamais une bonne idée, car demande de la part de la machine
virtuelle un peut trop — elle doit discerndynamiquemergntre ces classes d'objets avant interpréter chaque
item du code, et ceci ralentit considérablement I'exécution. Ceci dit, les langages typés dynamiquement oc-
cupent une niche stable dans le monde de la programmation, et personne n’envisage I'ab&@ulwntia
cause de cela. Une machine virtuelle postfixe, a pile, avec le typage dynamique existe en millions d’exemplaires
dans le monde : il s’agit de l'interpréte du langd@estScript qui pilote les imprimantes laser. BostScript
on mélange les données et les opérateurs, et la machine prend dynamiquement la décision d’empiler la donnée
si elle figure «nue» dans le programme.

Nous allons faire quelques exercices basés sur ce modéle, mais pour la compilation générale la différence
entre les données et les commandes est trop importante pour la traiter avec désinvolture.

Profitons de ce changement de chevaux, et introduisons quelques généralisations et quelques contraintes
dans la machinerie.

3.3.1 Cabhier des charges

1. Le systeme doit gérer les opérateurs primitifs d’arité quelconque, et leur liste doit étre extensible.

2. |l est possible d'utiliser des fonctions non-primitives, dont le corps a le méme statut que I'expression
principale (code utilisateur), et il n’est plus exécuté par magie.

3. Le code est homogene, nous éviterons de mélanger les données et les commandes, méme si ceci en
principe est faisable. Nous voulons ainsi accélerer I'exécution, en évitant trop de décisions dynamiques
de décodage.

4. Le code est stocké dans une liste chainée. Une allocation plus statique, dans un tableau serait plus
efficace, mais plus rigide, moins propice a I'apprentissage des idées générales. Cette optimisation sera
discutée plus tard, elle est assez simple.

3.3 Linéarisation du code et machines a pile 37

5. Les variables n'ont plus de noms symboliques (chaines) a décoder, mais sont identifiédi@as
ou référencesadressant une table des symboles (I'environnement), ou — éventuellement — la pile des
données locales. Ici également on peut utiliser une liste, un arbre ou un tableau de hachage pour accélerer
l'insertion et le parcours.

6. Toutes les données circulent papie de donnéesstructurée également comme une liste. La pile est
conceptuellement hétérogene, on y stockera des nombres, mais aussi des objets procéduraux, exécuta-
bles. Ceci serassentielpour pouvoir gérer les structures de controle. Bien sdr, la pile syntaxiquement
esthomogeéne, tous les objets sont des données, mais définies avec variantes (balises).

7. La régle précédente suggere effectivement la solution du probléme d'daté opérateur prend en
argument la pile, et retourne la pile modifié. S’il a besoin de dépiler 134 arguments, il s’en charge. I
peut aussi renvoyer au module appelant une valeur multiple, empilée. Ce probleme est plus délicat avec
une machine a registres fixes, car il faut les sauvegarder lors des appels.

8. Un objet exécutable de haut niveau est tout simplement une liste représentant son code. (Mais il faut que
le consommateur d’'un tel objeachequ’il s’agisse d’un code ; ceci peut demander la présence d’'une
balise identifiante).

9. Pour éviter la nécessité de distinguer les listes-code vides des autres (et vérifier cela avant de décoder
l'instruction suivante, ce qui décélére I'exécutioajicuneliste ne sera vide. Tout code contiendra au
moins une instruction spéciale, fetour, et cette instruction devra terminer tout programme (module).
L'avantage est qu’une telle instruction peut se trouver au milieu d’'un code, et précipiter sa terminaison :
ceci permettra de concaténer plusieurs fonctions et blocs conditionnels ensemble.

Donc, les items du programme peuvent étre des opérateurs primitifs, ou des opérateurs composites — objets
exécutables de haut niveau qui remplacent les constructicismodéle précédent. Toutes les constantes et
variables — les données présentes explicitement dans le code doivent se transmuter en opérations. En effet, elles
seront remplacées par lestructions d’empilemente ces données.

Regardez la définition de la foncti@valpr ci-dessus. C’est uswitch qui décode les opérateurs primitifs.

Une question se pose : et si hous voulions ajouter d’autres opérateurs? Il nous faudrait recompiler cette partie
de la machine virtuelle. Quand le nombre d’opérateurs est variable ou dépasse quelques dizaines, une telle
stratégie est mauvaise. Nous pouvons naturellement construire un tableau associatif entre les noms et les
exécutables, et utiliser une variante de la foncéiesoc , mais ceci n'est pas une idée brillante, car I'exécution

sera ralentieMais la machine virtuell&’'a pas besoin de nomsles opérateurs (sauf pour le déboguage). La
vitesse d’exécution augmente d’un facteur important (de plusieurs dizaines s'il fallait décoder les chaines) si le
code interprété ne contient plus des noms, mais directemeréféaences aux procédures exécutabletes

noms des opérateurs sont décodés (transformés en indices) par le compilateur et non pas par linterprete

Trés souvent les interprétes utilisent une stratégie intermédiairdytesodesPas de noms symboliques,
mais tout opérateur est représenté par quelques bits — un nombre entier, ou un symbole appartenant a un type
énuméré, qui sert d’'indice a un tableau d'aiguillage. Pas de recherche, pas de fasstion mais I'indexage,
précédé éventuellement par la séparation du bytecode du reste de l'instruction. Nous allons cependant exploiter
encore une autre approche, utilisé d&@RTH, quelques variantes du langa§eobol4, Python, partielle-
ment incluse dans le compilateur de Glasgdaskell, et plusieurs autres langages, et pourtant rarement en-
seigné — le code «enfiléthfeaded codg Il N’y aura pas de bytecodes, mais le stockage direct des références
aux objets exécutables, ou des références aux «boites» qui contiennent les références aux exiaclitatiies (
threaded code Sonseuldésavantage est que la longueur du code augmente, car les bytecodes sont plus courts
que les références (pointeurs).

Le nom <hreaded code est souvent utilisé dans un contexte plus spécifique : c’est un code qui n'a pas
besoin d’une machine virtuelle globale (boucle centrale), puisque chaque opérateur connait son successeur (ou
successeurs dans le cas des conditionnelles). Nous allons adopter cette terminologie, et nous allons présenter
les deux modéles d'interprétation : I'un ou le flot de contr6le est piloté par une boucle centrale, et I'autre —
threaded codesans bouclequi réalise une variante particuliere de la philosophie CPS : ces parametres
supplémentaires sont des continuatians

Credoreligieux no. 4 : Une machine virtuelle trop intelligente est une calamité désastreuse, comme un soldat
qui pense trop. Les deux doivent exécuter des ordres simples sans réfléchir, sinon on gaspille le temps, et c’est
la concurrence qui gagne la guerre.

38 Machines virtuelles et exécution des programmes par I'ordinateur

Credoreligieux no. 5 : Une machine virtuelle stupide est bonne pendant la guerre. Mais quand la paix arrive
et il faut développer la société, les soldats sans cervelles ne servent pas a grande chose.

3.3.2 Codage de la machine

Commengons par la spécification des données. Avant, les variables étaient stockées dans unetdiste,
associé avec 2.5, etc. Les variables locales auront toujours besoin d’une structure dynamique (pile) pour stocker
les valeurs, mais icia titre pédagogiquemaginons que les variables sont globales et statiques. Un tableau
envir peut remplacer la liste associative, et les noms ne sont plus que des indices. Le tablasketirpeut

étre construit par la fonctioarray qui prend deux arguments — une paire spécifiant la dimension (I'intervalle

des indices), et une liste des associations : (indice,valeur).

import Array

envir = array (0,20) [(0,2.5), (3,-1.0), (4,0.5), ...]

(Les fonctions sur des tableaux etugs sont importées optionnellement, d’ou le mot-aigport .) Ces
fonctions résident dans une librairie standard, mais qui pour des raisons d’efficacité n’est pas chargée automa-
tiguement dans la mémoire.

Répétons que la transformation des noms de variables en indices n’est pas une tache de la machine virtuelle,
mais du compilateur, et ceci n'est pas actuellement notre probleéme.

Une donnée appartient au typalue

type Indx = Int
data Value = F Double | | Integer | Ch Char | S String
| U | V Indx | Co Code

ol nous avons enrichi la collection par les entiers, les chaines, etc. La différencintages etInt est
secondaireHaskell reconnait les entiers tres longs, de précision illimité, mais les indices des varidples (
seront des entiers normaux, de 4 octets appartenant alntype(Au cas ou quelqu’un décide de modifier le
protocole d’acces, nous avons introduit un synonyme des entiers staridded .) Le typeCode représente
les fonctions utilisateur.

Ajoutons a cette collection encore un type «bidahyui représente une valeur «vide» (Haskell il existe
un type prédéfini pour cela() , son usage est moins ambigu qusymbolenil ou la liste vide renvoyée par
des procéduresisp qui n'ont pas besoin de générer une valeur concréte).

Rappelons que l'affichage des objets complexes demande un peu d’attention de la part de l'utilisateur. Si
nous voulons pouvoir afficher une valeur quelconque, il faut prévoir un ensemble de fonctions de conversion,
par exemple :

instance Show Value where
showsPrec p vl =

case vl of F x -> showString "Float:
I x -> showString "Integer:
Ch x -> shows x
S X -> shows x
U -> showsString "<rien!>"
V x -> showString "Variable: " . shows x
Co x -> showsString "[<code>]"

. shows x
" . shows x

\Y

Passons au code qui est une liste d’'items, et a la pile qui est une liste de valeurs. Les items du code peuvent
étre : RET, une opération sans arguments (mais extra arguments existent, latpilgoessprésente) ou une
opération avec un argument supplémentaire, par exemple un code a exécuter, ou une valeur a empiler. La
commande RET est introduite ici uniquement pour la présentation, pour varier un peule theme, nous allons
I'abandonner vite.

type Code = [Codeltem]
type Stack = [Value]

type Op0 = Stack -> Stack -- 0op. sans arg

3.3 Linéarisation du code et machines a pile 39

type Opl = Value -> Stack -> Stack -- 1 arg supp.
data Codeltem = RET | CO Op0O | C1 Opl Value

Il faut définir quelques opérations arithmétiques primitives, pour simplicité on définit seulement nos vieux
opérateurs binaires. Définissons également une fonction qui empile une valeur, constante ou variable. Dans
ce dernier cas il faut décoder la variable, utiliser I'environnement. La construbliamx correspond a
tbl[indx] dans d’autres langages.

type Opbin = Double -> Double -> Double

b!nop :» Opbin -> Stack -> Stack
binop op ((F x):(F y):q) = F (op y X):q

add = binop (+) : OpO
mul = binop (*)
sub = binop (-)
dvd = binop (/)

load v stack = case v of
F x -> v:stack
V i -> (F (envirli)):stack

Le code postfixe de notre expression exemplaire reste assez illisible :

cod = [C1 load (F 1.0), C1 load (F 2.0), C1 load (F 2.0),
C1 load (V 0), CO mul, C1 load (F 3.0), C1 load (V 3),
CO dvd, CO add, CO mul, CO sub, C1 load (F 2.0),
Cl load (V 4), CO mul, CO sub, RET]

mais la machine virtuelle devient trés simple :

aeval (instrirst) stack = case instr of
RET -> stack
CO op -> aeval rst (op stack)
Cl op val -> aeval rst (op val stack)

et pour obtenir le résultat (qui est égal a -4.0) on construit, et on demande la valeur de
interp cod = xx where (xx:_) = aeval cod []

Nous avons promis de gérer les fonctions utilisateur, par exemple la fonction qui calcule le cube d’un nombre.
Le contexte d’appel est simple, 'argument est emailantde lancer la fonction. Elle n’a donc besoin que de

la pile. Mais il faut dupliquer la valeur deux fois pour pouvoir itérer deux fois la multiplication. Construisons
donc quelgques opérations primitives qui administrent la pile, et la fonekiea qui exécute un code utilisateur.

Cette derniére est assez triviale : elle relance récursivement I'évaluateur.

dup p@(x:_) = xip -- duplique le sommet

exch (xy:q) = (y:x:q) -- échange deux derniéres valeurs
pop (_:q) = q -- détruit le sommet

exec (Co cod) stack = aeval cod stack -- The Executioner

-- Le code du cube :
cube = Co [CO dup, CO dup, CO mul, CO mul, RET]

-- et le résultat :
res2 = interp [C1l load (F 5.0), C1 exec cube, RET]

est 125.0. Nous n'avongen modifié dans la définition de la machine. L'usage de la pile pour passer les
parameétres nous a libéré de la nécessité de stocker dynamiquement dans I'environnement les associations en-
tre les paramétres et les arguments actuels. Mais si la construction du code corresponbannést plus

manuelle, mais automatique, a partir d'une procédure avec parameétres, ce probleme va resurgir, et le compila-
teur doit établir ces associatioagantde construir le code final.

40 Machines virtuelles et exécution des programmes par I'ordinateur

3.3.3 Meécanismes décisionnels
Notre machine est handicapée pour quatre raisons.

1. Le code exécuté est obligatoirement linéaire et déterminé statiquarpeati, la machine ne peut pren-
dre aucunalécision Dans un modéle sérieux il faut augmenter la puissance sémantique de la machine
par — au moins — I'équivalent de la constructibthen-else

2. Linterpréte reste trop complexe. Il est récursif, alors il utilise la pylstémeprésente dans I'application
grace au compilateur du langage d'implantatibiagkell, ouC...). Ceci n’est pas une bonne idée. La
pile systéme n’étant pas contrdlée par le programme, le déboguage devient impossible, inefficace, ou
tordu.

3. En principe toutes les structures de contr6le itératives (boucles) peuvent étre réalisées par la récursivité
terminale, mais nous sommes encore loin d’une telle optimisation. Toute tentative d'écrire une fonction
récursive, terminale ou pas, est interprété de la méme facon —réppesif de I'évaluateur. Les boucles
suffisamment longues se terminent toujours par le débordement de la pile systéme.

4. Le quatrieme point est simple mais génant : pour définir les fonctions récursives il faut pouvoir leur
donner des noms. Il faut alors élargir le concept de variables — pas seulement numériques, mais aussi
fonctionnels. (Et, bien sir, d’autres objets — tableaux, listes, etc. aussi, mais cela viendra plus tard.)

Ajouterons ces modifications en douceur. Les procédures constituent des valeurs et peuvent étre empilées.
Construisons alors deux fonctiongf: de classéC0 qui trouve sur la pile la condition et une procédure, qui
sera exécuté sila condition est différente de zéro. La fondeétse (de la méme clas$€0, sans arguments
extra) trouve sur la pildeuxprocédures — une si la condition est remplie, et I'autre en cas d’échec.
Faut-il introduire les Booléens? En principe ddaskell les utilise et ils n’alourdissent pas la structure de
la machine. Mais nous pouvons aussi adopter le stylg,cat le zéro est faux, et 1 (ou autre nombre différent
de zéro) — vrai. Il faudra alors construire quelques opérateurs relationnels.

ifelse (pelse:pthen:(lI cnd):q) =
if cnd/=0 then exec pthen q else exec pelse ¢

iff (pthen:(l cnd):q) =

if cnd/=0 then exec pthen q else q
biconvrt True =11 -- Convertisseurs
biconvrt False = |1 0

boolop op ((F x):(F y):q) = biconvrt (op y X) : q

gt = boolop (>)
It = boolop (<)

eq boolop (==
ne boolop (/=)

La fonctionmsign qui calcule le signe d’'un nombre entier : 1, 0 ou -1 aura la forme

msign = Co [CO dup, C1 load (F 0.0), CO gt,
C1l load (Co [CO pop, C1 load (F 1.0), RET]),
Cl load (Co [C1 load (F 0.0), CO eq,
C1l load (Co [C1 load (F 0.0), RET)),
C1l load (Co [C1 load (F (-1.0)),RET)),
CO ifelse, RET]),
CO ifelse, RET]

Un tel code, plein de balises et de constantes procéduralisées par 'empilement n’est pas écrit d’habitude par
les humains. Le modéle, comme il a été dit, correspon@a@aiScript ou autres langages qui utilisent les
machines a pile, commiava, Smalltalk, quelques implantations deascal, etc. Mais le code est généré par

le compilateur, et méme dPostScript qui est une machine a pile «nue», programmée dans la notation postixe,
demande seulement que l'utilisateur écrive

3.3 Linéarisation du code et machines a pile 41

{dup O gt {pop 1} _
{0 eq {0} {-1} ifelse} ifelse}

L'ajout des tags, du RET, et ddsad est trivial, la seule vraie différence est le typage des nombres —
PostScript reconnait les nombres entiers et flottants dynamiquementC &n enPascal la conversion est
automatique. Endaskell elle est semi-automatique. Pour l'instant notre machine les considere comme des
types complétement distincts. Laissons au lecteur la construction des opérateurs arithriagdjyesiul
etc., des relations arithmétiqueg , ieq , et éventuellement quelques autres «clones» entiers des opérations
flottantes. En tout cas, grace au balisage, la différence entre les nombres de types différents est explicite,
visible, et on peut soit compiler I'opération adéquate, ou laisser la décision a la machine virtuelle.

Passons a la construction des fonctions récursives. D’abord, il faut rendre I'environnement plus souple.

Définissons aussi un opérateur un peu plus généraDgideet dont le premier argument est I'environnement.
Ceci nous oblige a introduire une nouvelle classe d’'opérateurs :

type Env = Array Int Value
type Op2 = Env -> Value -> Stack -> Stack

data Codeltem = RET | CO Op0O | C1 Opl Value | C2 Op2 Env Value

Ensuite il faut modifier un peu la fonction qui empile une valeur. La foncibaal sera généralisée, mais
simplifiée. Elle accepte un nouveau paramétsgmtab , le dictionnaire des symboles qui est notre tableau
associatif. Si le second argument est une variable, la valeur correspondante est empilée, sinon la fonction
empile I'objet méme.

envir = array (0,3) [(O,F 2.5), (1,F (-1.0)), (2, F 0.5),(3, I 0)]

I.(.).adv symtab (V i) stack = (symtabli) : stack
loadv _ % stack = v : stack

envirn = envir // [(3.fac)]
loadn = loadv envirn

L'opérateur(//) accepte un tableau et une liste d'associations, et renvoie le tableau modifié par les associa-
tions. Ici I'environnement a été enrichi par un objet qui s’appfte, et qui — comme le lecteur soupconne

— est la référence de la fonction factorielle. Pour définir la fondidmn nous aurons besoin d’un exécuteur
primitif modifié — de la fonctiorexecv qui accepte aussi I'environnement.

execv env (V i) = exec (env!i)

fac = Co [CO dup, C1 loadn (I 0), CO ieq,
C1 loadn (Co [CO pop, C1 loadn (I 1), RET]),
C1l loadn (Co [CO dup, C1 loadn (I 1), CO isub,
C2 execv envirn fact, CO imul, RET]),
CO ifelse, RET]

fact = V 3

La derniére ligne boucle la liaison entre la définition du code et I'environnement. Lédst@’est pas auto-
référentielle, elle s’adresse par l'intermédiaire de I'élément 3 du taldeaiin . Le résultat de I'exécution
de

interp [C1 loadn (I 6),C2 execv envirn fact, RET]

donne 720. La solution proposée n’est pas idéale. Les définitions des fonctions éuaame doivent étre
locales, la constructio®2 est redondante, on peut définir localement des applications partjekesv
envirn) et éliminer la présence explicite de I'environnement dans la liste-code, mais ce sont des opérations
cosmeétiques.

En fait, il faut avouer que l'introduction de plusieurs classes d’opérations, notammeditgie contient
un parametre extra, ne constitue aucune nécessité. Nous I'avons fait uniguement pour pouvoir lier de maniére
«classique» une fonction et une donnée extra dont la fonction a besoin. Pour les programmeurs fonctionnels
affranchis il suffirait de définir une fermeture appropriée, mais nous soulignons — encore une fois — que nous
ne voulons pas exagérer avec les spécificités de la programmation fonctionnelle.

Rappelons encore qu’un programmeurRarstScript écrira

42 Machines virtuelles et exécution des programmes par I'ordinateur

ffac {dup O eq {pop 1} {dup 1 sub fac mul} ifelse} def

pour définir la factorielle.

3.4 Gestion explicite de la pile des retours

Passons a I'élimination de la récursivité de I'évaluateur, ce qui mérite une section séparée. Nous pouvons
laisser sans remords les appels récursifs terminaux de la boucle principale. Ce qui nous géne est la fonction
exec et ses variantes.

Nous avons besoin de la récursivité (empilement des adresses de retour), caaepandrouve un code
interprété interne, il doit revenir au contexte précédent aprés le retour de la foexation Mais nhous pouvons
gérer la pile des retours par la machine elle méme. Linterpréte aura un parametre supplémentaire, une liste
dont les éléments sont les codes a exécuter. Au début n’a qu’un seul code, I'«expression principale», ou le
programme principal.

On peut accepter un protocole d’exécution «systeme», ou la machine virtuelle ne s’arréte jamais, et ne
rend aucune valeur. Elle joue alors le réle d’'un «dispatcher» (aiguilleur), d'un systéme d’exploitation qui
envoie les taches a ses processus-esclaves, mais qui ne fait rien d’autre. Si l'utilisateur veut dialoguer avec
son programme, lire les résultats partiels, etc., tout doit étre prévu par son code particulier (et les fonctions
prédéfinies). Une telle convention n’est pas fonctionnelle, mais impérative par excellence. Elle est utilisée
dans la pratiqgue. Nous suivrons néanmoins une stratégie différente, la machine s’arréte et retourne le résultat
d’évaluation du programme principal quand elle exécute I'instructtop . Nous pouvons insérer ce code
par défaut sur la pile des retours, mais I'essentiel est d'assurer que la machmgaitsune instruction a
exécuter. On sait tres bien que la processeur matériel une fois mis en marche fait toujours quelque chose, il ne
s'arréte jamais, méme si le programme constitue une boucle morte. L'avion qui s'arréte en plein vol n’est plus
un avion. ..

Comme précédemment, la mise a jour de notre machine nous permettra de réfléchir et d’enrichir sa séman-
tique, en simplifiant en méme temps sa structure. Les stratagémes principaux exploités ici sont les suivants.

e |l n'y aura plus d’'opérateur reconnu spécialement par sa syntaxe : RET. Il est devenu un opérateur
normal, comme les autres, et comme I'opératap . Son rble est de reprendre le calcul a partir de la
pile des retours.

e Toutopérateur prend maintenant I'environnement et une valeur supplémentaire comme arguments, mais
ces arguments peuvent ne pas étre utilisés du tout. (Dans un langage paresseux ceci ne force pas leur
évaluation, et ne codte presque rien.) Ceci simplifie les classes des opérateurs.

e L'environnement est passé a la machine comme une variable globale, &addeltem contient une
donnée supplémentairel)(On pourra optimiser cela aisément plus tard, mais ainsi la structure du code
est plus réguliere.

e Tout opérateur prend la pile des données, le reste du code actuel (la queue de la liste dont la téte est
l'instruction exécutée) et la pile des retours comme arguments.

e Le résultat retourné est toujours un triplet : le code (instruction suivante) a exécuter, la nouvelle pile
des retours, et la nouvelle pile des données. (Et on voit déja que la généralisation suivante doit perme-
ttre également retourner un nouvel environnement dynamique, si la sémantique du langage permet p.
exemple la réaffctation des variables globales).

e La machine «extérieure» est une boucle qui s’'arréte quand le code a exécuter est vide. Cette liste vide

est renvoyée par I'opératestop . On peut — bien sir — optimiser ceci, comme il a déja été signalé, et
cet exercice est laissé au lecteur.

e L'opérateurret ignore le code restant, et reprend le nouveau code de la pile des retours.

e L'opérateurexec empile le code restant sur la pile des retours, et assigne le nouveau code depuis la
procédure de haut niveau qui sera exécutée.

Nous introduirons accessoirement quelques simplifications de notation, des opérasturst var qui em-
pilent une constante ou une variable. Le nouveau programme sera copié dans son intégralité pour faciliter la
lecture.

3.4 Gestion explicite de la pile des retours 43

import Array

type Indx = Int

data Value = F Double | | Integer | Ch Char | S String
| U | V Indx | Co Code

type Code = [Codeltem]

type Stack [Value]
type Env = Array Int Value
type Rstack = [Code]

type Op =
Env -> Value -> Code -> Rstack -> Stack -> (Code, Rstack, Stack)
data Codeltem = O Op Value

Notez la simplicité du code et I'introduction drstack . Voici l'interpréte principal complet et quelques
opérateurs primitifs.

interp env (instr:code) = machine instr (code:[[stop]])]
where
machine ;o Codeltem -> Rstack -> Stack -> Stack
machine (O op val) (rest:later) pile =
let (ncode, nlater, npile) = op env val rest later pile in
case ncode of
1 -> npile -- "stop" a été exécuté
(ninstr:nrest) -> machine ninstr (nrest : nlater) npile

stop = C (_ _ _ rt pile -> (], rt, pile)) U
= C (_ _ _ (rt:demain) pile -> (rt, demain, pile)) U

-- Constante générique
cnst a x = O (_ z rst later pile ->
(rst, later, (z:pile))) (a x)

-- et ses variantes: flottante et entiere.
dblc x = cnst F x
intc X = cnst | x

-- Empilement d’'une variable (décodée)
var v = O (\e z rst later pile ->
(rst, later, ((e!v):pile))) (V v)

La premiere partie de I'exercice demande seulement la construction des opérateurs binaires (dans I'arithmétique
flottante)

binop op =

O (_ _ rst later (F x:F y:q) -> (rstlater,(F (op y x):q))) U
add = binop (+)

mul = binop (*)

sub = binop (-)

dvd = binop (/)

envir = array (0,3) [(O,F 2.5), (1,F (-1.0)), (2, F 0.5),(3, | 0)]
cod = [dblc 1.0, dblc 2.0, dblc 2.0, var 0, mul, dblc 3.0,
var 1, dvd, add, mul, sub, dblc 2.0, var 2, mul, sub, ret]

resl=interp envir cod

Passons aux procédures utilisateur et aux mécanismes décisidfelsts (). Voici la définition ducube
plus quelques fonctions accessoires.

dup = O (\

rst later p@(x.q) -> (rstlater,x:p)) U

44 Machines virtuelles et exécution des programmes par I'ordinateur

pop = O (_ _ rst later (_:q) -> (rstlater,q)) U

exch = O (_ _ rst later (x:y:q) -> (rst,later,y:x:q)) U

exec cod = O (_ (Co pr) rst later pile ->
(pr,rst:later,pile)) (Co cod)

cube = exec [dup, dup, mul, mul, ret]
res2=interp envir [dblc 5.0, cube, ret] -- oui, cela donne 125

Notre code commfdblc 5.0, cube, ret] contient seulement les structures de donn€esléltem),

on ne voit ni fonctions, ni la pile des données ni la pile des retours. Mais le code est strictement fonctionnel,

et en plus trés facilement traduisible en code impératif. Afedlse il y a un petit probléme ! |l serait
commode — comme dans la version précédente — d’utéisec aiguillé par le conditionnel de plus bas niveau
(if-then-else de Haskell. Mais a présent les primitifs prennent en plus de la pile aussi le reste du code et la
pile des retours. Comment les passer a I'autre primitive, sachaexegi’'n’est pas une fonctioapérant sur la

pile, mais un générateur de structures de données? Nous avons choisi une solution banale, mais les exercices
discutent d’autres possibilités.

ifelse = C (_ _ rst later ((Co pelse):(Co pthen):(I cnd):q) ->

((if cnd/=0 then pthen else pelse),rst:later,q)) U

-- les fonctions suivantes ne changent pas

biconvrt True =11
biconvrt False = |1 0

-- modification assez triviale
boolop op =

O (_ _ rst later (F x):(F y):q) ->
(rst,later,(biconvrt (op y x):q))) U

gt = boolop (>)

It = boolop (<)

eq = boolop (==

proc x = cnst Co x -- Comment empiler une procédure
msign = exec [dup, dblc 0.0, gt, -- Signe d'un nombre

proc [pop, dblc 1.0, ret],

proc [dup, dblc 0.0, eq,
proc [pop, dblc 0.0, ret],
proc [pop, dblc (-1.0),ret],
ifelse, ret],

ifelse, ret]

Et finalement la factorielle :

-- Ops binaires entiers. Aucune élégance...

binop op =

O (_ _ rst later (I x:I y:q) -> (rst,later,(I (op y x):q))) U

addi binop (+)

muli binop (*)

subi binop (-)

-- Ops Booléens (relationnels) entiers

booliop op =

O (_ _ rst later ((I x):(I y):q) ->
(rst,later,(biconvrt (op y x):q))) U

gti = booliop (>)
Iti = booliop (<)
eqgi = booliop (==)

-- Variante d'exec : exécution précédée par le décodage

3.4 Gestion explicite de la pile des retours 45

execv n = O (\e (V i) rst later pile ->

let (Co cod) = eli in (cod,rst:later,pile)) (V n)

-- L'indice de la factorielle
fact = 3
envirn = envir // [(3,fac)]

fac = Co [dup, intc O, eqi,
proc [pop, intc 1, ret],
proc [dup, intc 1, subi,
execv 3, muli, ret],
ifelse, ret]
-- test:

res6 = interp envirn [intc 6,execv fact, ret]

Notons que la syntaxe ddaskell est suffisamment souple pour qu’'on puisse aisément vérifier la machine
pendant sa construction, a condition de définir quelques abréviatiorts cEci n'est pas si simple. ..

3.4.1 Omission importante

Nous n'avons pas traité les affectations, ni les définitions des fonctions utilisktesile programméce qui
peut étre la méme chose : I'association entre les noms et les objets). Pour le faire il faut faire des modifications
suivantes :

Ne pas passer I'environnement an@chine comme une variable globale, car elle risque de subir des
modifications, mais comme un argument.

Les opérateurs doivent également retourner I'environnement. Ceci fait déja quatre arguments, ce qui
détériore la lisibilité de la solution (mais on peut les emballer dans un record).

L'opérateur(=) accepte une variable et une expression. On empile I'expression et on I'évalue, mais
ensuite il fauempiler 'adresse de la variableans la décoder. Ceci est facile, on peut définir I'opérateur
vaddr n = cnst V n

L'exécution de I'opérateur d’affectation dépile I'adresse de la variable et la valeur, et lance I'opération
primitive (//) qui change le tableau d’associations. Le nouveau environnement remplace le précédent,
la pile des données reste intacte.

3.4.2 Conseils pour les irrécupérables

Cette section est destinée aux lecteurs qui voudraient implanter une petite machine virtuelle selon notre modéle
dans un langage impératif classique, con®re-. Les différences par rapport-faskell sont les suivantes.

On n’est pas obligé de respecter le protocole fonctionnel. En particulier la pile des données peut étre une
structureglobale et sa gestion peut utiliser les procédures séparées d’empilement et de dépilement. Ces
opérationsnodifierontia variable globale.

La méme chose avec I'environnement qui ne sera pas seulement un tableau global (comme ici), mais qui
peut étre arbitrairement modifié par les modules de la machine (ce qui d’ailleurs sera le cas en présence
des affectations).

La pile et le code seront plutdt des tableaux que des listes. Le code est parcouru par unéobaucle
while, et les piles sont gérées par des indices spéciaux, qui adressent les sommets.

Il faudra se débrouiller pour insérer dans le codepleisiteurs sur les fonctionsn C ou C++, d’établir
un pont entre la machine virtuelle crée, et la couche sous-jacente, magique. Cette technique fait partie
du cours du langagg, ou du cours de génie logicielle, mais ne sera pas traitée ici.

46 Machines virtuelles et exécution des programmes par I'ordinateur

e Un tel programme eft++ peut etdoit utiliser les techniques orientées-objet, en particulier

— la surcharge des opérateurs arithmétiques doit étre réalisée par les méthodes (fonctions génériques)
correspondantes ;

— les procédures polymorphes — vraiment polymorphes et non pas surchargées, comme la procédure
d’empilement d’'une donnée, doivent étre définies dans une super-classe de toutes les données em-
pilables.

3.5 \Variante : Indirect threaded code

Montrons encore un autre modéle de la machine virtuelle ... sans machine virtuelle. Jusqu’a présent nous
n'avons pas touché la structure globale de l'interpréte : il était toujours une boucle qui récupérait la nouvelle
adresse (morceau de code) a exécuter, fourni par I'opérateur qui vient de terminer son travail. Rappelons que
dans la premiére proposition, la machine «incrémentait le compteurs» (passait a la queue de la liste avec le code)
elle méme, ce qui était trop rigide : les conditionnelles, les appels et les boucles demandaient un peu plus de
souplesse.

Mais si a présent I'opérateur local (empilement, addition, etc.,) trouve son code successeur, pourquoi re-
tourner au niveau de la machine uniquement pour ensuite passer la main a ce successeur? L'opérateur peut
lui-méme appeller son successeur par I'appel termiDati constitue la réalisation de bas niveau du concept
descontinuations déja mentionnéet est une variante du «code enfilé». (I'attrilmatirectrésulte du fait que le
code ne contient pas directement les opérateurs (pointeurs), mais des structures qui contiennent ces opérateurs).
Voici, encore une fois, la machine compléte. Elle est un peu différente de son prédecesseur. Pour simplicité,
I'environnement global est absent, sa présence n’apporte rien de pédagogique.

La pile des retours peut étre une simple liste, mais pour varier un peu, définissons une «liste privée», une
structure linéaire construite par un opérates) défini par nous, avec un construct&mpty qui remplace
la liste vide. Voici la définition des valeurs, ou nous avons ajouté aussi des listes](), et les vrais
Booléens :

data Value = | Integer | F Double | S String | B Bool | U | Ch Char
| L [Value] | V Int | C Code

type Dstack = [Value] La pile des valeurs
type Operator = Code -> Dstack -> Rtstack -> Value

data Codeltem = Op Operator Value
type Code = [Codeltem]

infixr 5 >
data Rtstack = Empty | Code :> Rtstack La pile des retours

Notez qu’un opérateur prend 3 arguments coeledans lequel il se trouve, et les deux piles. Ce code sert
uniquement a trouver le successeur de I'opérateur. L'opérateur renvoie une valeur comme son résultat (le
sommet de la pile des données). Le code est compo$&odeitems qui sont des records possédant un
opérateur etoujoursune valeur extra, souvehk(et rappelons ici qu’'une machine fonctionnelle aurait utilisée
des fermetures assemblées par le compilateur).

La «machine» maintenant ne fait pratiquement rien, seulement initialise les piles. La fanaimrpasse
la main au premier opérateur présent dans le code. (Cette fonction n’est pas un opérateur utilisateur. L'opérateur
utilisateur qui utilise directememixec s’appelerayoto , et réalisera I'appel terminal).

interp code = exec code [] Empty

exec code@(Op op _ :) = op code
-- en fait: exec code pile retpile = op code pile retpile

La machine s’arréte en exécutant I'instructgiap . Voici sa définition, ainsi que la définition du branchement,
l'instructiongoto dont I'argument est une liste représentant le code :

3.5 Variante : Indirect threaded code 47

stop = Op stfun U where

stfun _ (vi) _ =vVv
goto proc = Op (\(Op _ (C prc) :) -> exec prc)
proc

Attention : la fonctiongoto définie enHaskell construitle Codeltem correspondant, la structué@p dont
le premier champ est une fonction anonyme qui lagwec , et le second — la procédure utilisateur qui sera
exécutée.

Les définitions des opérateurs d’empilement, arithmétiques, et les autres deviennent maintanant plus com-
plexes qu'auparavant, puisque chaque opérateur est obligé de localiser (ou construire) son successeur. Comme
avant, les définitions eHaskell génerent le©p-structures correspondantes. Commencons par les procédures
d’empilement :

loadc v = Op Idfun v where
ldfun (Op _ x : nxcode@(Op nxop _ :) p
= nxop nxcode (x:p)

Idi n = loadc (I n)
Idf x = loadc (F x)
Idl | = loadc (L)

Ildcod cod = loadc (C cod)
etc. La déstructuration du premier argument de I'opérateur — le programme, sera souvent la méme :
Op _ x : nxcode@(Op nxop _ :)
ce qui peut étre lu comme suit :
e |'argument anonyme qui sudp est I'opérateur lui méme (et donc, il n'a pas besoin de le spécifier);
e X est son parametre extra ;
e nxcode est le code successeur, dombp est le premier opérateur.

les opérations typiques sur la pilelup, exch , etc. possédent toutes la méme structure : la manipulation de

la pile des données, et la construction du successeur. Nous pouvons faire une petite abstraction, et paramétrer
nos opérations par leur «noyaus, la fonction qui manipule la pile des données, et qui ne fait rien d’autre. Cette
fonction :action parametrisera le manipulateur générique de la pstaekop

stackop action = Op (actfun action) U where
actfun act (_ : nxcode@(Op nxop _ :)) pile
= nxop nxcode (act pile)

dup stackop (\p@(x:_) -> x:p)

pop stackop (\(_:q) -> Q) -- drop est reservé !
exch = stackop (\(xiy:q) -> y:x:q)

rot = stackop (\(x:y:z:q) -> y:z:x:q)

indx = stackop (\(I n : p) -> p!Y(frominteger n) : p)

under = stackop (\(x:y:q) -> y:xiy:q)

Rappelons que la notatidiste!!n récupére len-iéme élément d’'une liste n = 0 récupére la téte.
L'opérateurindx copie len-ieme élément de la pile sur son sommet. Lopératetr effectue la trans-
formation[x,y,z,...] — [y,z,X,...] , etc. L'opérateunnder est équivalent&i 1, indx , ou

aexch,dup,rot
Voici quelques opérateurs «standard» binaires, et unaires :

unop action = Op (actfun action) U where
actfun act (_: nxcode@(Op nxop _ :)
(x 1 p) = nxop nxcode (act x : p)

expop
sqrtop

unop (\(F x) -> F (exp X))
unop (\(F x) -> F (sqgrt x)) -- etc.

48 Machines virtuelles et exécution des programmes par I'ordinateur

binop action = Op (actfun action) U where
actfun act (_: nxcode@(Op nxop _ :)
(X 1y : p) = nxop nxcode (act y x : p)

addi = binop (\(I x) (I y) -=> | (x+y))
muli = binop (I xX) (I y) -> | (x*y))
subi = binop (\(1 x) (I'y) > | (x-y))

Nous avons défini déja I'appel terminal. Voici un appel quelconque, et le retour. N'oublions pas que le retour
est un opérateur normal, qui attend son successeur. La machine ne s’arréte pas.

call proc = Op callfun proc where
callfun (Op _ (C prc) : nxcode) pile rtpile
= exec prc pile (nxcode :> rtpile)
ret = Op retfun U where
retfun _ pile (code :> rtpile) = exec code pile rtpile

Finalement, passons aux mécanismes décisionnels. Définissons quelques relations arithmétiques (ceci est tri-
vial), et les opérateuiff etifelse

egi = binop (\(I x) (I y) -> B (x==y))
gti = binop (\(I x) (I'y) -> B (x >y))
Iti = binop (\(I X) (I'y) -> B (x <y))

ifelse = Op ifefun U where
ifefun (_ : nxcode)
(C elcod : C thcod : B cnd : pile)
rtpile | cnd = exec thcod pile (nxcode :> rtpile)
| otherwise = exec elcod pile (nxcode :> rtpile)

iff = Op ifun U where
ifun (_ : nxcode@(Op nxop _ : _))
(C thcod : B cnd : pile)
rtpile | cnd = exec thcod pile (nxcode :> rtpile)
| otherwise = nxop nxcode pile rtpile

Avec la bouclewhile la procédure sera un peu différente. Comme avant, on prévoit le bouclage en mettant
le code original (dont le premier opérateur wsiile) sur la pile des retours, mais d’abord il faudrait dépiler
une seule foisa procédure qui sera répétée. Cette fois, pour vagieerf contradiction avec PostScripj la
procédure ne sera pas mise sur la pile, mais elle constitue un paramétre extra de I'opérateur.

while proc = Op whfun (C proc) where
whfun this@(Op _ (C prc) : nxcode@(Op nxop _ : _))
(B cnd : pile)
rtpile | cnd = exec prc pile (this :> rtpile)
| otherwise = nxop nxcode pile rtpile

Tout le reste ce sont des tests. Définissonsulee , et trois version de la factorielle : récursive, itérative
(récursive terminale), et itérative avetile .

cube = C [dup, dup, muli, muli, ret]

fact = C [dup, Idi O, eqi,
Idcod [pop, Idi 1,ret],
Idcod [dup,Idi 1,subi,call fact,muliret], ifelse, ret]

rtfact = C [ldi 1, exch, goto fctmp]

fctmp = C [dup, Idi O, eqi,
Idcod [pop,ret],
I[dcod [dup, Idi 1, subi, rot, muli, exch, goto fctmp],
ifelse, ret]

3.5 Variante : Indirect threaded code 49

whfact = C [dup, Idi 1, exch, Idi O, gti,
while [under, muli, exch, Idi 1, subi, exch,
under, Idi 0, gti, ret],
exch, pop, ret]

prog ff = [ldi 3, call cube, call ff, stop]

resa = interp (prog fact)
resb = interp (prog rtfact)
resc = interp (prog whfact)

Le résultat est 10888869450418352160768000000, mais les testdiggaidonnent un résultat paradoxal : la
solution la plus efficace est la premiére, récursive en profondeur, ce qui est une calamité pour un informaticien
orthodoxe. ..

La section suivante retourne au modeéle précédent, avec la machine virtuelle en forme de boucle, et avec
I'environnement.[Dans la prochaine version de ces notes ceci sera révisé !]

Le threaded codeit actuellement une renaissance. Notez que son implantation est une réalisation de bas
niveau du concept dentinuations I'enchainement des opérations assemblées de maniére a ce que chaque
opération connaisse son successeur, ce qui élimine la nécessité d'un dirigeant global.

Mais attention ! Nous utilisons dans nos construction un langage paresseux, ce qui peut provoguer un com-
portement inattendu de la part de la machine. En fait, méme un concept si simple que la récursivité terminale,
est non-trivial, et risque de déborder le tas-systéme si on ne fait pas attétditas I'expérience suivante :

n = 1000000

add n t | n== =t
| otherwise = add (n-1) (t+0.05)
res = add n 0.0

Cette fonction calcule le produit- 0.05. Mais soudHugs méme si le programme est accepté, le résultat de la
tentative d’affichage res peut étre le suivant :

(3320991 reductions, 8302514 cells, 17 garbage collections)
ERROR: Garbage collection fails to reclaim sufficient space

car au lieu d'ajouter 0.5 au tampon, la fonctioonstruit unthunkqui suspend cette additiorLa réduction
de tous ceshunksdifférés a lieu au moment de I'affichage. La conclusion aest langage paresseux n'est
pas bien adapté a la construction des interpretes (ou programmes de simulation, etc.) par des personnes qui
ignorent les intrications de la sémantique non-stricte

Cependant le probleme est trés bien connu, et tous les langages paresseux raisonnables offrent a 'utilisateur
la possibilité d’effectuer la réduction stricte des argumentsHeskell il existe un opérateu$!) dont la
sémantique est la suivantef:$! x est équivalent & x , maisx est évalué d’abord. Donc, pour que le
programme marche, il faut le construire comme suit :

add n t | n== =t
| otherwise = add (n-1) $! (t+0.05)

Ceci dit, Hugs prend quand méme plusieurs secondes pour afficher le résultat, et encombre le tas avec des
miettes, ce qui déclenche 9 fois le ramassage des miettes. Le méme progra@leenenin autre langage pa-
resseux, mais qui découvaetomatiquement, sans aucun opérateur spécial le fait que I'opérgtied.05)
est stricte, donne le résultat immédiatemment, en moins de 0.1 secondes. ..

Un compilateur d’'un langage paresseux pour étre compétitif doit étre équipé d’'un bon analyseur automa-
tique de la nécessité d’évaluation stricte, et il existe ptaskell aussi, maiglugs n’a pas été concu pour étre
trés rapide. (Les mémes tests prouvent que GHCi n’est pas trés rapide non plus).

Credoreligieux no. 6 : La paresse était toujours le moteur principal du progrés de I'Humanité. Mais il ne faut
pas exagérer, cette paresse doit étre consciencieuse. . .

50 Machines virtuelles et exécution des programmes par I'ordinateur

3.5.1 Co-procédures

Ceci est une digression importante. Rappelons la Fig.(2.1) qui montre la différence entre les procédures et les
co-procédures. Apres chaque phase d'activité, chaque module co-procédural doit «réveiller» son partenaire (ou
un de ses partenaires), et suspendre son activité en sauvegardant son état local qui sera restauré au moment du
«réveil».

La réalisation de ce mécanisme dépend des détails. Siles motetds sont statiques et distincts (s'ils ne
sont pas des clones, des instances de la méme définition de procédure), le mécanisme est plus facile a implanter
dans un langage impératif. On opére avec I'adresse de retour comme avec des procédures normales, mais cette
adresse n’est pas stockée sur une pile. Quamnéactive B, stocke I'adresse de retour dans sa zone privée et
statique de données. La réactivation commence toujours par le ddbsai qu'’il faut réactiver3, mais il ne
sait pas ou l'autre module s’est arrété). Tout module co-procédural possede un code préfixe qui s’exécute au
moment de la réactivation. Ce code récupere I'adresse de retour et branche. Dans le jargon de programmation
des processus paralléles ceci s’appelledlistext-switching

Mais si le systéme simule de trés nombreux vaisseaux spatiaux qui essaient de se détruire, ces vaisseaux
seront des instances d'un seul module générique : la classe des vaisseaux. llIs pattagdeontéme code,
qui ne peut donc contenir aucune zone privée. |l faut alors établir pour chaaantextelocal qui remplace
la zone statique de données mentionnée précédemment, et qui cdigttituecal de chaque co-procédure. Ce
contexte est une structure de données assez simple, qui contient des données privées de chaque instance, et qui
peut naturellement étre crée dynamiquement sur le tas systéme, de préférence par des techniques d’allocation
structurées et orientées-objet.

Dans le monde fonctionnel I'état privé d’'une fonction, son contexte modifiable de I'intérieur n’existe pas.
Cependant, les co-procédures sentprinciperéalisables (et dans un langage qui dispose de la primitive
calllcc ceci est facile et naturel). Rappelons I'essentiel d’'un appel procédural standard : L'opéaditeur

e sauvegarde sur la pile des retours I'adresse qui suit sa position, et
e branche a son paramétre.

Pour les co-procédures la suite d’opérations peut étre la suivante. L'opé&egeanre
e sauvegarde sur la pile des retours I'adresse qui suit sa position,

e identifie sur cette pile la co-procédure qui doit étre réveillée. Sicelle-la n’a jamais été activée auparavant,
le resume se réduit a un appel. Mais si elle se trouve déja sur la pile des retours,

e le contrOle «retourne» a elle.

Ceci est problématique, car comment le module appelgmtut identifier une adresse interne déposée par le
moduleB quand celui-ci a suspendu son activité? Et méme si on stocke sur la pile des retours les adresses avec
quelques balises d'identification, la recherche risque d’'étre onéreuse, il faudra peut-étre récupérer I'adresse du
retour co-procédural de 'intérieur de la pile (elle n’est plus une pile !).

En fait, la technique la plus universelle, lisible et portable consiste a maintenir

e un tableau spéciahodifiable ou chaque co-procédure dépose son adresse de réactivation au moment
duresume d'un autre module — ceci est avantageux si le nombre de co-procédures est connu, et si
les co-procédures de réveillent directement (elles connaissent 'indice attribué au partenaire réveillé), ou
bien

e unefile (p. ex. une liste) avec les adresses de réactivation. Ceci est utile siles co-procédures «s’endorment»
(en placant son contexte a la fin de cette file), mais la réactivation est a charge d’un pilote global, le «sys-
teme d’exploitation», qui réactive toujours le premier (ou le prioritaire).

Nous n’allons pas implanter les co-procédures grace a ce mécanisme, car pour les tester il faut prévoir que
les co-procédurefassentjuelque chose de non-trivial, qu’elles générent des effets de bord permettant de voir
leur exécution quasi-parallele. Notre machine virtuelle n'est pas bien adaptée a cette sorte d’exercices. La
compilation du parallélisme dépasse les bornes de notre cours. ..

3.6 Le compilateur : premiére tentative 51

3.6 Le compilateur : premiere tentative

Les sections précédentes avaient pour but définir de maniére la plus précise le modéle d’exécution de notre pro-
gramme interprété. A présent construisons le générateur de code linéaire a partir de I'arborescence syntaxique.
Ceci est (en principe) trés simple.

Rappelons les structures définissant les expressions arborescentes, notre expression exemplaire, et intro-
duisons deux tables: une qui décode les noms des variables, et I'autre qui transforme les noms des opérateurs
(chaines) en opérateurs — générateurateteltems .

Opsymb = String
data Expr = L Value | A Opsymb Expr Expr

expr = A "' (A " (L(F 1.0)) (A " (L(F 2.0))
(A "+ (A (LE 2.0) (LS X))
(AT (LE 3.0) (LS YD)

(A (LF 20) (LS "2

symtab = [("x",0),("y",1),("z",2)]
optab [("-",sub), ("+",add),("*",mul),("/",dvd)]

Nous aurons besoin de la fonctiassoc , un peu plus générale que celle qui décodait les variables. Ici la
fonctionassoc est polymorphe et cherche un objet quelconque associé a une chaine.

assoc _ [] = error "Pas d'association !"
assoc ch ((sy,v):q) | ch==sy =V
| otherwise = assoc ch q

Le compilateur des expressions est triviale :

compil :: Expr -> Code
compil (L val) = case val of
F x -> [dblc X]
S v -> |[var n] where n=assoc v symtab
compil (A op el e2) = let f=assoc op optab in
compil el ++ compil e2 ++ [f]

La récursivité en cascade, surtout associée a la concaténation des listes n’est presque jamais une bonne chose.
L'usage de la pile systéme est intense, mais le désavantage principal, si on utilise les listes classiques chaines
pour stocker le code linéaire est le fait que le fonction de concaténgtien (connue enLisp comme
append) se trouve dans la clause récursive. Or, on saitap@end recopie entierement son premier ar-
gument pour I'attacher au second. Notre compilateur produira donc des copies des copies des copies. ..
Loptimisation d’une linéarisation hiérarchique d’'un arbre est trés bien connue et appartient a la
panoplie standard de techniques fonctionnelleget selon I'auteur de ces notes, si les étudiants en Informa-
tique arrivent au bout du deuxiéme cycle sans connaitre ces techniques, ils ne méritent pas leur dipléme, et/ou
leurs enseignants sont coupables d’'une négligence inadmissible...). Ce sujet a été traité dans I'exercice sur
le tri arborescent. Faisons la méme chose ici. Ajoutons un argument-tampoa la fonctioncompil et
construisons la fonctiooompapp dont la définition ¢onceptuelle non pas réelle !) serait

compapp expr tmp = (compil expr) ++ tmp

Répétons que ceci n'est pas sa vraie déclaration, mais sa sémantique. La vraie structure utilise le «unfolding»
(dé-pliage) de la concaténation :
compil expr = compapp expr [] where
compapp (L val) tmp = case val of
F x -> (dblc x):tmp
S v -> (var n) tmp where n=assoc v symtab

compapp (A op el e2) = let f=assoc op optab in
compapp el (compapp e2 (f:tmp))
I'existence de deux branches implique deux appels récursifs, mais le dernier est terminal, et la concaténation a
été éliminée.
La compilation et I'optimisation des structures de contrble : des conditionnelles, des boucles, éventuelle-
ment d’unswitch, c’est un bon exercice pour le travail individuel.

52

Machines virtuelles et exécution des programmes par I'ordinateur

3.7 Exercices

(Les exercices concernent la machine avec la boucle centrale, sauf si nous précisons explicitement qu'il s’agisse

duthreaded codg
Q1. Important ! Ajouter dans quelques opérateurs primitifisp(, exch , opérations arithmétiques, etc.) un
vérificateur de la pile, qui déclenche une exception (fonatiwar) sila pile est vide ou trop courte.
R1. Les modifications sont purement techniques. Au lieu d’écrire
dup = O (_ _ rst later p@(x:q) -> (rstlater,x:p)) U
nous définissons
dup = O (_ _ rst later p ->
case p of (x:q) -> (rst,later,x:p)
_ -> error "Pile vide ") U
etc.
Q2. Les définitions des opérateurs primitifs comohg etc. dans la derniére version de la machine sont

R2.

Q3.

R3.

horribles. Il serait beaucoup plus simple de pouvoir écrire simplement

dup p@(x:) = xip
pop (L) = g
exch (xiy:q) = (y:x:q)

etc. Peut-on simplifier cette notation baroque avec le constru€eanguments inutiles, constructeur
«bidon»U etc.?

Oui, notre proposition est la suivante. Les primitifs seront générés comrhmtgs 's :
dup = oppgen (\p@(x:_) -> x:p)
pop = oppgen (\(_:q) = q)

etc., par le générateur

oppgen f = O (_ _ rst later p -> let np=f p in
(rst,later,np)) U

Construire I'opérateuwhile (pour la machine en forme de boucle) qui doit trouver sur la pile des
données une condition (nombre entier) et une procédure. La procédure est exécutée si la condition est
vraie, et le processus se répéte, sinon le programme continue. La procédure peut (et en général le fera)
modifier la pile, mais elle doit obligatoirement mettre sur le sommet un objet qui jouera le role de la
condition pour I'étape suivante.

Ceci est un exercice intéressant, ednile d’habitude est un opérateur primitécursif, et nous nous
sommes refusés le droit d'utiliser la récursivité dans le langage d'implantation. Cet opérateur simule
donc la récursivité dynamique par la «récursivité statique» : il empile sur la pile des retours sa propre
instance si la condition d'itération est vraie.

while = O (_ _ rst later ((Co prc):(l cnd):q) ->
if cnd==0 then (rst,later,q)
else (prc, (proc prc:while:rst):later,q)) U

Voici la sémantique : si la condition est fausse, I'opérateur ne fait rien, sauf dépiler et ignorer la
procédure-boucle. Sinon, la procédure sera exécuté comme le nouveau codehimeaismodifie le
programme a exécuter, et pladevante code restant de nouveau la méme procédure, et soi-méme.

Notez I'auto-référence dewhile . Ce n’est pas un appel récursif direct, vdrile est une structure
de données, et non pas une fonction. Pourquoi ceci ne déclenche pas une exception? Normalement une

3.7 Exercices 53

Q4.

R4.
Q5.

R5.
Q6.

struct ne peut pas contenir elle-méme (mais elle peut contenir un champ contenant le pointeur sur
soi-méme). En fait, la construction constijpresqueun appel récursif, car la référencevhile dans sa
définition est cachée a I'intérieur d’une fonction, dans le corps de la forme lambda. Ce corps sera évalué
lors de I'application de la fonction par la machine virtuelle.

Dans des langages fonctionnels stricts coniiheou Scheme on peut simuler I'évaluation paresseuse
en cachant les objets différés a l'intérieur des formes lambda. Ce sujet sera encore abordé, mais nous
avons déja vu que

e les structures de contrdle, comiifithen-elseou while sont en fait des fonctions paresseuses, et

¢ laréalisation de ces structures dans notre machine virtuelle passe par I'empilement des objets fonc-
tionnels anonymes (les codes «then» et «else»).

Notre définition davhile sera utilisée pour définir la fonction factorielle itérative qui caleuleomme
n(in—1)(n—2)---2-1. L'opérateurroll tourne les trois derniers éléments de la pile un peu différem-
ment derot .

roll = O (_ _ rst later (xiy:z:q) -> (rst,later,z:x:y:q)) U

zerop = exec [dup,intc 0,eqi,ret]
decr = exec [intc 1,subi,ret]

ifac = exec [zerop,

proc [pop, intc 1, ret],

proc [dup, decr, dup,
proc [dup, roll, muli, exch, decr, dup, ret],
while, pop, ret],

ifelse, ret]

ifres7 = interp envir [intc 7, ifac, ret]

La derniére ligne produit [5040] sans protester.

Implanter la boucleepeat - un opérateur primitif qui trouve sur la pile des données la condition de
continuation et une procédure, et qui exécute la procédure avant de vérifier la condition. Si elle est vraie,
le processus se répéte.

Implanter aussi I'opératedoop qui boucle sans fin, exécutant la procédure trouvée sur la pile. Il faut
étre raisonnable, et implanter aussi un opérateur pribnigiak qui arréte une telle boucle. Ceci est un
défi conceptuel, car comment désactiver 'opéraleop de I'intérieur de la procédure exécutée?

Non, pas de réponse ici. Ceci @saimentun bon sujet d’examen.

Question difficile. Nous voudrions ajouter a notre machine virtuelle un module de déboguage. Chaque
fois quand l'interpréte exécute un opérateur, une information est affichée. (On peut donner a chaque
opérateur un attribut textuel, par exemple son nom, et les fonctions d’empilement «écrivent un rapport»
de leur activité).

Pourquoi c’est difficile? Parce que notre machine est fonctionnelle. 1l n'y a pas d’effets de bord, alors le
résultat est renvoyé a la fin, quand la fonction termine le travail, ce qui n’est pas bon pour le déboguage,
surtout si I'évaluateur déclenche une exception en mi-chemin. ..

Cependant si le langage d’'implantation est paresseux, et si une fonction produit une liste ou une chaine
qui sera éventuellement affichée, la création procéde de maniéere incrémentale : une liste partielle peut
étre formée et affichée avant la catastrophe. Essayer de comprendre cette stratégie et de I'implanter.

Ce probléme sera discuté plus tard, dans le contexte des structures de coatrétbques

La fonctioncompil est un exercice en parcours des graphes arborescents. Ecrire une fonction sim-
plifiée, qui n'a pas besoin de décoder les variables ou les opérateurs, mais place les objets (les feuilles
ou les opérateurs) directement dans la liste de sortie. Essayer d’écrire cette fonction linédesante
maniere combinatoiresans parametres. Commencer au moins par I'élimination du taingoryrace

au combinateucomp (enHaskell : (.)).

54

Machines virtuelles et exécution des programmes par I'ordinateur

R6. Commencons par le code original, récursif arborescent :

Q7.
RY.

type Val = Int -- pour la discipline
type Arb = F Val | A Val Arb Arb

flat (F x) = [X]
flat (A x gauche droite) = flat gauche ++ flat droite ++ [X]

et la variante optimisée :

flat a = flatmp a [] where

flatmp (F x) tmp = x:tmp

flatmp (A x gauche droite) tmp =
flatmp gauche (flatmp droite (x:tmp))

La fonction récursive interne peut étre simplifiée. La clause terminale aura la flatme (F x)
= (x :) . Laclause récursive subira les transformations suivantes :

(flatmp gauche) ((flatmp droite) (x:tmp)) =
((flatmp gauche) . (flatmp droite)) (x:tmp) =
(((flatmp gauche) . (flatmp droite)) . (x :)) tmp

et ainsi le tampon est éliminé. On ne peut aller plus loin, car la sémantique de la foftetiop

contient un discriminateur des types, et les combinateurs sont par nature polymorphes. Bien sir, la
définition : f x tmp = xitmp seréduit & = () , mais on ne peut pas réduire a la forme sans
parametres une fonction qui a deux clauses distinctes, il faut uiflifezn-else Laissons au lecteur le

reste de cette conversion.

Le but de cet exercice est un peu différent : comparez la forme récursive arborescente avec la forme
optimisée et réduite. Elles ont presque la méme structure, avec le compésiteueplacant la con-
caténation. Comparez ceci aux exemples d’affichage des objets deaiyee, et a la construction de

la fonctionshowPrec . Ceci nous aidera a composer les parseurs.

Optimiser (linéariser) la fonctioftat grace aux continuations.

Définissons d'abord I'opérate() continué
cc X y cnt = cnt (xy)
Avec cet opérateur on peut convertir la concaténation

apc [] | cnt = cnt |
apc (x:q) I cnt = apc g | $ \r -> cc x r cnt

ou I'opérateur standar(b) est un «applicateur»f. $ x = f x mais de trés faible précédence, ce
qui économise l'usage des parenthéses. Notez que la concaténation standard :

1] ++ | = |
x:q) ++ | = x : (g++)

est une fonction récursive non-terminale, qui dans le cas d'un langage strict, ou les arguments sont
évalués avant I'appel de la fonction, effectivement empile élément par élément la totalité du premier
argument. Donc, si la pile systéme, qui limite la profondeur de la récursivité, est courte (ce qui est une
bonne idée, car sinon c’est du gaspillage de mémoire presque toujours vide), on ne peut pas concaténer
une liste trés longue avec une autre.

Dans la version continuée la concaténation est récursive terminale, mais il y a un prix a payer : une
fermeture, une fonction anonyme\r -> cc x r cnt qui «attrapexx, cc etcnt est dynamique-

ment crée sur le tas systéme pour chaquainsi on est limité seulement par la mémoire dynamique du
systeme, d’habitude beaucoup plus large que la pile. Mais la consommation physique des ressburces
plus importante.

La conversion de la fonctioflat est

3.7 Exercices 55

Qs.
RS.

Qo.

R9.

Q10.
R10.

Q11.

R11.

Q12.

R12.

flatc (F x) cnt = cc x [] cnt
flatc (A x g d) cnt = flatc g $ \a >
flatc d $ \b -> apc a b $ \r ->
apc r [x] cnt

ce qui peut étre encore simplifié.
Implanter les affectations en suivant les conseils dans le texte.

Désolé, mais les conseils ont été mis justement pour encourager un travail personnel de la part des
lecteurs. Ceci est un bon sujet d’examen.

Pourquoi avons-nous forcé la présence de I'instruction RET ou de I'opérateutans toute procédure?
Vérifier que la liste est vide est trés simple et facile, et le code devient plus court.

Ne lisez pas la réponse ! Essaygaimentde répondre a cette question. D'ailleurs, la réponse se trouve
dans le texte de ce chapitre.

OK. Il existe deux raisons importantes.

¢ Imaginez que les procédures ne sont pas stockées dans des listes, mais dans des segments contigus
d’'un tableau-buffer global. La machine au lieu d'utiliser pour son parametre-code la liste, qui en
fait est représentée par le pointeur, prend l'indice (I'adresse) du segment correspondant. Comment
séparer les procédures? Physiquement elles ne se terminent pas, car elles sont suivies par les autres.
L'opérateur de retour remplit cette tache.

e On peut envisager un retour conditionnel au milieu de la procédure. Le esttwre opération de
base pour presque toutes les machines virtuelles de bas niveau.

(Tu I'as voulu, Georges Dandin.) Implanter le retour conditionnel.

Bien sdr, on ne peut pas mettre une procéfhetd sousfelse , car une procédure ne peut pas sortir
non-localement de son module appelant. Mais on peut parametrer I'opéetteuu lieu de

ret = O (_ _ _ (rt:demain) pile -> (rt, demain, pile)) U
nous aurons

ifret = O (_ _ rst ltr@(rt:demain) (cnd:pile) ->
if cnd/=0 then (rt, demain, pile) else (rstltr,pile)) U

qui ne fait rien si la condition n’est pas satisfaite.

Nous avons écritune procédure ne peut pas sortir non-localement de son module app€lénérale-
ment ceci est faux ! L'opératestop le fait. Ecrire un opératedoreak qui sort du bloc ou il se trouve,
mais également du bloc englobant. Ceci est un outil permettant d’arréter les boucles sans fin.

Rien de plus facile, regardez les définitionsrdti etstop . On sait que le code qui sera exécuté apres
le retour normal est placé sur la pile des retours. Il suffit de I'éliminer.

break = O (_ _ _ (viré:hop:aprés) pl -> (hop, aprés, pl)) U

Pourquoi dans notre version didirect threaded codémais les autres modéles de machine virtuelle
donneraient des résultats pareils), la version récursive de la factorielle est plus efficace que les versions
itératives?

C’est I'effet de l'interprétation paHugs. Lefficacité ici signifie le nombre de réductions effectué par

Hugs, et non pas par le processeur matériel. Une opération primitive est équivalente a une autre, et un
programe un peu plus long (a cause de la présence du tampon, et de sa manipulation) sera moins efficace.
Les opérations primitives sur la pile machine ne sont pas onéreuses. Mais on pourra optimiser encore ce
code !

56 Machines virtuelles et exécution des programmes par I'ordinateur

Q13. Alors, comment optimiser la machine sans boucle, qui passe le contrGlegared code?

R13. En fait, ceci faitpartie intrinséque de notre générateur du codeutur, et nous voulions aborder cette
question plus tard. Mais nous pouvons le faire tout de suite. Une machine de plus bas niveau encore,
plutét style assembleur queostScript ou FORTH peut éviter beaucoup d’appels/retours grace aux
branchements conditionnels. Plus concrétement :

e Lesopérateurelse ,while , etc. ne demanderont plus le chargement du code a exécuter sur la
pile des données. En effet, si ce code est produit par le compiktetiquementavant I'exécution
du programme, il est inutile de le mettre dans le programme pour I'empiler et ensuite dépiler et
passer a I'opérateur en question. Ce code (son adresse) peut étre placé comme la parameétre de
I'opérateur.

e |l n'y aura plus deprocéduresa exécuter, ce qui nous a obligé de sauvegarder la continuation sur la
pile des retours. Plus d’appels, plus de retours !

e Les opérateurffelse , while ne seront plus des primitives de la machine, mais leur généra-
teurs{felsegen , whilegen) construiront des séquences de code liées par les opérateurs de
branchemengoto , ifgoto (branchement en cas de succésifreitgoto (branchement en
cas d’'échec). Voici, sur la Fig. (3.2) la structure du code réalisamunditionthen code therelse
code elseet sur la Fig. (3.3) la bouclhile.

I :

-|condition |ifgoto|code else|goto|code then|le reste|--

I 1

Fig. 3.2: If-then-else dans un code de bas niveau

I)

-|condition |ifnotgoto|code de la boucle|ifgoto|le reste|--

Fig. 3.3: Structure de la boucle while

Voici le codage de nouvelles primitives de branchement :
goto proc = Op ((Op _ (C prc) : _) -> exec prc) (C proc)

ifgoto proc = Op ifgofun (C proc) where
ifgofun (Op _ (C prc) : nxcode@(Op nxop _ : _)) (B cnd : pile)
| cnd = exec prc pile
| otherwise = nxop nxcode pile
ifnotgoto proc = Op ifngofun (C proc) where
ifngofun (Op _ (C prc) : nxcode@(Op nxop _ :) (B cnd : pile)
| cnd = nxop nxcode pile
| otherwise = exec prc pile

ifelsegen cndist thenlst elselst next =
cndlst ++ (ifgoto the : elselst ++ (goto next : the))
where the = thenlst ++ next

whilegen cndist prclist next =
cndist ++ ifnotgoto next : pr where
pr = prclist ++ ifgoto pr : next

3.7 Exercices 57

Q14.
R14.

Ceci correspond aux diagrammes sur les Figures (3.2) et (3.3). Notez comment nous avons profité de
la programmation paresseuse pour «boucler» une structure de données (une liste) et de la rendre auto-
référentelle. Ceci est possible avec un langage strict par un algorithme a deux passes : d’abord on
construit la liste avec des «trous», et ensuitenwodifie physiquemené résultat, en remplissant les

trous par les adresses voulues (en avant ou en arriére, mais toutes déja connues). L'algorithme paresseux
nécessite une seule passe.

a présent nous pouvons construire d'autres variantes de la immortelle factorielle. Voici le code récursif
et le code avec la bouclehile

recfact = C (ifelsegen [dup, Idi O, eqi]
[pop, Idi 1]
[dup,Idi 1,subi,call recfact,muli]

[ret])

whilfact = C (whilegen [dup, Idi 1, exch, Idi 0, gti]
[under, muli, exch, Idi 1, subi, exch,
under, Idi 0, gti]
[exch, pop, ret])

(mais n'essayez jamais d’imprimer ces listes, elles sont cycliques!) Notre nouvelle solution est «presque
parfaite», plus économique que les précédentes, ce qui n'empéche que la solution récursive est plus
efficace que celle avec la boucle, et toujours pour les mémes raisons. . .

Question trés délicate : peut-on construire le «code enfilé> @mC++.

Réponse encore plus délicate : oui et non. Le probléme est QUegoton’est pas dynamique ! Certes,
il y a des pointeurs sur les fonctions, mais ils permettesppielerles fonctions, et non pas de brancher
directement sur elles. Pour des raisons toujours un peu obscufedl réyma pas de récursivité terminale
optimisée ! (méme si quelques compilateurs offrent cette option).

Le goto standard demande la présence d'une étiquette statique, nommée dans le programme. Mais il ex-
iste une extension GNQ (ce qui peut étre considéré comme «presque standard»), permettant d'affecter
des adresses variables a I'argument d’une instruction de branchement. Un tel programme marche :

main(int argc, char *argv([])

{void *labl; labl = &&I1;

..

goto *labl;

cout << "ne sera pas affiché\n";
goto lend;

In..

I1:cout << "nous y sommes N\n";

lend: cout << "fin du programme..\n";
return O;

}

Cependant, il reste impossible de transférer le contréle d’'une procédure a l'autre, les étiquettes doivent
rester locales (cette restriction était relaxéd~-@RTRAN avec IeASSIGNED GOTOmais cette struc-

ture était vraiment dangereuse). L'appel d’'une fonction ce n’est seulement pas la sauvegarde de I'adresse
du retour et le branchement, mais la créatiorfrdme pour I'instance d’activation de la procédure ap-
pelée, la mise a jour de la pile systeme, etc. Quelques personnes qui connaissent bien ce protocole et
savent programmer en assembleur, ont su éliminer ces charges et construire un \iréalled code

enC (p. ex. les travaux d’Elliott Miranda sur Smalltalk), mais les résultats ne sont toujours pas portables.

Toutefois la situation n’est pas complétement désespérée si quelqu’un ne s’intéresse pas par I'efficacité de
la solution, mais uniquement au concepttiieeading Pour cela il faut restaurer la machine-interpréete
central, la boucle. Dans cette boucle on appelle une fonction et on place sa valeur de retour dans un
registre global.

58 Machines virtuelles et exécution des programmes par I'ordinateur

La fonction appelée termine son travail par 'opératitiMP(une autre fonction) . MaisJUMP

n'est pas urgoto (qui n’existe pas dans ce contexte), ni un appel standard, mais... — oui, vous avez
deviné — leretour! On informe donc la boucle centrale quelle est 'adresse suivante, et la boucle appelle
'adresse stockée dans son registre global. Et la situation se répéte, jusqu’a une instruction spéciale,
disonsSTOR qui provoque ldreak , ou déclenche une exception plus dramatique, p. ex. le vtlongjump.

En fait, ce protocole, pas trés efficace mais portable, était la source de l'inspiration pour notre modele de
machine virtuelle ou chaque opérateur prépare I'adresse suivante a exécuter pour la boucle principale de
l'interpréte.

Credoreligieux no. 7 : Pour vivre longtemps, un langage de programmation doitrétnevais commeC. Si
un langage est bon, les gens s’y jettent pour I'améliorer encore plus, mais avec un langage mauvais la situation
est désespérée, donc on le laisse en paix.

Chapitre 4

Les taches et la structure d'un
compilateur

4.1 Un peu d’anatomie et de physiologie

La «vraie» compilation est la génération du code. Le nom, d’ailleurs, est historique ; il signifiait le ramassage
des morceaux du programme en une entité organique, exécutable. Les morceaux résidaient sur cartes perforées,
et la compilation était moins une translation, que le montage d’une pile. A présent cette sorte de «compilation»
est plutdt la tache déediteur des liengjue du compilateur. ..

Avant qu'un «ouvrage littéraire», le texte source d’'un programme ne se transforme en quelque chose
d’exécutable, en une application indépendante, ou un tableau interne exécuté par un interpréte, il faut compren-
dre le texte du programme, I'analyser, le décomposer en unités primitives, et ensuite, a partir d’'une description
trés précise et compléte de ses éléments, de sa struetule,sa sémantiquan peut créer le code pour une
machine-cible. Alors la compilation se décomppse conventioren deux phases majeures :

o Lanalyse,
e La synthése

mais cette division n'implique pas que les deux phases seiamentdistinctes, assez souvent elles se recou-

vrent partiellement, elles se chevauchent, et le compilateur bascule entre deux modes de travail plusieurs fois
durant un cycle de compilation. De plus, la phase d’optimisation de code posséde d’habitude des modules ana-
lytiques et synthétiques, et la table des symboles qui assure la correspondance entre les noms et les références,
est gérée simultanément par les deux catégories de modules.

L'analyse est d’habitude divisé en étapes : lexicale, syntaxique et sémantique, ce qui facilite la concep-
tualisation et la modularisation de I'analyseur, et permet I'usage des outils simples pour des taches simples.
Par exemple, I'analyse lexicale peut s’appuyer sur les automates finis, sans mémoire, tandis que la structure
récursive phrasale d’'un langage nontrivial exige que I'analyseur syntaxique gére une pile. Mais — soulignons —
cette séparation est vraiment conventionnelle, et pour nous elle sera secondaire. Une vision globale, homogéne
est pour nous plus importante que la modularisation. Un officier, par exemple un stratége du Quartier Général
voit I'armée a travers les Forces, les Divisions, les Unités ; il distribue les taches et organise la communication
globale. (Et il ne demande pas qu’un sous-officier gagne seul une bataille, sauf s'il s’agit du John Rambo).
Mais pour son supérieur politique, il existeearmée qui doit gagner la guerre, et il doit gérer cette armée de
maniéere uniforme. Et vous pensez que le mot «uniforme» vient d’ou? (Mais, plus sérieusement, la construction
d’un analyseur monolithique qui comporte des éléments lexicaux et syntaxiques est plus facile).

Egalement laynthéséout court couvre la synthése d’un code intermédiaire, son optimisation (qui —comme
nous I'avons dit — partiellement appartient a I'analyse) et — éventuellement — la sortie du code binaire final.
Parfois on arréte la synthése assez t6t et on exécute directement le code intermédiaire ; tel est le cas des
interprétes classiques, comme les interpréteBatic, Lisp, Prolog ou FORTH. (Mais presque jamais cette
exécution ne se fait «instruction par instruction», ce que suggérent quelques auteurs des livres anciens sur la
compilation.)

59

60 Les taches et la structure d’'un compilateur

Cette exécution ne doit pas forcément suggérer les calculs numériques suggérés par les machines virtuelles
montrées précédemment. Il y a des compilateurs dont le code-cible sont des commandes graphiques qui per-
mettent de programmer un dessin technique ou une scene d’animaddexte a été formaté par un metteur
en page spécialiséiTEX équipé avec un interpréte de commandes (macros). Nous I'avons tapé en utilisant
un éditeur textuel standard. Si nous voulions taper une formule mathématique relativement riche, comme, par
exemple

2 S
n=0 n< + 2
nous’écririons :

$$
\sum_{n=0\infty{{\alpha”n \over \sgrt{n*2+{1\over 2}}}}
$$

sans hésitation. La tache de I'auteur humain ekidajuede cette expression, sa structure correcte, sa signifi-
cation, mais sa mise en page et les problémes visuels — on les laisse a la discréfigX.dli $ait comment
comprendre les mots comr$éalpha$ et les «compiler» en, il sait que les accolades délimitent les argu-

ments d’'une forme fonctionnelle, comnsgrt{...} , il sait appliquer la récursivité. Finalement, le «code»
généré — soit un fichiedvi , soit un document en format PDF — contient les instructions de positionnement

des entités graphiques sur les pages, les instructions de saut de page, etc., exécutées par l'interpréte Acrobat
Reader, ou l'interprét@ostScript de I'imprimante (aprés une seconde compilation qui transforme le code
précédent considéré comme intermédiaire, en PS).

Prenons cependant un exemple plus «classique». Voici une instruction d’'affectation é&#scahou un
autre langage de ce genre:

X := 5+alpha*3*(21 - x+3*alpha)-1.0

4.1.1 Lelexique

Ceci est untexte une chaine de caractéres. |l faut tout d’abord reconnaitre et séparer les mots, les unités
lexicales, afin de pouvoir reconstruire les valeurs numeériques comme «21» et de pouvoir reconnaitre qu'il y
a deux occurrences de la méme variadlgha . C'est le r6le de I'analyseur lexical connu également sous

le nom descanneur Le scanneur doit reconnaitre les commentaires et les espaces sans signification, générer
(ou préparer la génération) les nombres, les symboles identificateurs, et les mots-clés (il peut les distinguer,
ou laisser cette tache au module syntaxique), etc., et en général, transformer le texte en undes@itecte

Ces lexemes passent au module suivant, syntaxique, avec#éagories lexicaled 'analyseur souvent n’est

pas intéressé par les noms concrets des variables ou par les valeurs numériques définies, mais uniquement par
la catégorie des objets. Il suffit de savoir qu’un lexéme représente un nombre flottant, pour pouvoir compiler
le code qui traite ce nombre. (Le module de synthése qui engendre les références aux données doit, bien
évidemment, donner au programme compilé I'acces a la valeur numérique d’'un objet, mais ceci viendra plus
tard).

Les catégories classiques sont: identificateurs, constantes entiéres, réelles, Booléennes, etc., opérateurs
binaires comme&> enPascal ou!= en “C”, mots-clé commaevhile , éventuellement aussi les séparateurs ou
les terminateurs comme le point-virgule. Il faut y ajouter les parenthéeses, crochets, accolades, etc. On appelle
ces catégories de lexémes gtons(ou tokens.

Il faut parfois prendre des décisions délicates. Qu’est-ce que c'#8alpha ? EnPascal c’est une
calamité, une erreur. Ehisp cela peut étrain lexéme normal, un identificateur. Dans la plupart d’autres
langages un caractére alphabétique arréte le scanning d’'un nombre, donc nous aurons deux 1&xemes:
alpha . Mais ensuite: est-ce Iégal, cette suite de lexemes? Cette décision n'appartient plus a I'analyse lexicale,
bien gu'un analyseur lexical peut diagnostiquer une faute lexicale si le lexéeme est terminé par un caractére
considéré illégal (par exemple : un nombre suivi directement par une lettre). De trés rares langages (comme par
exemple le systemmBletaPost I'acceptent et traitent comme 17 multiplié pElpha mais cette interprétation
n'appartient non plus au scanneur, et dans d’autres langages le parseur ne I'accepte pas.

4.1 Un peu d'anatomie et de physiologie 61

Une autre décision délicate est la gestiofatenatdu document d’entréd-ortran prévoyait une instruction
par ligne, alors tout retour-chariot était un caractere spécifique — le terminateur. La plupart de langages plus
modernes considérent la fin de ligne comme tout autre espace blanc qui sépare les entités lexicales. Ceci
implique l'usage intense de caractéres de séparagintaxique les points-virgules. Cependant — pourquoi la
philosophie dd-ortran ou Basic dans ce contexte est pire? On note donc actuellement plusieurs réponses a la
guestion concernant la signification Byout

e En Matlab les points-virgules sont optionnels. On peut terminer une instruction ;par mais si le
terminateur est absent, si I'instruction se termine par fin de ligne, le résultat est automatiquement affiché,
la présence du point-virgule bloque I'affichage. Ce caractére joue alors un réle sémantique !

e Le langage de calcul formélaple prévoit deux terminateurs : point-virgule, et deux poits.second
bloque I'affichage du résultat, le premier force l'affichage. (Le paqudtéaftab posséde un module
d'interfacage avedlaple. Le travail simultané avec les deux systémes est nuisible a la santé psychique
de l'utilisateur. . .)

e Python consideére la fin de ligne comme terminateur, mais conditionnel ; si la ligne suivante est indentée,
elle est considérée comme continuatidtaskell suit la méme philosophie, avec quelques différences.
En général, les langages qui respectent des regles spécifiques d'indentation sont tres lisibles, mais il faut
étre plus vigilant pour éviter des fautes dues a la négligence.

e Tout langage a ses propres techniques de déclarer qu’une ligne est la continuation de la précédente. En
C on termine la ligne précédente aveackslash En Matlab la ligne suivante commence par , et
Fortran classique demande que la colonne 6 de la ligne suivante contienne un caractéere non-blanc.

e Un compilateur professionnel doit naturellement diagnostiquer les fautes, et signaler I'endroit ou ellels
ont été découvertes. Ceci suggere que le scanneur doit passer a I'étape suivante lesales€haess
positions — les numéros de ligne et de colonne dans le document-sai@es informations doivent
survivre aussi I'analyse syntaxique, car parfois lors de I'analyse sémantique on découvre quelques fautes,
par exemple une erreur de typage, et il est utile de pouvoir les localiser précisement, méme si les erreurs
de typage sont souvent «distribuées»).

Cette prolifération de protocoles lexicaux continue jusqu’aujourd’hui, et permet d’exprimer notre

Credoreligieux no. 8 : Les créateurs des langages de programmation sont tous des grands enfants et esprits
artistiques, qui ne se refusent presque jamais le plaisir d’introduire des petites différences inutiles par rapport
aux langages existants, et de démontrer ainsi leur originalité.

Mais aussi :

Credoreligieux no. 9 : Les enfants ont normalement une vie longue et joyeuse devant eux, tandis que les gens
stables, ceux qui résistent aux changements, hmmmm. ..

Une chose est certaine. Le scanneur transforme le flot de caractéres en unités atomiques, reconnait leur caté-
gories lexicales, et passe au module syntaxique les jetons, avec leur catégories. Accessoirement il construit
la table des symboles alnaque atome existe en un seul exempl@@eif si le langage prévoit I'existence de
plusieurs espaces de nonmsaunespacegs

L'analyseur lexical peut avoir plus d’intelligence que I'on ne lui accorde traditionnellement.

e |l peut reconnaitre les caractéres de maniére parametrée. D’habitude il agmibri distinguer les
lettres, les chiffres, les parenthéses ou autres caractéres spéciaux, I'espace blanc, etc., les attributions
des catégories lexicales c’est fait statiquement. Mais ceci n'est pas la seule stratégie possible. On peut
arbitrairement assigner la catégorie «lettre» a n'importe quel caractére, et ceci n’est pas un probleme
académique ! Si on travaille avec les alphabets plus riches que le notoire ASCII, et si on veut que les
lettres accentuées, ou portant d’autres signes diacritiques (cédille roumaine ou turque Sletbnesz”
polonaises), éventuellement les caractéres en cyrillique ou arabe codés selon quelques standards parti-
culiers, soient reconnues comme telles, la meilleure stratégie est de commencer par définir un tableau
attribuant aux caractéres leurs catégories. Ceci peut faciliter la reconnaissance des guillemets ou des
chevrons : ¥< >>" comme des parenthéses spécifiques (ces derniers sont obligatoires dans des docu-
ments Francais officiels), ou forcer la prise en compte des espaces ou des fins de ligne. (Cette technique

62 Les taches et la structure d’'un compilateur

est utilisée moins souvent qu’elle ne le mérite a cause de la monopolisation de I'informatique par la
coquille culturelle anglo-saxonne, et par la prédomination de langages de programmation «classiques».
Mais le standard Unicode commence a se faire reconnaitre. . .).

e Au niveau de I'analyse lexicale on doit traiter lesmcrosqui forcent le remplacement d’un lexeme par
une suite quelconque d’autres lexemes. En présence des macros parametrés, éventuellement récursives,
la collaboration entre la couche lexicale d’entrée et I'analyseur syntaxique se complique considérable-
ment. (Et ceci rend le langage difficile non pas seulement au constructeur du compilateur, mais aussi
pour les personnes qui apprennent ce langage ; ceci est le Metaleost, Clean et partiellement aussi
du Scheme).

Cependant, d’autre part, accorder a un module trop d’intelligence est toujours risqué. Les mdcryesen
clausestdefine) sont traitées par un programme spécial — le préprocesseur.

4.1.2 Syntaxe et Sémantique : introduction

Le module syntaxique construit les arborescences dérivées de la structure phrasale du programme.

Il ne faut pas croire que ces arbres sont toujours créés physiquement dans la mémoire de I'ordinateur, avec
les pointeurs, etc. Sachant que la structure récursive des phrases, par exemple des expressions arithmétiques
composites correspond souvent aux appels récursifs du parseur, qui s'appelle lui-méme pour analyser une
sous-expression parenthésée, I'arbre syntaxique peut étre «virtuel», cachépilardelainstanceslu parseur
récursif (ou dans la liste dmntinuationslatentes). La construction de cette pile par les appels, et sa destruction
par les retours constituent le parcours par ce graphe virtuel, et permettent la génération du code linéaire sans
jamais utiliser de vrais arbres. Ceci est la stratégie appliquée par de nombreux compilaRassatlesurtout
les compilateurs rapides, qui générent le code final en une passe (comme le premier compilateur de Wirth et
Amman, et les anciens compilateurs de Borland).

Cependant, parfois il est souhaitable de générer un code intermédiaire indépendant du parseur, il faut alors
construire I'équivalent d'une structure arborescente dans la mémoire ou sur un fichier, avec I'adressage relatif.
Ceci alourdit considérablement le compilateur, mais permetgiieure optimisatiordu code final, et son
assemblage a partir de modules compilés séparemment. Et ce n’est pas si mauvais pour la pédagogie de la
compilation.

On n’est pas obligé d’accepter, mais on doit comprendre le

Credoreligieux no. 10 : Analyser et comprendre une structure textuelle équivaut a générer un objet correct a
partir de cette structure. Le seul moyen de savoir si un soldat a compris un ordre est de vérifier qu'il I'a exécuté
correctement.

Dans la théorie on peut réduire un analyseur a une machine, qui doit arriver finalement a un état (un nceud de
son graphe d’états) terminal. Mais 95% de travail est la création du «tracé» de ce parcours par le graphe d'états,
la construction du code, la mise a jour de la table de symboles, etc. Ce n’est pas la grammaire elle-méme qui
détermine I'utilité d'un langage de programmation, mais toute sa «décoration sémantique».

Voici quelques propriétés sémantiques des objets linguistiques dans le programme :

e Les nombres ne sont pas seulement des séquences de chiffres, mais possedent des valeurs numériques.

e Un atome symbolique (identificateur) n’est pas une séquence de lettres, mais posseeletsépropre,
et sa catégorie : variable, nom de type, mot-clé, étiquette, macro, etc.

e Toutes les constantes, variables et expressions possedemypesrparfois statiques, et parfois dy-
namiques (type d’une variable est temporairement le type de sa valeur, si le langage n’est pas typé). Les
types existent méme dans des langages «non-typés» c8cimeene, sinon comment peut-on calculer
une valeur? Quelles opérations appliquer?

e Les étiquettes «savent» a quel code elles se référent (I'endroit-cible).
e Une instruction de branchement connait sa ou ses destinations.

e Un fragment de code possede une longueur précise, et tot ou tard aussi un emplacement (adresse) dans
la mémoire.

4.1 Un peu d'anatomie et de physiologie 63

e Une expression peut étre marquée comme constante et pre-calculée par le compilateur avant I'exécution
du programme.

e Une instruction peut étre marquée comme inaccessitlka(cod8, et éliminée par I'optimiseur.

Tout ceci est si important, que nous ne pouvons détacher complétement I'analyse formelle de I'analyse séman-
tique. La sémantique aura pour nous plutét un goQt opérationnel que dénotationnel, elle sera liée conceptuelle-
ment plut6t a la syntheése du code qu’a son analyse.

4.1.3 Lex et Yacc — premiers commentaires

Lex est un populairgénérateur de scanneuggli appartient a la couche brevetée de I'Unix. Son remplacant
libre s’appelleFlex et il est presque totalement compatible aler.

Yacc (Yet Another Compiler Compileest un générateur de parseurs LR(1), dont le clone GNU s’appelle
Bison.

Lesgénérateurs d’analyseusont des programmes qui lisent la description syntaxique (décorée) d’'un langage
de programmation, par exemple sous forme de productions BNF ou d’expressions réguliéres, et qui construisent
un analyseur-hamburger, prét a la consommation. Cet analyseur — scanneur ou parseur, est une fonction qui
doit étre insérée par le programmeur dans I'ensemble des sources de son application, et compilée avec.

Entre les années '70 et '80 il y avait une tendance d’affaiblir I'enseignement de la construction «manuelle»
de parseurs, et jusqu’au aujourd’hui on trouve dans quelques livres et polycopiés un clivage entre la théorie du
parsing ou la théorie des automates finis, trés élaborée et compleéte, et les exemples pratiques de parseurs, qui
sont trop souvent simplistes. Parfois les exemples sont primitifs et si mal codés (par exemple, on trouve des
instructions conditionnelle-elseif-elseif. . . avec plusieurs dizaines de clauses, ousietch gigantesques),
gue ses auteurs auraient di ajouter a leur textes des incantations magiques de genre : «ici on ne discute que la
méthodologie générale de construction. Sivous avez un probi@shde parsing, preneYacc...». Voici les
avantages qu'apportent les générateurs de parseurs :

e Le programmeur définit son langage de mangegique en définissant la grammaire. La partie séman-
tique n'est pas si statique que ¢a, les procédures sémantiques doivent étre codées explicitement aussi,
mais on les attach&tatiquemenaux productions de la grammaire.

e Le générateur effectue pour nous les tests de la validité de la grammaire. Le langage mal concu sera
rejeté dans plusieurs cas. Un parseur manuel d’habitude est plus fragile, et il a plus de chances d'étre
bogué.

e Le parseur est construit de maniere modulaire. Les protocoles de communication avec autres modules
du compilateur sont standardisés, et le travail en équipe est facilité.

e Ontrouve de trés nombreux exemples de grammaires, et de scanneurs et parseurs réalisés avec les généra-
teurs, ce qui facilite leur apprentissage, et on peut créer un nouveau langage et parseur en modifiant une
réalisation existante.

Cependant, il ne faut pas oublier non plus quelques désavantages.

e Les générateurs figent le langage d’'implantatioex et Yacc sont adaptés aG. Ceci n'est pas satis-
faisant pour tout le monde. Il existe des clone&dec écrit enPascal, ML (SML et CAML) et aussi en
Haskell (Happy), mais ceci n’est pas solution universelle de ce probléme.

e Les protocoles de communication avec la table de symboles, générateurs de codes, etc. peuvent étre
considérésrop rigides Adaptationdu restedu compilateur aux protocoles dacc etLex peut étre un
peu pénible.

e Le déboguage des procédures sémantiques peut étre tres difficile, car I'utilisateur ne contréle pas directe-
ment le contexte de leurs appels : ils sont codés automatiquement. (Ce probléme peut étre présent dans
les parseurs manuels aussi, mais un peu moins grave.)

e Le parseur généré est lourd, sans aucune élégance, et impossible a ntéidifren’apprend pas beau-
coup en construisant un analyseur par une machine automatique

64 Les taches et la structure d’un compilateur

La construction des générateurs évolue. Dans notre opinion personnelle, les générateurs sont indispensables si
vous étes un professionnel qui travaille sur la compilatiopldsieurslangages en utilisant le méme langage
d’'implantation.

Mais si vous, encore débutants, avez envie de faire unyowompilateur, la construction manuelle du
parseur va vous prendre moins de temps que la maitrise et 'usage d’'un générateur. Et, en général,. ..

Credoreligieux no. 11 : Le choix préférentiel entre la construction manuelle des parseurs, et 'usage des
générateurs de parseurs, appartient au domainereidsreligieux.

4.1.4 Qu’'est-ce que I'optimisation

Ce sujet sera (peut-étre) abordé plus tard, mais quelques notions peuvent étres utiles au lecteur tout de suite.
En particulier il est utile de savoir que

Credoreligieux no. 12 : La meilleure stratégie d’optimisation est de ne jamais générer un code mauvais.

Cependant, générer directement le code optimal est extrémement difficile. Parfois I'analyse globale du pro-
gramme entier serait utile, mais le compilateur n’a pas de possibilité de mettre dans sa mémoire tout le code
d’une grande application, et de plus, I'optimisation globaldrestiente.

Respecter au pied de la lettredeedono. 12 est difficile. Méme si le programmeur fait attention, s’il ne
génére jamais de structures inutiles ou redondantes, parfois le compilateur lui-méme introduit des inefficacités
en développant des macros. Parfois I'écriture d’'un code efficace est en contradiction avec sa lisibilité ou sa
modularité. On doit éviter I'évaluation multiple des expressions identiques, mais assignation de ces expressions
aux variables locales alourdit le programme, donc I'optimisation automatique peut étre trés utile.

Voici quelques stratégies d’optimisation classiques.

1. Elimination du «code mort»géad codgqui ne sera jamais exécuté, par exemple d’un fragment de code
qui se trouve apres un branchement obligatoire, et qui n'est pas étiqueté.

Ceci favorise I'assemblage du code final a partir des morceaux stockées dans des structures dynamiques
comme des listes (comme nous l'avons fait en construisant notre machine virtuelle a pile), méme si cela
alourdit le compilateur.

2. Elimination des sous-expressions communes, et génération des valeurs intermédiaires locales.

3. Pre-évaluation des constantes. L'expresgith peut et doit étre évaluée directement par le compilateur,
et la valeur 6 insérée dans le code compilé.

Cette optimisation peut étre déclenchée par I'analyseur sémantique. Une constante numérique posséede
unattribut: «constante évaluable». L'application d’un opérateur primitif numérique (fonction prédéfinie,

opération standard, etc.) aux objets constants génére un objet avec le méme attribut. Ainsi le générateur
de code peut «plier» (réduire) les branches de 'arbre syntaxique qui ont été balisées comme constantes.

4. Réduction des opérateurs. Sicorrespond a une valeur entiére, la multiplication par 2 (ou 4, ou 8,
etc.), ou la division par une puissance de 2 peut étre transformé en décalage des bits. La multiplica-
tion 2*x peut-étre transformé entx si le compilateur sait que I'addition est plus économique que la
multiplication pour cette concréete machine-cible.

5. Dépliage des boucles, et autiglining : remplacement des abréviations, comme des appels procéduraux
ou des boucles, par le code explicite, répliqué. Ceci rend le code plus long (parfois beaucoup plus long),
mais plus rapide.

6. Transformation des appels terminaux en branchemenjsaelleg et retourne immédiatement apres,
peut-étre il serait avantageux de sauter directemengai retournera au contexte d’appel fle(Mais
ceci exige une gestion délicate des paramétres et des piles-systéeme en général ; le débogage devient
parfois inextricable, et la gestion des exceptions — trés difficile).

Pour des langages fonctionnelles contiaskell (ou Scheme, méme si ce dernier n’est pas fonctionnel
pur) ceci est essentiel et obligatoire tar il n'y a pas d’autres mécanismes d'itération.

4.2 Intégration d’'un compilateur 65

7. Toute sorte d’optimisation de I'allocation des registres rapides (matériels, ou au moins dans des zones
mémoire accessibles directement, sans passer par la pile, etc.

Méme pour notre machine virtuelle nous avons pu économiser un peu de temps en prévoyant que le

sommet, le dernier élément de la pile n’est stocké qu’en cas de besoin, et normalement il occupe un

registre statique (une variable) ; mais ceci est beaucoup plus avantageux pour les langages impératifs, ou
la notion naturelle de variable statique, modifiable sur place existe.

8. Re-arrangement du code. Parfois la modification de I'ordre d’exécution de quelques instructions permet
mieux de sauvegarder et de réutiliser quelques valeurs dans des registres rapides. Ceci est une affaire
complexe.

9. Evaluation partielle. Pour évaluef ol = et n sont des variables, il faut exécuter 'opérateur «puis-
sance». Mais si le compilateur «sait» que- 3, il peut réduire I'opération, et compilar- x - x.

(Le sujet d’évaluation partielle est devenu trés important, et mérite une discussion approfgndie.

Il ne faut pas oublier que parfois I'optimisation du temps d’exécution est en contradiction avec I'économie de
la mémoire (I'inlining en est un exemple).

4.2 Intégration d’'un compilateur

La «dissection» d’'un compilateur n’étant pas terminée, dans cette section nous essayons de discuter les méth-
odes d'intégration qui fonin grand programme composé de plusieurs modules : scanneur, parseur, générateur
du code, table des symboles, etc. Notre but est de sensibiliser le lecteur au probléeme de communication entre
les parties d’'un systeme de compilation. La richesse actuelle des langages de programmation et la possibilité
d’enseigner la compilation a un niveau assez élémentaire, sont des résultats d'une bonne modularisation des
compilateurs. Méme si les phases d’'analyse, synthése et optimisation se chevauchent, on peut discuter sé-
parément les phases, et on peut montrer comment intégrer le systéme sans introduire a son intérieur un chaos
inextricable.

Question : comment assurer la transmission de l'information entre les étapes? |l serait ridicule d’effectuer
d’abord toute I'analyse lexicale, construire un fichier coupé en lexémes (par exemple : un mot par ligne),
ensuite donner & manger ce fichier a I'analyseur syntaxique, etc. Le gaspillage est évident : si I'analyseur
syntaxique risque de trouver une faute sur la deuxieme ligne, le découpage du texte entier en lexémes sert a
rien.

Il faut assurer une communicatiamcrémentale Mais ici il existe plusieurs stratégies possibles.

4.2.1 Intégration procédurale

La plus classique est la démarche procédurale. Le générateur du code a besoin de la structure intermédiaire,
alors ilappellele parseur qui lui doit la fournir. Le parseur est une fonction (elle peut s’appgbarse()
s'il s’agit d'un parseur engendré p#acc), qui parcourt la liste des lexemes actuellement disponibles.

Mais cette liste, peut-étre, elle n’existe pas. Chaque fois quand le parseur a besoin d’'un nouveau mot, il ap-
pelle le scanneur (la fonctigrylex()), et ce dernier s’occupe de la lecture de la source. Cette démarche est la
mieux connue, et les génératelex et Yacc génerent les modules adaptés a une telle technique. Les compila-
teurs traditionnels dBascal (notamment les premiers compilateurs congus par le créateur du langage, Niclaus
Wirth, et codés eRascal), I'exploitent aussi. Elle est également (ou mieux) bien adaptée a la construction de
parseurs «manuels» descendants, car elle est intuitive, et correspond au style traditionnel d’apprentissage des
langages de programmation.

L'intégration procédurale introduit naturellement des dépendances fonctionnelles entre les modules, et diminue
ainsi la modularité. Le déboguage peut ne pas étre facile. La modification du compilateur apres avoir introduit
des extensions dans le langage est d’habitude assez pénible, il faut vérifier tout.

4.2.2 Transducteurs de flux, ou «pipelining»

Nous avons souligné que la création d’un fichier intermédiaire peut ne pas étre tres économique. Il faut alors
simplement — au lieu d’utiliser un fichier disque, faire passer I'information pdliudiadynamique, par exemple

66 Les taches et la structure d’'un compilateur

par un «pipe» Unix. On peut également utiliser tistes paresseuseyui sont réalisées differemment des
«pipes», mais qui offrent des fonctionnalités analogiques, et qui sont trés intensivement exploitées dans le
domaine de la programmation fonctionnelle. (Par exemple les parseurs typigGasnénitilisent des flux).
Nous allons en profiter aussi, les listesttaskell sont naturellement paresseuses.

Attention ! Les listes paresseuses qui simulentpggmesoffrent a I'utilisateur la possibilité de traiter les
fichiers de longueur quelconque comme des chaines de caractéres. Ceci n'est pas vraiment conseillé a tout le
monde. Rappelons qu'dtugs, I'implantation deHaskell avec laquelle nous travaillons, il faut écrire

import 10Exts

texte = unsafePerformlO (readFile nom du fichiey

en important d'abord le module d’extensid@exts comme ci-dessus. Rappelons que si le fichier est long, il
fautobligatoirementcrire le programme de maniére a ce qu'il consomme la liste de caracteres itérativement, et
oublie définitivement les segments contenant les caractéres lus. Le compilateur doit étre capable de le prouver
formellement, sinon le flux se transforme peu a peu en une liste réelle, et finit par avaler toute la mémoire
disponible. Il y a d'autres techniques d'interfagcage, mais traiter le contenu d’un fichier comme une chaine
guelconque est utile pour tester les programmes courts.

La dynamique de ce transfert d'information peut étre visualisée de maniére suivante : le scanneur génére une
suite de lexemes, et les injecte dans le flux. Mais le buffer du flux est trés court et il se remplit immédiatement.
A ce moment I3, le scanneur est bloqué, et le consommateur du flux commence son travail, en transformant les
lexémes en arbres syntaxiques, etc. Quand le flux est épuisé, le parseur se bloque, et le scanneur redémarre.

Les deux modules travaillent donc en paralléle, ou plutét quasi-paralléle, en temps partagé. On écrit les deux
modules séparément, ils ne se communiquent pas directement, mais ils collaborent comme deux partenaires
dans un jeu, en se «renvoyant la balle» : I'information concernant I'état du flux intermédiaire. Les deux
modules ne sont plus des procédures qui s'appellent, mamode®cédures

4.3 Organisation de la table des symboles

Le dictionnaire de symboles est le coeur du compilateur, il est partagéysses modules. Il contient les
références aux chaines et les attributs des symboles. Sile langage —comme presque tous — posséde une structure
de blocs lexicaux ou de fermetures, c’est a dire, permet la définition de variables locales (ou parametres) a
plusieurs niveaux, la table des symboles refléte la hiérarchie des blocs en train d’étre analysés. La récursivité
du parsing correspond a la structure arborescente du dictionnaire des symboles. Le terme «table des symboles»
ne correspond pas a sa véritable structure. ..

Notre attitude vis-a-vis la table des symboles est un peu cavaliére, car ses fonctions sont trés simples,
méme si structurellement elle peut devenir une toile d’araignée. Nous construisons des listes d’associations,
représentons les noms (mots-clés et identificateurs) par les chaines de caracteres, et, en général, le probleme
d’efficacité de stockage ne nous concerne vraiment pas. Cependaasttecprobleme sérieux.

La mémoire consacrée au stockage des données peut étre morcelée en plusieurs milliers de segments sans
pertes, a condition que tous ces segments occupent une zone contigué, et que leurs adresses soient résolues
statiquement. Mais si I'ensemble bouge, si allocations dynamiques sont fréquentes, si quelques segments
deviennent inutilisables et doivent étre retournép@al géré par le systéme, cette gestion est compliquée, avec
plusieurs pointeurs sur les pointeurs, ce qui est toujours un gaspillage. Il faut alors au moins utiliser I'allocation
simple et statique partout ou ceci est possible. On ne doit pas représenter les noms par les chaines, mais plutot
réserver un long buffer, un tableau 1-dimensionnel, et y placer les chaines de facon contigué. Chaque objet
placé dans le buffer est identifié par son indice et sa longueur, comme sur la Fig. (4.1).

Quand I'analyseur lexical identifie une nouvelle chaine, il la met dans le buffer, et il construit une nouvelle
entrée dans le tableau des paires (adresse,longueur). Les indices dans ce tableasadasigfrences de

la chaine dans le dictionnaire. Le dictionnaire lui méme peut étre le «prolongement horizontal» du tableau
chtab , et les colonnes suivantes contiennent les attributs du symbole. Cependant, en général un symbole peut
signifier plusieurs choses en dehors et a l'intérieur d’'un bloc, ou si un langage prévoit plusieurs espaces de
noms (p. ex. les identificateurs déclarés constadic ~ dans un fichier contenant un programme3®n

Le dictionnaire est alors un autre structure de données, ou le symbole (la référence d’'un élément du tableau
chtab , et non pas la chaine) est I'attribut «nom» d’un objet lexical. Cette stratégie permet aussi de traiter de
maniére homogeéne les symboles qui dénotent les identificateurs du programme et les mots-clés. L'analyseur

4.3 Organisation de la table des symboles 67

buffer :|while | Belle | marquise | else| - - -

Fig. 4.1: Table de chaines

lexical ne voit pas de différence entre eux, mais les mots clés (et quelques identificateurs standard) sont prédéfi-
nis, et occupent une autre table dans le compilateur.

Le temps de vie et la portée des attributs sont treés différents. Apres I'analyse lexicale le compilateur peut
jeter le buffer des chaines, sauf s'il veut garder les noms littéraux pour le déboguage, ou si les programmes
sont compilés par fragments, et le compilateur doit préserver I'information lexicale concernant les symboles
exportés (globaux) pour I'éditeur des liens.

La valeur d'une constante est construite par I'analyseur lexical, et consommée finalement par le générateur
de code qui génere l'instruction de chargemleair{ ...). Le parseur peut totalement ignorer cet attribut.

Mais si le compilateur optimise le code, la propriété «étre constant» peut se propager depuis des constantes
numeériques vers les expressions sans variables, et le parseur peut déclencher une pre-évaluation sans invoquer
le générateur. Dans ce cas il aura besoin de la valeur. Pour éviter trop d’ambiguité, d’habitude I'optimisation
est une phase séparée, liée plutbt au générateur du code, qu’a I'analyse, mais on voit clairement que la gestion
du dictionnaire des symboles peut étre compliquée. Accessoirement, quelques attributs, comme le type des
données caractérisent pas seulement les symboles, mais les expressions entiéres, qui deviennent les «arbres
décorés». Ceci montre que les attributs ne doivent pas étre statiquement représentés comme des positions de la
table des symboles, mais ajoutés selon les besoins comme des champs dynamiques.

La question vitale pour I'organisation de ce dictionnaire est la vitesse de recherche et/ou de I'insertion. On
peut utiliser la recherche dichotomique dans un tableau trié, mais actuellement I'approche connue comme le
hachagedomine.

4.3.1 Techniques de hachage

L'idée générale du hachage ou Hash-codingconsiste a transformer une chaine de caractéres par une ma-
nipulation locale et rapide @ndice permettant ainsi la recherche d’'un atome sans étre obligé de parcourir le
dictionnaire (ou le tableachtab) entier.

Tout objet informatique peut étre considéré comme un nombre entier, puisque tout objet est une séquence
de bits. Mais un tel nombre d’habitude est trés long, et les tableaux de stockage des symboles doivent étre
raisonnables. La stratégie de hachage consiste donc a transformer un entier trés long en court. Une possible
solution serait de calculer ce nomlmedulo N, ou NV est la taille du tableau indexé par les symboles «hachés».

La division entiére (Euclidéenne) est raisonnable et utilisée, mais elle est relativement lente, donc parfois on
construit une somme pondérée des codés = ZZ:O aCy + 3, ou Cy, est le code du caractére, et la

longueur de la chaine. On peut utiliserdeclusive oy ou autres manipulations itératives. Leur propriété
commune est de repartir de maniére la plus homogéne les indices résultants sur I'espace disponible. En effet,
la fonction de hachage doit se comporter comme un générateur de nombres aléatoires repartis uniformément.

Une stratégie exploitée dans le compilateur de P. Weinberger est toujours réputée comme bonne : un nombre
entierh initialisé a zéro est modifié dans une boucle par :

h = (h << 4) + ch.suivant;

mais si le nombre devient trop grand, on effectue un décalage des bits a droite (de 24 positions), et on ap-
pligue I'opérationxor entre le nombre et le résultat de ce dernier décalage. Les bits a gauche sont nettoyés.
Finalement on calcule le reste de la division Euclidéenne par un nombre premier — la taille du tableau. Cette
technique est mentionnée pour l'orientation générale du lecteur, et non pas comme une recette de cuisine.

68 Les taches et la structure d’'un compilateur

Indépendamment du choix de la fonction de hachage, il y auraaliésions— deux symboles différents auront
le méme code. La fonction de hachage n'a aucune chance d’étre réversible, car le nombre de symboles possibles
est trés grand, et le tableau de stockage est limité. Il existe deux catégories de solutions de cette difficulté :

e On choisit le premier emplacement libre dans le tableau, ou on répéte le hachage paramétré par le dernier
indice. (Ou on utilise une variante similaire, p. ex. on ajoute a I'indice haché une constante premiére par
rapport a la taille du tableau, modulo cette taille. (Le nombre 1 est une possibilité). Si le tableau posséde
une case vide, elle sera trouvée. Quand le tableau est presque plein, I'efficacité de recherche diminue
considérablement.

e Chaque élément du tableau contient une liste chainée des symboles en collision. La liste peut étre par-
courue linéairement, ou par un moyen plus efficace, mais ces listes doivent étre courtes. Si la fonction
de hachage est bien choisie, et si le programmeur n'a pas choisi des noms trés bizarres, toutes les listes
auront (statistiquement) la méme longueur. Si la longueur du tableau est 1000, la longueur de chaque
liste sera d’ordreV,/1000, ou N est le nombre de symboles.

4.4 Exercices

Q1. Listez au moins douze conventions différentes de représenter les commentaires dans les programmes.

R1. Vous avez cherché vous méme, n’est-ce pas?...

o (* ... % ou{ ... } enPascal.
o [* .. ¥ enC.

e EnC++ le précédent, oll ... jusqu’a la fin de ligne. Le méme style est utilisé aussCéan,
et pour écrire leshadersRenderman..

e Les deux tirets- ... jusqu’a la fin de ligne e\da et Haskell. Mais ce dernier utilise aussi
{- ... -} , qui peuvent étre imbriqués.

e Lediese # enshell Makefiles,Python, Tcl etPerl. Et aussMVRML, et fichiers RIB (Renderman).
e Le pourcent %enMatlab, TeX, MetaPost, quelques implantation derolog, PostScript, etc.

e Le point-virgule; ... jusqu'ala fin de ligne escheme. (Aussi dans quelques assembleurs)
e Et enCAML? Comme erPascal.

e Fortran? Le caractére “C” en premiere colonne.

o <l-- .. --> enHTML, etc.

e REM ou I'apostrophe en Basic.

e POVray?/l .

On n'utilise plus le langagélgol 60 ou le commentaire suivait le mot-admment, ou Algol 68 ou le
caractere «cent» était de rigueur. Mais on utilise toujhisp, et les premieres versions prévoyaient des
constructions de genfgomment Belle marquise n’'importe quoi, et encore) dont

la valeur retournée était NIL indépendamment de la couleur des yeux de la belle marquise.

Q2. Question accessoire qui ne concedirectemenpas les compilateurs, mais importante pour le support
d’exécution du code compilé : Comment réaliseffiles (Structures FIFO) dans un langage fonctionnel?
Comment réaliser fonctionnellement le parcours des arborescences en largeur?

R2. L'importance de ce probléme doit étre évidente. pggssont des files ! La programmation événemen-
tielle ou pseudo-paralléle, les threads en ont besoin aussi.

Il faudra construire au moins deux fonctions, I'enfilement qui a partir d’'un objet et une file construit une
autre, et le défilement qui renvoie une paire : I'élément récupéré et la file restante. Une possibilité est
'usage des listes :

enfiler x q = q ++ [X]
defiler (x:q) = (x,q)

4.4 Exercices 69

Q3.

R3.

mais I'usage de la concaténation pour ajouter un élément est trés inefficace (rappelons que la concaténa-
tion recopie son premier argument). En général, sans la possibilitddiierdes structures de données

la situation semble désespérée, toute modification est obligée de reconstruire la nouvelle file sans abimer
la précédente, et pendant la compilation d’'un grand programme les structures de données dans le compi-
lateur sont assez volatiles.

D’habitude un programme — fonctionnel ou pas — n’utilise jamais en méme temps une vieille structure :
(pile, file ou autre chose) et la nouvelle. Sile programme est considéré comme I'enchainement des opéra-
tions qui passent les structures de données construites a ses continuations, il est possible d’éliminer une
bonne partie d'inefficacité. La technique ressemble beaucoup a I'optimisation canonique de la procé-
dure qui renverse une liste a l'aide d’'une variable-tampon (mais, ce qui est curieux, cette optimisation
appartient aux «canons» de la programmation, et pourtant les files fonctionnelles sont trés rarement en-
seignées...)

Une filexs est représentée par upaire de listes,(ys,zs) , telles que (conceptuellement ¥s =
ys ++ (reverse zs) . On ajoute toujours le nouvel élément & la téteydle et on récupére le plus
ancien du début la listes (alors, conceptuellement de la fin ®@&). Quand la listezs devient vide, on
renversgy/s ot on la substitue pous . Voici les fonctions de base

enfl x (ys,zs) = (xys,zs)

defl (ys,(z:zq)) = (z, (ys,zq))
defl (ys,[l) = defl ([],reverse ys)

De temps en temps le programme sera obligé a dépenseités de temps pour renverser la liste,ou
est la taille moyenne de la file, mais I'efficacité globale de cet algorithme est raisonnable, la complexité
moyenne est constante par un élément inséré ou enlevé (on I'appadiepdexité amortie

Le parcours en largeur consiste a enfiler I'arbre, et itérer la manipulation suivante, avec la file comme
argument : si la file est vide, le résultat est une liste vide ; sinon, défiler la racine. Si c’est une feuille, la
mettre a la téte de la liste résultante. La queue est le résultat de I'aplatissement de la file restante. Si la
racine est un nceud intermédiaire, placer I'étiquette devant le résultat de I'aplatissement de la file restante
enrichie par I'enfilement de la branches gauche et droite.

data Arbr = F Int | N Int Arbr Arbr
type Lst a = [a]
data Queue a = Q (Lst a) (Lst a)
x=N1N2(F4) F5)MNI3NG6(FS8FO9YFT
enfl x (Q ab)=Q (xa) b
defl (Q a (z:zq)) = (z, (Q a zq))
defl (Q a []) = defl (Q [] (reverse a))
flat ar = fl (enfl ar (Q [] [])) where
fl.(Q O = 1[0
fl g = let (z,ql)=defl q in

case z of (F i) > i fl gl
(Nigd ->i:fl (enfl d (enfl g ql))
r=flat x --donne [1 234567 8 9]

La fonction n’est pas récursive terminale. Laissons au lecteur la tache d’optimiser cet algorithme. Elim-
iner tout de suite la fonctioanfl . Essayer d’'incorporer égalemeddfl dansfl . Essayer d’évaluer
la complexité de cet algorithme. Voir aussi 'annexe, section (B.6).

Comment stocker sur un fichier séquentiel les arborescences? Et les graphes quelconques, possiblement
cycliques?

La représentation séquentielle des arbres est bien connue des lecteurs : ce sont deispisE®lpg
etc.) Il suffit d’avoir les parenthéses qui jouent le role d'opérateurs : empiler/déBi¢rexercice est
important, il suggére comment peut marcher un simple parseur qui analyse les listesComparer

70

Les taches et la structure d’'un compilateur

Q4.

R4.

cette stratégie avec la digression dans un de chapitres précédents, qui décrit ISlubas§arocédures
d’'affichage erHaskell).

Les graphes acycliques sont équivalents aux arborescences avec duplication des noeuds partagés, et ils
n'ont pas besoin d'une autre stratégie, mais naturellement pour I'efficacité il est envisageable de ne pas
proliférer les expressions partagées. A I'envers, la réduction d’un arbre a un DAG est toujours souhaitée.
Dans ce cagt méme dans le cas cycligilsuffit de stocker le graphe sous forme indirecte : choisir un
ensemble de symboles spéciaux, p.#k, #2, etc. et d'associer a chaque symbole son graphe, qui peut
contenir a l'intérieur des occurrences de ces symboles.

Une autre stratégie consiste a «atomiser» la précédente. Chaque sommet du graphe aura son étiquette.
Le fichier contient la liste des étiquettes suivie de la liste des arcs : paires d’étiquettes. On stocke un
graphe représenté par sa matrice d’'incidence.

Connaissez-vous la technique permettansidguler les structures de données par des fonctpnes
(formes lambda?)

Construire une fonctioiwons qui s’applique a deux objets, disorsety, et qui construit un objet
opaque, intraitable par quoi que ce soit, sauf par deux fonctions qui s’appellent (oui, vous avez déviné...)
car etcdr . L'application ducar a cet objet récupeére, et ducdr —y. On n'a aucun droit d'utiliser

un constructeur de données, et les argument®ds ne subissent aucune manipulation.

Vous renoncez si vite? Tant pis. Voici la solution.

cons X y = trouNoir
where trouNoir arg | arg=="car" = X
| arg=="cdr" =y
| otherwise = error "argument illégal"
car z = z "car"
cdr z = z "cdr"

Question accessoire pour déstabiliser les ambitieux. On a triché ici ! La forimtiokoir n’est pas

une «fonction pure», mais une fermeture qui profitexdesy comme des variables non-locales. Peut-

on résoudre cet exercice sans variables non-locales? Ceci est un excellent sujet d’examen, mais soyons
humains. Voici la solution, complétement triviale :

cons a b arg | arg=="car" = a
| arg=="cdr" =b
| otherwise = error "argument illégal"

En fait, on peut toujours remplacer un module fonctionnel avec des variables globales, par une fermeture
réalisée par une application partielle. Cette transformation s’appleliebea-lifting> et appartient a
I'abécédaire de la compilation des programmes fonctionnels.

Cet exercice figure dans nos notes ailleurs. trouvez-le ! Comparez I'autre solution avec celle 1a, discuté
les différences concernant le typage !

Chapitre 5

Analyse syntaxigue | — Techniques
fonctionnelles

5.1 Grammaires etparsing

Ce cours exige et suppose une raisonnable connaissance de la théorie des grammaires et de la notation BNF
(Backus-Naur Form Notre notation sera classique, pour un langage non-contextuel, une production syntaxique
aura (symboliquement) la forme

NonTerminal ::= UneChose UneSéquence | AutreSéquence (Groupe composite)

etc., ou a droite on a une séquence arbitraire des variables syntaxiques (objets nonterminaux), et de littéraux
(terminaux). Les méta-caracteres utilisés ici sont

La barre verticale — I'alternative.

Les parenthéses (pour le groupement), et les crochets (pour les regexps).

Les apostrophes.

l'assignation:= (plutdt que souvent utilisée-).

Tous les autres caractéres visibles, notamment les virgules, etc. sont des littéraux. Pour noter littéralement
un méta-caractere, par exemf{fe on le mettra entre apostrophes. Un apostrophe littéral s*criet les
symbolesss , \n , et\t dénotent I'espace, le saut de ligne et la tabulation. Pour distinguer les mots littéraux
des variables syntaxiques, et ne pas encombrer les productions avec trop d’apostrophes, nous utiliserons la
police proportionnelle pour des textes terminaux.

5.1.1 Exemple

Essayons d’écrire la grammaire définissant (de maniére incompléte !) un programme en Rrajage
Le lecteur doit se rappeler les exemples montrés dans des sections précédentes. Une liste ressemble a son
homologue erHaskell, seulement au lieu d’écrif:y) la syntaxeProlog est[x|y]

Un programme (en fait : la définition d’un prédicat) Rrolog est une séquence de clauses, chaque clause
possede I'entéte, un «corps» qui peut étre vide, et se termine par le point final. Le corps commence par
'opérateur d’inférence- , suivi d’'une séquence de prédicats, dont la structure est la méme que celle du
prédicat constituant I'entéte. La syntaxe d’un prédicat est exactement la méme, que la structure d’une donnée
généraleProlog — leterme ou plus spécifiquement : le terme atomique. Les termes dans la séquence peuvent
étre séparés par des virgules, ce qui dénote la conjonction («et») logique, ou les point-virgules, qui construisent
I'alternative. La précédence de la virgule est plus grande. On peut utiliser les parenthéses pour le groupement,
et il ne faut pas confondre les parentheses et les méta-parenthéeses.

Programme := Entete Corps .
Entete = TermeAtome
Corps m= ¢ | :- AltTerme

71

72 Analyse syntaxique | — Techniques fonctionnelles

AltTerme == SeqTerme | SeqTerme ; AltTerme
SeqTerme = AtomelLog (¢ | , SeqTerme)
Atomelog == TermeAtome | (" AltTerme)

ol naturellemend dénote la chaine vide. Notez la factorisation du préfigameAtome dans la production
décrivantSeqTerme ; la ligne précédente contient une construction structurellement identique, mais dévelop-
pée.

Passons aux données. Les termedog sont des expressions qui peuvent étre atomiques au sens : iden-
tificateurs ou nombresf ceci n’est pas la méme chose que I'atomicité logique, I'absence des connejteurs
fonctionnelles :f(x,2*y) , etc., contenir les opérateurs arithmétiquesautres opérateurs infixes que ne
seront pas discutés igiet les listes.

TermeAtome ::= Terme

Terme = AExpr | Liste | Tfunc | Atomic
Atomic = Symbol | Number

Tfunc == Symbol ' Seq)

Seq = ¢ | SeqTrm

SeqTrm = Terme (¢ | , SeqTrm)
Liste »= [Seq Queue 7T

Queue = ¢ | Terme

AEXxpr n= Atrm | Aexpr OpAdd Atrm
OpAdd =4 -

Atrm .= Factor | Atrm OpMul Factor
OpMul =/

Factor = Primary | Primary " Factor
Primary ;= Atomic | Tfunc | '(" Aexpr ')

ou ces définitions implicitement déclarent les quatre opérations arithmétiques comme associatives a gauche, et
la puissancé comme associative a droite. Les atomes ne présentent pas trop de problemes :

Number ::= Sgn (Integ | Float)

Integ == Digit | Digit Integ

Float = Integ . Integ OptExp

OptExp = ¢ | E Sgn Integ

Sgn = 9| +]-

Digt ===01]1]12]3]|]4]5]|6]7]8]29
Symbol = Letter (¢ | AlnSeq)

AlnSeq := Alnum | AInSeq Alnum

Alnum = Letter | Digit

et les lettres? Ah, non, écrire une clause avec 52 alternatives, sans compter les lettres accentuées, est
un peu trop. On voit que I'approctairictementsyntaxique, «extensionnelle», a la définition du langage a
ses handicaps. Bien sir, la notation BNF n’épuise pas la présentation des grammaires, et tous les lecteurs
connaissent (ou doivent connaitre !) les expressions régulieres avec des régles spibiadgsar exemple

Integ = Digit +
Letter = [A- Za 7]

etc. La définition ddnteg montre que la fermeture de Kleene (positive) est une simple abréviation, qui
d’ailleurs implicitement contient I'associativité de la concaténation. La forme BNF peut étre dans ce cas
récursive a gauche ou a droite, selon la philosophie d'implantation. La définitiogteie est une définition
syntaxiquement incompléte, elle assume que I'alphabet est figé et bien connu.

Rappelons-nous donc de la proposition introduite dans la section précédente : si les définitions des objets
irréductibles utilisent obligatoirement une information sémantique extérieure, que cette information soit au
moins souple. On peut donc définir une lettre comme caractére qui posséde I'attribut «sémaitdityge» Ik
faut alors considérer que I'analyseur des lettres (quelconques) soit primitif. Ceci n’est pas possible directement
enLex, le seul moyen de procéder serait d’accepter un caractére quelconque, et procéder a sa reconnaissance
dynamique par une procédure sémantique, ce qui est pénible, pratiquement inutilisable.

5.2 Stratégies du parsing 73

La notation classique aura aussi quelques difficultés pour décrire des opérateurs de précédence quelconque,
ajoutés éventuellement dans le programme — le programme qui sera compilé et exécuté, et non pas dans
'analyseur. Ceci est possible étaskell, ML, Prolog, etc. Partiellement pour cette raisons nous ne pou-

vons donner la définition compléte dRrolog, cette définition aurait un niveau méta- trop important, et pas

trés lisible. Ce probléme suggeére fort aussi qu’une bonne partie de ce que nous appelons la sémantique, est en
fait la syntaxe, mais avec des dépendances contextuelles importantes, et de longue portée. Pdaskgilen
I'expression(x+1 <=> x-1) soitlégale, I'objet lexicak=> doit figurer dans une clauggfix ou équiva-

lente, et ainsi devenir un objsyntaxique EnProlog c’est pareil, les opérateurs (préfixes, infixes et postfixes)
doivent étre déclarés par le prédicat primdtg.

En C toute occurrence d’'une variable doit étre accompagnée par sa déclaration, sinon ceci est une erreur
sémantiquemais la déclaration elle-méme est une simple structure syntaxique. Les exemples de ce type sont
trés nombreux. Bref, nous ne savons pas vraiment comment définir sans aucune ambiguité le mot «sémantique»
dans le domaine de la compilation, car le «sens» est souvent caché danstlare ..

La notation BNF standard manque un outil de reconnaissance parfois inestimable — la négation. Comment
décrire un commentaire e@? Toute chaine qui commence p&r et qui se termine paf/ , mais avec
la restriction dene pascontenir la chaing/ a l'intérieur. La construction d’'un caractere «non-slash» par
énumeération : une alternative de tous les autres, est théoriquement correcte, mais pas pratique du tout. On peut
construire une expression réguliére correspondante, mais les regexps ne sont que des abréviations. Dynamique-
ment on procéde de maniére suivante : quand on trouve la premiére occurréhceoties’arréte. Ceci est la
solution du probléme des commentaires, mais la négation est un concept plus général.

En général I'introduction de la négation dans une gramnesigossible, et le parseur correspondant, quand
il trouve I'expression sous la négation, il génére un échec. Ceci — si on utilise une stratégie non-déterministe —
provoque Ibacktracking et la recherche d’une autre alternative. Par contre, quand ce parseur trouve le contexte
qui ne correspond paa I'expression sous la négation, I'échec se transforme en succeés.

5.2 Stratégies du parsing

Par convention les techniques d’analyse syntaxique se divisent en deux grandes catégories :

e Techniqueslescendante®t

e techniquesscendantes

Si conceptuellement le réle d’analyseur est de construir I'arbre syntaxique a partir de la représentation linéaire,
textuelle, on peut construir cet arbre a partir de la racine, en ajoutant les branches et terminant le processus au
niveau des feuilles, ou a I'envers, commencer par les feuilles, lier les feuilles par les branches, et terminer par
la racine.

Les deux stratégies sont complémentaires. La stratégie ascendante est plus universelle, et peut étre plus
efficace, mais elle n’est pas tres facile & implanter, et souvent beaucoup plus difficile a comprendre. Nous
allons traiter en priorité la technique descendante, plus propice a la construction manuelle des analyseurs. Les
parseurs générés pécc ou autres générateurs de ce type exploitent d’habitude la stratégie LR(1), ascendante.

5.2.1 Stratégie descendante

Dans la stratégie descendanteparseurpeut étre apparié a umon-terminal Nous pouvons imaginer que
le parseur est une fonction qui s’applique a un flux de données d’entrée, par exemple les caractéres, et qui
produit une arborescence. Le symbole non-terminal principal (le symbole de départ) de la grammaire entame
'analyse. Par exemple le parsderogram s’applique au flux d’entrée et construit le code (pas forcément
final) du programme.

Si la production qui définit ce non-terminal utilise autres non-terminaux :

Program := Entete Corps

la procédurgorogram appelle les procéduresntete etcorps , qui appellent leurs «esclaves», etc. Bien

sdr, les appels qui s’enchainent séquentiellement : Le Corps doit suivre I'Entéte — doivent consommer séquen-
tiellement le flux d’entrée. En fait, si la grammaire est écrite, la construction d’un parseur descendant qui cor-
respond a un non-terminal est relativement claire — elle correspond a la production qui définit ce non-terminal.
Le programmeur doit assurer a peine deux choses :

74 Analyse syntaxique | — Techniques fonctionnelles

e passer correctement le flux d’entrée d’'un fragment a I'autre, et
e construir un résultat du parsing.

Nous verrons que la construction d’un parseur descendant a partir d'une grammaire, peut étre une procédure
presque méchanique. La complexité interne est gérée par les appels récursifs. On continue & descendre, et
finalement un parseur primitif comniettre consomme un caractere qui constitue la feuille d’'une branche
correspondant a un identificateur, etc. En remontant I'arbre des appels récursifs, I'arbre du parsing est construit
physiquement, ou le parseur le linéarise directement, et engendre le code postfixe. Mais ceci constitue une
manipulation sémantique, et ici le procédé est beaucoup moins automatique. Il est partiellement régularisé
grace au concept dastributsdont nous allons encore parler.

5.2.2 Techniques ascendantes

Un parseur ascendant n’utilise pas des appels récursifs, mais il est piloté par un nombre de structures de données
spécifiques au langage — tableaux, piles, etc. qui contiennent des informations sur les enchainements légaux
des symboles. SiI'analyseur — par exemple — est en train d’analyser les expressions, et il se trouve devant la
chaine a*(1/x ...)+2... , il trouve le premier lexéme — I'atorree. Selon la grammaire, cet atome peut
étre réduit a uracteur , mais pas tout de suite, car s'il est suivi par la parenthése ouvrante, il fera partie d'un
appel fonctionnel. Ceci n’est pas le cas dans I'exemple ci-dessus. Faut-il réBagteur aunTerme? La
réponse egton le lexéme suivant, 'opérateur de multiplication, suggére que $eume est formé ici, il sera
composeé de plusieurs Facteurs multipliés ensemble.

Ensuite le perseur trouve la parenthése ouvrante,sglitique ceci sera une expression primaire, paren-
thésée. Quand le parseur trouve I'opérateur ad@hif, il sait que I'expression sera composée de plusieurs
termes, dont le premier vient d’étre assemblé.

Pour que la stratégie fonctionne, le parseur doit pouvoir répondre a la quegtiethe production utilisepour
la réduction éventuelle? On ne peut faire cela a I'aveugle, car la complexité de I'algorithme serait exorbitante.
Il faut donner au parseur les moyens de «pilotage» — la possibilité de prendre de bonnes décisions sans connaitre
trop de choses sur la partie du flux d’entrée qui n’a pas été encore découverte. En particulier, les tableaux de
pilotage répondent a la question : faut il consommer et stocker encore quelques items (effectuer I'opération
shift), ou réduire quelques feuilles et branches déja formées de I'arbre syntaxique, pour construir un arbre plus
grand, et s’approcher ainsi de la racine (opératimhice).

Les détails seront précisés plus tard, a présent passons a la réalisation des parseurs descendants, en utilisant
les stratégiefonctionnellesle codage. Nous verrons d’ailleurs, que notre stratégie ne sera pas complétement
descendante, mais mixte.

5.3 Philosophie du parsing fonctionnel

Cette section montre comment construire les parseurs (surtout les parseurs descendants) dans un langage fonc-
tionnel, parcomposition Le but principal de cette stratégie est de construire les parseurs utilisables, relative-
ment efficaces et économiques, de maniére statique, déterminée par la syntaxe du langage. Nos parseurs ne
seront pas des simples automates de reconnaissance, mais ils généreront le «code», les objets de sortie, on
devra donc les équiper de procédures sémantiques. Chaque parseur sera donc un petit compilateur.

De plus — comme nous le verrons treés tot — nous envisageons de construire des pauisewssls qui
s’adaptent facilement a des structures syntaxiques fréquemment trouvées dans les langages de programmation
traditionnels.

Pour linstant nous ne distinguons pas entre I'analyse lexicale et phrasale — tout appartient a I'analyse
syntaxique. Dans les deux cas les flux sont différents : flux de caracteres, ou flux de mots ; les objets de
sortie également : les mots ou les arbres. Cependant les méthodes de combinaison restent les mémes, et une
partie de I'analyse phrasale qui n’a pas besoin de récursivité, peut profiter des compositions itératives qui
caractérisent les expressions régulieres utilisées dans I'analyse lexicale. (Exemple : formation des listes ou
blocs d'instructions demande uniquement la récursivité linéaire (et codage itératif).)

Ainsi 'exemple de la syntaxe derolog cache sans commentaires ces deux niveaux différents : lexical et
syntaxique (phrasal). Pendant I'analyse lexicale on doit se poser la question : «que fait-on avec les espaces
et les sauts de ligne?». Pour I'analyse phrasale ces objets n’existent plus (sdafsuiela fin de ligne et

5.3 Philosophie du parsing fonctionnel 75

l'indentation jouent un réle sémantique ou syntaxique active, et sont stockés avec les symboles pour faciliter le
déboguage).

5.3.1 Qu’est-ce qu’'un parseur?

Commencgons par une description simplifié, qui sera vite enrichie et complétée. Le contexte du parsing contient
un flux d’entrée — les caracteres pour le scanneur, ou déja les lexémes pour le parseur phrasal. On peut imaginer
donc que le parseur est une fonction de tyfaex(— objef), mais nos parseurs sont plus localisés, ils ne sont
pas obligés de consommer entierement le flux. Donc, le flux restant fera partie de la valeur construite par
I'analyseur, et correspond a I'«état» du systéme. Il faut le préserver pour que le successeur d’'un module parseur
puisse consommer le segment suivant. N'oubliez pas que notre construction est purement fonctionnelle, et que
rien, et surtout pas le flot d’entrée, n’est caché «sous la moquette». Il n'y a pas de prosédunfe x

Méme si le langage et le parseur soient globalement parfaitement déterministes, un peu de non-déterminisme
local est toujours présent, au moins intuitivement : quand on commence a consommer les chiffres, on ne sait
pas encore si le résultat sera un nombre entier ou flottant. Parfois le parseur échoue et il faut annuler une déci-
sion précoce (faire le retour en arriere,lmcktracking. L'élimination totale du non-déterminisme est souvent
possible, mais ceci sera discuté plus tard. Les parseurs parfaits n'ont pas beaucoup de valeurs pédagogiques,
car ils sont trop compliqués. Il ne faut pas avoir peur de la situation ou le parseur peut donner deux ou plusieurs
réponses différentes (ambigués), elles seront stockées dans une liste, et discriminées plus tard, selon le contexte.

Nous proposons alors l'introduction d’'un type de parseurs universels, qui peuvent étre spécifiés de cette
maniére :

type UParser ¢ a = [c] -> [(a,[c])]

ouc est le type des items sur le flux d’entrée (pensez que ce sont des caracteresle égpe des objets
de sortie (pensez aux lexemes, ou aux arbres syntaxiques). Les flux seront réalisés par les listes, puisque les
chaines de caractéres dadiesskell standard ne sont que des listes.

Attention !!' La vraie définition duJParser introduite dans (5.4.1) sera un peu différente, nous allons
baliser cette fonction.

Le parseur universel peut consommer un flux quelconque, et fournir un résultat quelconque. Il peut con-
sommer un flux d’arbres syntaxiques, et créer un code postfixe, il peut donc aussi représenter un générateur de
code piloté par une grammaire.

Dans la pratique une telle généralité sera nécessaire uniqguement pour définir les combinateurs internes.
Plus concrétement, nous aurons besoin de :

e un «tailleur» Cutter) qui coupe un morceaatomiquedu flux et le fournit comme valeur. Par exemple
— le premier caractére d’'une chaine. Bien s(r, ceci implique que leatgseégal & ;

e des parseurs génériques adaptés a traiter les chaines de caractéres, pour pouvoir rapidement tester I'approche.
Par exempleCScanner parcourt un flux de caracteres, et fournit un caractér8canner parcourt
une chaine de caractéres et renvoi un «<mot», aussi une chaine. Plus tard nous construirons un parseur
qui prend un flux d’atomes et qui en construit une arborescence.

5.3.2 Objectifs finaux

La grammaire du langage posséde toujours un symbole non-terminal de départ, qui sera la racine de I'arborescence
(physique ou conceptuelle) congue par le parseur. Ce symbole peutBtoglamme . |l existe une produc-
tion quidéfinitce programme, par exemple

Programme ::== Déclarations Instructions

(ou dans d'autres langages : ensemble des clauses définissant les prédRralsgnou les définitions des
classes et leurs méthodesJava, etc.
Le compilateur lance alors (par exemple)

-- décl. initiales
code = Programme fluxDentrée

76 Analyse syntaxique | — Techniques fonctionnelles

fluxSortie = transforme code

ou la derniére instruction doit assurer la génération physique du code final. Le garsgtamme est exé-
cuté, et appelle ses parseurs subordonnés, par I'exemple le persteuction , qui appelle le parseur
variable a gauche, et le parseaxpression a droite. Ainsi I'arbre syntaxique est bati a partir de la
racine et pour cela on appelle cette stratégie du parsdascendante(Comme tout le monde le sait, si un
informaticien se trouve prés de la racine d’un arbre, il descend pour arriver aux feuilles. Les gens normaux
montent. Ainsi on a prouvé que les premiers singes qui ont descendu des arbres étaient des informaticinges qui
voulaient s'éléver vers le Progrés et I'Avenir. . .)

Un parseur n'est pas un compilateur complet, méme s’il — comme nous avons envie de faire — génére le
code grace a son intégration avec les procédures sémantiques qui construisent son résultat. Il faut penser a
d’autres choses :

e Lagénération du «prologue» —le code qui doit démarrer I'exécution du programme compilé. D’habitude
ce code se trouve au début du programme compilé, et il est placé dans le fichier de sortie avant de démarer
le parseur. (Ceci concerne le programme compilé indépendant, exécuté directement sous le contrdle du
OS. De tels fragments s’appellent parfstabs)

e Nous avons menti un peu... Imaginez que la compilation échoue, et que le fichier contenant le pro-
gramme compilé est incomplet, tronqué au millieu par une erreur. Un tel prograrandeit pas
s’exécuter du toytcar il peut causer des dégats. Le prologue doit seemntle démarrage du pro-
gramme compilé vérifier son integrité, par exemple la présence du code “OKEY” a la fin du fichier, ou
la cohérence d’autres dispositifs de sécurité, comme les codes ©R{ic(Redundancy Check

e Sile programme compilé est prévu pour étre exécuté par une machine virtuelle, le prologue est parfois
absent, mais pas toujours. Méme s'il n'a pas besoin d'un code d'initialisation, par exemple d’ouverture
des canaux d’entrée/sortie standards, car l'interpréte lui-méme s’en occupe, le prologue peut contenir une
importante bibliothéque de fonctions prédéfinies, I'ouverture des canaux non-standard, ou la spécification
des ressources supplémentaires.

Ainsi presque tout programme EostScript généré par un traitement de texte ou un paquetage graphique
ajoute a la téte de son document envoyé a I'impression un prologue avec plusieurs abréviations et co-
manded”S qui ne sont pas prédéfinies dans le pilote de I'imprimante, mais qui seront utilisées plusieurs
fois.

e Le compilateur ajoute dans le programme compilé des procédures de gestion des buffers I/O, la gestion
des exceptions «paniques», les procédures de récupération des signaux du OS (si le programme est
compilé en code natif), les primitives d’allocation de mémoire, etc. Souvent ces procédures occupent
90% du code, si le programme est trés court. Les programmes interprétés sofiitealacsupplus
courts que le programmes compilés, et c’est une raison pour laquelle la plupart des langagigsicig
est interprété.

Revenons donc a nos parseurs. Quand on regarde la définition d’'une grammaire, on voit que les définitions sont
réellement descendantes, récursives, et gu'il faut s'arréter au niveau des primitives. Mais on voit également
des propriétés «méta-» de la grammaire : les mémes stratégies de structuration s retrouvent plusieurs fois dans
I'ensemble de productions. Par exemple, on trouve souvent

e les itérations ou séquences, type::= B | B A ; De cette fagon on construit les mots composés des
lettres, les entiers construits des chiffres, les listed {gp), etc.

Une légére modification, la présence d’'un lexeme de séparation, syle:z B | B , A nous

permet de construire les listes ou autres séquences, p. ex. les initialisations des tab@pdXbjets

séparés par des virgules, blocs d'instructions séparées par les points-virgules, etc. La méme stratégie
s'applique a la reconnaissance des suites d’arguments des procédures. Une stratégie presque identique —
a la déclaration des variables, ou a la déclaration des champsgttuce

e plusieurs parseurs «presque primitifs» qui vérifient — par exemple — I'appartenance d’'un caractére a la
classe des majuscules, ou des symboles spéciaux. Un tel parseur consomme un item (caractere) et lance
un prédicat de vérification. On peut évidemment construire quelque chose de plus abstrait ;

5.4 Composition des parseurs fonctionnels 77

e parseurs d'objets «parenthésés» : listelsisp ou enProlog, tableaux, blocs délimités par des accolades,
suites d’indices entre crochets Bascal, construction typdegin ... endourepeat ... until, appels
fonctionnels avec la liste d’arguments entre parentheses, etc.

Donc, quel que soit le langage, la structuration des parseurs composites suit souvent les mémes regles. Nous
allons alors commencer par la construction des briques génériques, universelles, qui seront réutilisés dans des
parseurs concrets. Les définitions de ces derniers peuvent alonestreurtes.

5.4 Composition des parseurs fonctionnels

5.4.1 Premiers pas

Le contexte global du processus du parsing sera le suivant. Nous définiropérateur de parsing universel
-*> utilisé pour appliquer un parseur a un flux de données :

infixl 0 -*>
unParseur -*> unFlot

En fait, nous pourrions définir directement les parseurs comme des fonctions qui agissent sur les flux d’entrée,
mais nous préférons les voir comme les «objets» que I'on «applique». Donc, les définitions des types de
ces objets, du parseur universel, du «Cutter» qui coupe un élément du flux, et d’'un scanneur lexical, sont les
suivantes :

newtype UParser ¢ a = Pa ([c] -> [(a,[c])])

type Cutter a = UParser a a
type CScanner = UParser Char String -- Analyseur lexical

Notez qu’'unCScanner lit une chaine (liste de caractéeres$tring , mais le type de son premier argument
estChar — unélémentdu flux. Par contre, le type du résultat est de nouveau une chaine.

Le mot-clénewtype enHaskell est une nouveauté. Pratiquement nous pouvons I'exploiter catatae,
l'introduction d’'un nouveau type algébrique, dont les instances sont identifiées par laRalisklais la
sémantique est un peu différente, en fait, ceci ressemble un peu a un syndyyeé, (qui se comporte
comme la définition suggérée (et ensuite désavouée) dans la section (5.3.1). Quand le progrbiaskelen
est compilé, la balisPa disparait, et notre objet se comporte comme une fonction. Mais dans le code source,
nous écrirons

Pa parseFun -*> flux = parseFun flux

Définissons d’abord trois parseurs primitifs. Le premiail, ne consomme rien, et échoue toujours, c'est-

a-dire, retourne la liste vide. Le secomdfurn , est son dual : laisse le flux d’entrée intact, mais retourne
une valeur spécifié priori. Le troisiemejtem , est finalement un parseur qui fait quelque chose, il coupe le
premier item du flux, et le retourne.

Pa (\inp -> [])

return :: a -> UParser ¢ a
return x = Pa (\inp -> [(x,inp)])

fail s

item : Cutter a
item Pa (\inp -> case inp of
> [l

(x:xq) -> [(x.xq)])

Le parseurfail sera utilisé rarement. On en a besoin seulement dans des cas spéciaux, ou on provoque
I'échec volontairement. Plus souvent il sera généré par les circonstances : quand aucune autre possibilité ne
marche. (Il est parametré pour des raisons qui seront expliquées un peu plus tard, mais son parametre ici n'est
pas utilisé ; dans d’autres circonstances il peut contenir un message diagnostic).

Le parseureturn est incontournable : malgré sa simplicité d’est une des constructions les plus fonda-
mentales dans notre présentation.

78 Analyse syntaxique | — Techniques fonctionnelles

L'outil fondamental deiaison, la «colle» qui permet de combiner deux parseurs de maniere séquentielle, est
I'opérateur qui traditionnellement s’appebiend , et que nous construirons comme un opérateur irgfixe) .

Il agit sur des parseurs qui sont des fonctions (oublions la bBlsgelle est la, mais nous pouvont presque
toujours traiter les parseurs comme des objets fonctionnels), donc il est une fonction d’ordre suparikuit.
pour l'instant imaginer que la constructigm >>= f) est une généralisation assez évoluée de I'application
f(p)

Imaginons quep est un parseur, €t un «générateur de parseurs» — une fonction qui s’applique a une
valeur(souvent : la valeur retourné par le parseur précédent), et qui retourne un parseur. Par example,
appartient a cette classe : il s’applique a une valeur quelconque, et produit un parseur qui génere cette valeur
indépendamment du flux d’entrée. Un autre exemple peut étre la construction d’un parseur qui vérifie et filtre
une valeur concrete, passé comme arguméntBncore un autre, trés important : le parseur construit par la
fonctionf génere la valeur finale a partir du flexI'objet passé comme parameétre. Les exemples seront trés
nombreux.

Le parseup est une fonction qui renvoie une liste de valeurs appariées avec les segments non-consommeés
du flux : [(v1,i1),(v2,i2),...] . Le lecteur doit comparer ce comportement avec nos définitions de
fonctions non-déterministes, comme la fonction d’insertion d’'un élément «n’importe ou» dans une liste. Le
parsing est une opération qui peut étre non-déterministe, méme si tout non-déterminisme redondant est a éviter
au nom de I'efficacité.

La fonctionf récupére, élément par élément, les valeuts, et pour chaque valeur rend un parseur. Bien
sar, l'itération : «élément par élément» est assurée par I'opératedirnon pas par la fonction. Ce parseur
est appliqué au flux correspondank . Le résultat est de nouveau une liste de paires valeur-flux. Cette
application élément par élément peut étre réalisée par la fonctiormalpe mais le résultat final doit étre
aplati. Commengons par :

infixl 1 >>=

mais attention, cet opérateur est déja prédéfini et constitue une fonction de «liaison» plus générale que la
composition de parseurs. La fonctitail est prédéfinie aussi, tout ceci appartiend au monde des Monades.
Mais pour l'instant nous allons les introduire comme s'ils n’étaient pas connus, ce qui ne dispense pas le lecteur
de lire les Annexes !.

conc = foldr (++)] -- Aplatisseur des listes de listes
(>>=) :: UParser a ¢ -> (a -> UParser b ¢) -> UParser b ¢
Pa p >>=1f =

Pa (\inp -> concat [(f v) -*> out | (v,out) <- p inp])
ou, si l'on préfere :

Pa p >=f =
Pa (\inp -> concat (map (\v out -> f v -*> out)
(p inp))

Récapitulons : le résultat de la constructa p>>=f est un parseur, une fonction qui agit sut un filog .

Son fonctionnement est le suivaptagit surinp et produit une liste de résultats possibles, dont une instance
est notée pafv,out) . Lafonctionf agit sur chaque instance, mais elle méme peut créer plusieurs résultats,
et on obtient ainsi une liste de listes. La fonctmonc aplatit le résultat.

5.4.2 Séquences, filtres, alternatives, itérations
Gréace au combinatelind construisons a présent

e un parseurseqp qui représente la séquence de deux parseurs, et qui renvoie comme valeur la paire
(x,y) sile premier produik, et le second y. Mieux : on n’est pas obligé de retourner un tuple
(x,y) , mais nous pouvons appliquer une fonction — constructeur quelconguet &. Le parseur
segp sera donc parametré par ce constructeur ;

e un parseur filtransat , qui vérifie que le premier item du flux satisfait une condition logique ;

e une réalisation plus concréte dat — un parseur vérifiant I'égalité entre la téte du flux, et une valeur
donnée. (Ceci peut étre utilisé pour la reconnaissance d’'un séparateur lexical, d’'un mot-clé, etc.)

5.4 Composition des parseurs fonctionnels 79

e Les parseurs qui filtrent, et généerent des lettres, chiffres, et caractéres alphanumériques. Pour cela nous
aurons besoin d'un combinateur trés simple qui construit I'alternative de deux parseurs, en concaténant
leurs résultats respectifs.

segp cnstr p g = p >>= \x ->
g >>=\y -> return (cnstr x y)
alt (Pa p) (Pa q) = Pa (\inp -> p inp ++ q inp)

sat » (@ -> Bool) -> Cutter a
sat p = item >>= \x ->
if p x then return x else fail ™

lit ¢ = sat (==c)

Avant de passer aux parseurs lexicaux observons que la constralttion'est pas une bonne solution dans

la plupart de cas intéressants, surtout la ou I'alternative sert & définir une itération, ou dans le cas ou les deux
variantes sont visiblement incompatibles, p. ex. une lettre ou un chiffre. Nous pouvons définir une autre
alternative, plus fréquemment utilisée, qui teste le premier composant et seulement s’il échoue, on applique le
second :

xor (Pa p) (Pa q) =
Pa (\inp -> let s=p inp
in if s==[] then q inp
else s)

infix 0 # -- pour notre confort
a#b=xorab

Et voici les éléments primitifs d’'un scanneur :

interval a b = sat (\x -> a <= X && X <= b)
digit = interval '0’ 'Y’

lower = interval 'a’ 'z’
upper = interval ‘A’ 'Z

letter = lower # upper
alphanum = letter # digit

(Rappelons que la définition des lettres est un peu primitive, sans accents ni autres diacritiques. La généralisa-
tion a d’autres langues humaines est un joli exercice.)

Finalement, construisons un mot a partir d’'une chaine de caractéres, et effectuons un test.waranot (
consomme les lettres par I'enchainement des parsettes . Le parseur doit correspondre a la production
suivante :

Word = Letter Word’
Word’ ::= Letter Word’ | ¢

Le parseuword appelera une fonction interrveord’ qui doit itérerletter . Quandletter échoue, la
clause alternative dword’ renvoie la chaine vide — I'objet terminal, auquedrd’ attache toutes les lettres
précédentes. La différence enthéord etWord' est claire :Word' peut étre videWord — jamais, c’est une
fermeture positive.

Nous avons remarqué qu’une telle construction est assez typique, donc au lieu de construire ces parseurs,
construisons d’abord un combinateur générique, capable d'itérer un parseur quelconque, et mettre les éléments
partiels dans une liste. Nous allons donc exploiter le combinatgp parametré par le constructey

infixr 1 +>
a+>b==seqp () ab

many p = p +> many p
many’ p = p +> many p # return []

80 Analyse syntaxique | — Techniques fonctionnelles

et a présent il suffit d’écrirord = many letter . L'application

word -*> "Belle marquise ...

retourng[("Belle”, " marquise ...")] . Bien s(0r, si on remplac@) par‘alt’ , le résultat sera
une liste qui contientBelle" avec"Bell" ,"Bel" etc.

La construction des nombres demande un autre protocole de combinaison des items, nous ne voulons pas
construire une chaine, mais combiner les chiffres selon I'algorithme qui a déja été discuté :

nombre | = nb | O -- ou | est une liste d'entiers entre 0 et 9
where

nb [] tmp = tmp

nb (x:xxq) tmp = nb (10*tmp+x)

Il nous faudra généraliseany, avec un constructeur arbitraire, et une valeur initiale du tampon aussi arbitraire.
Mais il y a un autre probléme. Supposons que I'on essaye de construire un itérateur générigue comme ci-
dessous :

iter constr tmpO p = segp constr p it where
it = seqp constr p it # return tmpO

et que le parseur des entiers soit défini
integ = iter accum 0 digit -- ou
accum x tmp = 10*mp + ord x - ord 'O’

Le résultat du testinteg -*> "7802 beaux yeux..." nous réserve une mauvaise surpriggo87z,"
beaux yeux ...")] . La récursivité a été mal exploitée, le parseur intétnagui remplacemany est er-
roné ! Il faut qu'il soit parametré par le tampon comme la fonctibn Cette question sera abordée avec plus de
détails encore deux fois : lors d’élimination de la récursivité a gauche, et quand nous allons parler des attributs
et de I'analyse sémantique pilotée par la syntaxe

Construisons d’abord un autre combinateur de séquentialisation, ngeghé |l prend deux parseurs,
p etq, et la fonction constructriceonstr qui combine les deux résultats partiels, mais cette fois le second
parseuiq possede un parameétre-tampdhfaut donc prévoir aussi sa valeur initiale. Voici la construction :

seqgf constr tmp p gq =

p >>= \x -> q (constr x tmp)
seql constr tmp p q =

seqf constr tmp p g # return tmp

Attention. Le parseuseqf peut échouesegl non, mais il doit étre utilisé dans un contexte ou le parseur
n’échoue jamais. Si parsepréchoue, on retourne le tampon.
Le sérialiseuseql peut nous servir a présent a construire un itérateur correcte pour notre probléme :

Imany constr tmp0O p = seqf constr tmpO p Imany’ where
Imany’ tmp = seql constr tmp p Imany’

Cette fois la constructiomteg = Imany accum 0 digit produit un parseur correcte. Notez que
Imany’ n’échoue jamais, comme nous I'avons demandé,segt a toujours un résultat a rendre, mais
gu’il commence par lanceseqf , donc, la tentative de trouver un nombre dans un texte qui ne commence pas
par un chiffre, échoue au lieu de retourner 0. Ceci est raisonnable.

5.4.3 Sérialisation sans mémoire

L'analyse lexicale doit consommer et jeter les espaces blancs, tabulations, fins de ligne, etc. On peut éventuelle-
ment sauvegarder la position dans le flux d’entrée, mais on n’a jamais besoin d’accumuler les résultats partiels,
donc l'usage des sérialisewssqp ouseql serait inefficace et inutile. Dans un autre contexte, par exemple
si on analyse une liste qui commence par le cara§téom doit le reconnaitre (paat oulit), mais, encore
une fois, on n'a pas besoin de stocker aucune information qui le concerne, car on en sait tout.

Dans le Prélude il existe un sérialiseur univefsel) (que nous allons appelesuite), défini (par défaut)
parbind:

5.4 Composition des parseurs fonctionnels 81

p>q =p>=_->0(

ou les deux argument seront des parseurs. Nous pouvons I'utiliser tel quel, ou éventuellement définir un autre,
Iégeérement plus efficace, car plus spécifique :

Pa p >> Pa q = Pa (\inp -> concat [gq out | (_,out) <- p inp])
Ceci suffit pour définir un parseur qui nous débarasse des espaces :

space = lit ' ' # lit \n’
spaces :. CScanner
spaces = (space >> spaces) # return []

Notez la déclaration de type. Sémantiquement elle semble redondante, mais le systeme deHgs&slbe
nous le demande a cause de la restriction de monomorphisme. Sans cette déctpaties, serait trop
polymorphe. Une autre solution est de figer le type ailleurs, par exemple en définissant

empty = return [] :: CScanner
spaces = (space >> spaces) # empty

5.4.4 Encore un exemple : listes Prolog
Construisons un parseur qui consomme un flux de forme
[alpha, b, [xy,123], gg. [[v]. hhh,[]], [kim,n|p]]

et qui construit une arborescence qui représente une liste — possiblement hétérogéne — composé de mots
(chaines), entiers, ou autres listes. La liste peut se terminer par une «feuille» comnjkldanip]

ou étre vide. Ceci est une raisonnable approximation des list®sadog. Nous voulons également que le
parseur ignore les espaces. Il nous faudra définir d'abord la grammaire, et ensuite le type du résultat. (La
grammaire ci-dessous est une légére modification de la grammaire présentée dans la section (5.1.1)).

List = [Lseq Ltail 7T

Lseq = ¢ | Lseqgp

Lseqp = Item | Item ', Lseqp ou, factorisé. ..
Ltail u= o |’ Item

Item = Word | Number | List

Les structureslaskell qui représenteront les listes seront définies comme des arbres :

data Atom = N Integer | S String
data Tree = Nil | F Atom | L Tree Tree

et nous pouvons passer a la construction du parseur. Avouons cependant que I'exercice est un prétexte, grace
auquel nous voulons introduire quelques techniques un peu plus génériques de composition fonctionnelle des
parseurs. tout d’abord, il est utile de généraliser le panseury, comme nous I'avons fait avémany . Nous

allons le paramétrer par le constructeur (pas forcément I'assemblage des lisgs paet par une valeur

initiale arbitraire, compatible avec le constructeur. Ce parsmany servira de définition denany par une

simple instantiation :

rmany constr init p = seqp constr p w where
W = seqgp constr p w # return init

many p = rmany () [] p

Il est utile de pouvoir transformer sur place le résultat d’un parseur, par exemple de transformer un mot ou un
entier en une feuille de notre arbre. ceci est trivial, voici un générateur convenable, qui prend |p parses
fonction «normales$ et qui construit le parseur transformé :

transf f p = p >>= return . f

Notez I'ommission de «lambda» grace au combinatgur.
Nous voudrions éliminer les espaces, donc il est utile d’'augmenter tout parseur par un préfixe qui s’en
charge. introduisons également quelques abréviations pour les littéraux «nettoyés» :

82 Analyse syntaxique | — Techniques fonctionnelles

clr p = spaces >> p

clit ¢ = clIr (lit c)
virg = clit '’/

bar = clit |
Les itérateurs commenany oulmany demandent que la suite d’items soit contigué, sans séparateurs, mais
nous avons ici la virgule. Construisons donc un itérateur paramétré par un parseur-séparateur.

rmsep constr rest sep p = seqgp constr p w where
W = seqp constr (sep >> p) w # rest

Il a été généralisé par rapport aux précédents par un autre asépéeetu de retourner une valeur initiale dans
le cas d’échec de la boucle, il lance un parseest , qui s’en charge de procurer cette valeu€eci sera
trés utile pour le parsing des formggb] . Un autre parseur générigbeack met un parseup quelconque
«entre parenthéses» filtrées par les parseetd :

brack a p b = a >> p >>= \v-> b >> return v
\oici le reste de notre construction :

list = brack (clit T) Iseq (clit 7)
Iseq = Iseq’ # return Nil
Iseq’ = rmsep L ltail virg itm
[tail = clit ’|' >> itm # return Nil
itm = clr (list
transf (F . N) integ
transf (F . S) word)

Notre construction prouve I'utilité pratique du formalisme. Les parseurs construits de cette maniere seront
plusieurs fois plus courts que les analyseurs construits par des générat€uitsere sont pasellement plus
lents !

Attention ! La stratégie exploitée dans cette section : la combinaison de I'analyse lexicale et syntaxique dans
un module, n'est pas idéale. Parfois, vous devez d’'abord séparer les items lexicaux (et éliminer les espaces),
construire un flux de lexémes, et ensuite effectuer I'analyse syntaxique «pure». Ainsi, si on change la syntaxe
du langage sans modifier sa couche lexicale, les modifications sont plus localisées.

5.5 Exercices

Q1. Construire I'instanc&how pour la structurdree de la section (5.4.4). Les arbres doivent étre affichées
comme les listes-sources, avec crochets, virgules et éventuellement avec la barre verticale. |€5 balises
N et S doivent étre omises.

R1. instance Show Atom where
showsPrec _ (N i) = shows i
showsPrec _ (S s) = shows s

instance Show Tree where

showsPrec _ Nil = showString "[]"
showsPrec _ (L a b) = showChar T . shows a . shl b
where shl Nil = showChar T
shl (L x xs) = showChar ') . shows x . shl xs
shl (F x) = showChar ’'|' . shows x . showChar T

showsPrec _ (F a) = shows a

Q2. Réfléchir comment, au lieu de transformer une telle structure de données en chaine, ce qui ajoute des
guillemets a I'intérieur, définir une procédure d'affichage, qui trnasporte le résultat sur un fichier ex-
térieur.

R2. Jai dit : réfléchir. ..

5.5 Exercices 83

Qs.

R3.

Q4.

R4.

Lire dans le Prélude standardestsayer de comprendia classeRead.
Ah, vous n'avez pas le temps? Bien, vous allez le regretter. . .

Alors, il est souhaitable de séparer I'analyse lexicale et syntaxique? Faites le. Construisez un parseur des
listesProlog qui passe d’abord par I'étape lexicale.

La solution n'est pas immédiate, car nous devons préciser d’abord notre conceplixémhe Il faut

— de préférence — transformer les chaines (mots), les entiers, etc., ainsi que les séparateurs, les crochets,
etc. en entités spéciales, appartenant a un type a part entiére. Nous avons eu déja ce probleme, quand il
fallait convertir les atomes (mots ou nombres) en feuilles de I'arbre final. Nous allons changer aussi la
définition de 'arbre qui représente les listes hétérogénes.

La parsing reste néanmoins assez primitif. Commencgons par I'analyse lexicale :

data Lexem = | Integer | W String | Op String | Spec Char
deriving (Eq,Show)

liter ¢ = lit ¢ >> return (Spec c)
Ibrack = liter T
rbrack = liter T
barre = liter |
virgule = liter '/’

wrd = transf W word

nbr = transf | integ

oper = transf Op (many opchar)
opchar = sat

(\c -> elem c [+,-*/="<">&")

lexs = Ibrack # rbrack # virgule # barre # oper # wrd # nbr

scanner = spaces >> rmsep (}) (return []) spaces lexs

Il suffit de tester :scanner -*> Belle [Marquise, vos 123, []..." . Les balises

| , Wetc. jouent le role des spécificateursagégorie lexicalede I'item concerné. A présent ce sont
ces balises qui pilotent I'analyse syntaxique. La foncidem vérifie si un objet appartient a une
liste. Construisez cette fonction, et comparez votre solution avec celle du Pr&ouake serez peut-étre
surpris. ...

Le parseur proprement dit (analyseur et constructeur des arbres) ne subit presqu’aucune modification
importante. Nous avons changé un peu le style du codage pour plus de variété.

data PTree = Void | Id String | Nb Integer | PL PTree PTree

deriving Eq
spec ¢ = lit (Spec c) -- remplace litr
comma = spec ') -- remplace virgule

atom = item >>= \x -> case x of
(W a) -> return (Id a)
(I @) -> return (Nb a)
-> fail []

list = brack (spec) Iseq (spec)
Iseq = Iseq’ # return Void

Iseq’ = rmsep PL Itail comma itm
ltail = spec '|' >> itm # return Void
itm = list # atom

84

Analyse syntaxique | — Techniques fonctionnelles

En général, la séparation des deux phases est souhaitable, mais ajoute un peu de complication. Il faut
trainer plusieurs systemes d’identification des objets : leurs catégories lexicales et syntaxiques sépare-
ment. Finalement on risque de confondre les balises, de les oublier, etc., ce qui n’est pas dangereux, mais
pénible.

Chapitre 6

Analyse syntaxique Il — développement et
optimisation

6.1 Analyse des expressions algébriques

Les vrais langages de programmation sont relativement simples sur le plan syntaxique. Bien sr, rien n'est
trivial, mais on est loin de la généralité traitée parfois dans la théorie des automates et langages. Le plus souvent
on trouve des simples itérations, ou des structures imbriquées, et méme si le langage contient des centaines
d’'opérateurs infixes différents (le langalpen s’approche de ce terrible «idéal», et quelques programmeurs

en Haskell également aiment bien les formes infixes privées trés longues, cefffme*=>), mais ceci
n'augmente pas la complexité syntaxique du langage.

6.1.1 Premier essai, opérations Booléennes

Construisons un parseur pour la grammaire qui exprime la composition des opérations logiques. Les objets
atomiques dans le flux d’entrée seront des caractéres alphabétiques. Nous savons comment généraliser ceci.

Atome = F | T|A]|B]C etc.

Expr = Conj | Conj OR Expr

Conj := Prim | Prim AND Conj

Prim = (NOT | ¢) (Atome | '(Expr 7))
NOT .= '~

AND := &

OR =7

Les opérations «et» et «ou» logiques sont associatives et symétriques (commutatives), donc nous nous sommes
permis de définir leur composition en utilisant I'associativité a droite. Notons qu’une optimisation a été ap-
portée ci-dessus : la factorisation de la négation.

Comme d’habitude, avant de construire le parseur il faut préciser quel est le résultat de I'analyse. Intro-
duisons donc une structure arborescente qui représente des expressions Booléennes :

data Connect = AND | OR
data Arbool = At Char | Cn Connect Arbool Arbool | Ng Arbool

Ceci est un peu différent par rapport aux lisBslog, ici pas seulement les feuilles, mais les noeuds intermé-
diaires stockent aussi une information concrete : le connecteur «et» ou «ou». Labatisatifie 'atome, et
Ng — la négation.

ou = clit |
et = clit '&
non = clit '~
lpar = clit '(
rpar = clit 'y

atomic = transf At (clr letter)

85

86 Analyse syntaxique Il — développement et optimisation

bexpr = conj >>=
\u -> (ou >> bexpr >>= \v -> return (Cn OR u Vv)) # return u

conj = prim >>=
\u -> (et >> conj >>= \v -> return (Cn AND u Vv)) # return u

prim = (non >> prim’ >>= return . Ng) # prim’
prim’ = brack Ipar bexpr rpar # atomic

et nous pouvons demander I'analyse de, disa&gh|t|~(x|a&b))|c&~f&(a|p)

Notons l'usage des alternatives asymétriques. D’abord on essaie la clause la plus longue, et si elle échoue,
on reste avec le segment initial. La méme observation s’applique a la définition de la conjonction. Le parseur
prim’ est toujours positif, gbrim peut contenir optionnellement la négation.

(Observons également un certain maniérisme notationnel : au lieu d’écrire de maniéere pluglisibleeturn (Ng Xx)
nous avons abrégé cela aeturn . Ng , ce qui n'est pas tellement clair pour les débutants. Mais il faut
s’habituer a I'usage des combinateurs.)

Passons a 'optimisation et aux généralisations éventuelles. En fait, une optimisation (factorisation) a déja
été effectuée. Une solution un peu plus courte, mais moins efficace serait :

bexpr = conj >>= \u -> ou >> bexpr >>= \v -> return (Cn OR u V)
conj

ce qui correspond mieux a la grammaire d’'origine, mais qui -esbxéchoue, répéte I'application du parseur
conj .
On peut observer encore :

e La négation optionnelle existe aussi en arithmétique, et en général un parseur qui optionnellement fait
une chose avant un autre parseur serait d'utilité générale.

e bexpr etconj ontla méme structure compositionnelle, qui est d’ailleurs presque la méme qu’en al-
gebre numérique. Comment en extraire tout comportement générique?

La préfixation optionnelle est simple, par exemple :

option constr opt p =
(opt >>= \o -> p >>= \x -> return (constr 0 X)) # p

prim = option (_ z -> Ng z) non prim’

Le méta-parseusption prend comme arguments le préfixe, le parseur principal, et une fonction de compo-
sition des résultats (un opérateur binaire).

Les observations restantes se réduisent a une simple constatation : les deuxbiExpreset conj se
réduisent & l'itération associative a droite des composantes séparéees par les opérateurs. Notre précedent parseur
— itérateur avec séparateunsnsep ne convient plus, car le séparateur ne peut étre plus ignoré. Voici donc un
générateur des itérations opérationnelles a droite, et leur usage :

iterr cnstr3 op p = w where

w = p >>=f

fx=(op >>=\ly ->w >=\z -> return (cnstr3 y x z))
return X

bexpr = iterr _ x y -> Cn OR x y) ou conj
conj = iterr (_ x y -> Cn AND x y) et prim

La construction du parseiterr est un peu trop générale pour nos besoins : I'opérateur lui-méme (I'argument
op) peut apporter quelque chose de spécifique a la construction de I'arbre. Ici, si 'opératenunsestous
savonsa priori qu'il faut utiliser OR etc, donc le premier argument destr3 n’est pas utilisé.

6.1 Analyse des expressions algébriques 87

6.1.2 Arithmétique et problemes avec la récursivité a gauche

Dans cette section nous nous occuperons (en outre) mertaalisation de Greiback la transformation des
regles récursives a gauche, en régles récursives a dvoitémportance des expressions arithmétiques dans la
programmation courante, la construction du parseur dans cette section doit étre bien maitrisée

Nous voulons pouvoir analyser les expressions arithmétiques classiques. Eliminons la puissance, laissons
seulement les quatre opérations de base, les appels fonctionnels desigéxre et les parenthéses. La
grammaire réduite aura la forme (déja discutée)

Expr = Trm | Expr OpAdd Trm
OpAdd = + | -

Trm = Fctr | Trm OpMul Fctr
OpMul == * |/

Fctr = Atome | Tfunc | '(Aexpr ')
Atome := Id | Nombre

Tfunc == Id ' Seq ')

Seq ©= ¢ | ESeq

ESeq := Expr (¢ | , ESeq)

Elle est suffisamment riche, et elle contient des éléments déja connus, comme les séquences itératives asso-
ciatives a droite. U\tome sera une chaine de caractéres, numérique ou alphanumeérique. Nous permettrons
I'occurrence d’espaces dans la chaine d’entrée. Les espaces pourront entourer les opérateurs ou les virgules,
et étre placées derriére la parenthése ouvrante ou devant la parenthése fermante. lls ne doivent pas couper les
mots (ou nombres), et ne doivent pas séparer le nom de la fonction de la parenthése ouvrante.

Ici nous avons cependant aussi les regles associatives a gauche, et ceci est une bombe a retardement. Toute
application de ce parseur commence par I'appel de lui méme, et la lecture du flux d’entrée ne progresse pas. Les
regles récursives a gauche sont trés dangereuses, et le bouclage récursif est leur conséquence directe indépen-
damment de la construction du parseur, fonctionnel ou pas. Ce probléme tousles parseurs descendants.

La «solution» ci-dessous n’est pas seulement inefficace, elle est tout simplement mortelle :

aexpr = aexpr >>= \u -> op >> trm >>= \v -> return (plus u v)
trm

La solution «officielle» du dilemme consiste a modifier la grammaire par la technique qui s’appeltenial-
isation de Greibach

Si la grammaire contient une régle suivante

S =S a1 |S ay | ... S a, | B1 | | Bm

ol « et 3 sont des séquences quelconques, la normalisation consiste a remplacer cette production par
S = /S| .| Bm S’

S = oS | aS | .. a,S" | ¢

Par exemple, au lieu de la définition du terme additif :

Trm = Fctr | Trm OpMul Fctr

nous aurons

Trm = Fctr TrSeq

TrSeq ::= OpMul Fctr TrSeq | 10)

Une telle transformation peut étre faite automatiquement par un processus de pré-traitement de grammaire.
Parfois une normalisation ne suffit pas, car la récursivité a gauche peut étre indirecte. Il faut alors itérer le
schéma ci-dessus pour tous les non-terminaux «dangereux».

Notons encore une fois que la nécessité d’éliminer les regles récursives gauches est caractéristique aux
parseurglescendantd_es analyseurascendantsp. ex. les automates produits pé@cc, qui construisent une
arborescence syntaxique a partir des feuilles, peuvent gérer ce probléme, car ils ne sont pas récursifs.

La regle transformée nous rappelle quelque chose : c’est un cas déja traité, une itération linéaire. La seule
différence par rapport au cas des opérateurs associatifs a droite s’exprime par une réduction différente :

((x1 @ a2) Dx3) -+ Dy,

88 Analyse syntaxique Il — développement et optimisation

(Ceci doit rappeler la différence entre les fonctionneitgdr etfoldl ...).
Pour ne pas répéter le schéma Booléen, au lieu d’assembler I'arbre syntaxique «physique», notre parseur
construira directement le code postfixe adapté a une machine virtuelle a pile (trés simplifiée !), et I'arbre sera

purement conceptuel.
Commencons par le définition dinde et d’une chaine-exemple.

type Code = [Codeltem]
data Codeltem = | Int | S String | O String
ch6 = "alpha *(b-55/beta) - c*d-(165-(y - zzz))"

Le résultat du parsing doit étre la liste dont la structure est
[alpha,b,55,beta,/,-,*,c,d,*,-,165,y,222,-,-,-]

(Pour linstant nous ne discutons pas les expressions sous forme des appels fonctionnels (procéduraux). Ceci
viendra un peu plus tard.) Commencons par les parseurs atomiques :

tlit ¢ = transf (\x-> O [x]) (clit c)

add = tlit '+
sub = tlit -
mul = tlit ™~
dyv = tlit '/
opAdd = add # sub
opMul = mul # dyv

entier = transf (\x -> [I x]) (cIr integ)
ident = transf (\x -> [S X]) (clr word)
atm = ident # entier

(Le nomdiv est prédéfini eiHaskell.) Pour assembler le code postfixe a partir de deux opérandes et un
opérateur, il suffit d’utiliser le constructeur suivant :

assembl op x y = x ++ y ++ [op]

(ce qui est horriblement inefficace et fait mal aux dents...), mais le vrai cheval de batailleigsateur a
gaucheiterl , dont la forme ressemble un peutérr , mais qui réduit la chaine difféeremment, comme
Imany . Observons que le parseur interne, qui itére I'argurpesst un parseur parametré, une fonction d'un
argumenfui est le tampon. Voici I'itérateur et le reste de la construction :

iterl cnstr3 op p = p >>= pseq where
pseq tmp = (op >>=\y -> p >>= \z -> pseq (cnstr3 y tmp z))
return tmp

aexpr = iterl assembl opAdd trm
trm = iterl assembl opMul fctr
fctr = brack Ipar aexpr rpar # atm

La construction d’'un terme fonctionnel (appel gelfife, y + z))) a été différée, et se trouve dans la section des
exercices, car il faut que le lecteur travaille un peu aussi. (C'était une blague. Mais est-elle vraiment drole?...)

Pourquoi ce tampon? Regardons la normalisation de Greibach encore une fois, sous un aspect graphique.
Prenons un terme compos#étb*c . Sila production est récursive a gauche, il sera analysé cdatigc
ce qui correspond a I'arbre dessiné sur la Fig. (6.1). Les productions utilisées par le parseur sont les suivantes

Trm = Fctr TrSeq
TrSeq ::= OpMul Fctr TrSeq | 10)

(ou il faut noter le fait que la séquenéetr TrSeq dans la définition d&rSeq n’a pas été optimisée
aTrm.) L'Expression, le Terme, etc. sont des non-terminaux qui possedent une valeur intuitive et visuelle
importante : ils constituent des nceuds de I'arbre du parsing complet, ils forment des sous-arbres.

Or, TrSeq n’est pasun sous-arbre. La portée de ce nonterminal est la boite pointillée : tout sauf le premier
item. C’est une structure de données «incompléte». On peut considérer qu'une telle structurebgst un
fonctionnelqui représente un sous-arbre aprés sa complétiosgracontexte gauche Le parsing deTrm

6.2 Opérateurs de précédence et associativité quelconques 89

Fig. 6.1: Terme composite, associatif a gauche

lance le parseufrctr , dont la valeur (disons X, ici «a») sera justement le contexte gauche pour I'appel de
TrSeq suivant.

TrSeq lance de nouveau son sous-pardectr qui récupere le premier item restant — ibb« La réduc-
tion a - b fournit a présent le contexte gauche a un appel ultérieur. Comparez avec les exercices, notamment
avec la reconstruction d’'un nombre entier a partir des chiffres.

6.1.3 Quelques optimisations

Les combinateurs sont simples et trés souples, mais la transposition de la structure statique d'une grammaire
vers le dynamisme des objets fonctionnels qui se cachent a I'intérieur des parseurs, peut générer des algorithmes
peu efficaces, avec une sur-consommation de mémoire, et gaspillage de temps. Le retour de réponses multiples
et le backtrackingsont des sources évidentes du gaspillage. L'usage des outils cBREMIERdécrit dans

une section ultérieure est souhaitable. Cependant :

Credoreligieux no. 13 : Optimisation d’'un compilateur commence par I'optimisation de la grammaire.

Il faut donc au moingactoriserles alternatives, et éviter tout non-déterminisme inutile. Sachant que le vrai
travail d'un parseur n’est pas I'analyse pure : acceptation ou rejet du texte, mais la construction du code inter-
médiaire, il faut connaitre des techniques de programmation en général : optimiser les appels rédtesifs,
la concaténation des listes en cascagett. Si possible : réduire directement, pendant la compilation, des
expressions constantes. Cependant ceci est I'optimisation de I'application compilée, et non pas du compilateur.
Ce sujet sera abordé lors de la discussion des attributs.

Il existe plusieurs autres stratégies d’optimisation, qui dépendent trés fort du langage d’'implantation. En
particulier, les langages paresseux et les langages stricts se comportent difféeremment, et la programmation
paresseuse favorise I'usage de la récursivité non-terminale, si I'appel récursif se trouve a I'intérieur d'un con-
structeur de données qui seront consommeées incrémentalement. Ceci n’est pas restreint aux probléemes de
compilation. Pour les langages strictes une telle approche peut déborder la pile, et il faut I'éviter.

6.2 Opérateurs de précédence et associativité quelconques

Cette section constitue une introduction aux grammaires d'opérateurs, et elle décrit une stratégie du parsing
ascendante (mais attachée a nos parseurs descendants standard). Nous voulons implémenter le parsing des
expressions un peu plus compliquées que celles vues jusqu’a présent. Rappelons, que si les opérateurs infixes
qui figurent dans une expression sont soit tous associatifs a gauche, soit a droite, on peut construire les parseurs
correspondants par les itérateurs — a gauche ou a droite, comme ci-dessous :

iterl cnstr3 opp p = shift where

shift = p >>= pseq

pseq ctx = (opp >>= \op -> p >>= pseq . (cnstr3 op ctx))
return ctx

iterr cnstr3 opp p = shift where

shift = p >>= pseq

pseq ctx = (opp >>= \op -> shift >>= return . (cnstr3 op ctx))
return ctx

90 Analyse syntaxique Il — développement et optimisation

oucnstr3 op x y construit un noeud dans l'arbre syntaxiqopp est le parseur d’'un opérateur appar-
tenant a la catégorie correspondant@, est le parseur d’'un élément de niveau inférieur (qui peut naturellement
contenir I'appel aux itérateurs, donc peutmélanger les opérateurs de deux associativités dans la méme ex-
pression, mais pas au méme niveau).

Mais le probléme est le suivant : comment effectuer le parsing, si le langage permet la définition des
opérateurs de précédence et associativité quelconque, qui peuvent figurer ensemble dans une expression? La
grammaire n’est pas close. En principe nous pouvons clore le parseur en limitant le nombre de précédences
différentes a, disons, 10 (comme ldaskell. Ainsi il est possible de faire une grammaire non pas a deux trois
niveaux, comme notre langage algébrique : expressions — termes — facteurs, mais plus profonde, cependant
ceci devient vite illisible.

Les techniques ascendantes générales ont été mentionnées, et elles méritent une discussion a part, voir
section (8). Une technique ascendante facile s’appuie sur les grammaires dites de précédence, ou grammaires
d’'opérateurs. (En anglaisaperator precedence grammarklles n’ont rien d’inhabituel, et plusieurs gram-
maires bien connues peuvent étre réduites a la forme opérationnelle. Formellement, une grammaire de précé-
dence se caractérise par deux exigences :

e il n'y a pas de production dont la partie droite est la chaine widet

e aucune production ne contient deux non-terminaux adjacents. (Ceci est une affirmation forte qui risque
d’étre mal comprise ; il s'agit de prevenir la juxtaposition de deux données, elles doivent étre séparées
par des opérateurs qui sont considécésomme des terminaux.)

Ni grammaire pour les séquences

Seq = ¢ | Item Seq
ni une description simplifiée des expression algébriques

E EOp E|'C E’) | Atm

Op =+ |-]*[|1/
ne sont pas des grammaires de précédence. La farmdp Econtient méme trois non-terminaux adjacents.
Mais on peut la transformer en forme

E :=E+E|E-E|E*E|E/E]|’'C E’) | Atm
Ceci est contraire a la philosophie du parsing dirigé par la syntaxe, c’est a dire a la correspondance simple et
immédiate entre I'analyseur et la grammaire. Lors de la conception du langage toute simplification et factori-
sation de la grammaire sont indispensablegaut extraire toute généricité de la grammaire, sinon les regles
deviennent longues et illisibles. Le parseur doit également étre compact, sinon son déboguage risque d'étre

pénible, et de plus, la construction d’un analyseur que vérifie dasgiich une vingtaine de cas particuliers
qui structurellement sont presque des jumeaux, est trés décourageant.

En décrivant la stratégie du parsing par les regles de précédence nous pouvons presque «oublier» les produc-
tions syntaxiques. Il n’y a plus de non-termifia{pressiomui appelldermequi appelleFacteur, etc., et ainsi
toutes les multiplications a l'intérieur d’'un terme additif sont réduites avant de toucher a un opérateur addi-
tif. Ici nous dirons simplement qu’un opérateur additif a une précédence plus faible que celle d’'un opérateur
multiplicatif.

Plus concretement : introduisons tre@ations de précédencexistantes entreertainespaires d’objets
terminaux, qui jouent le role d’opérateurs dans le langage > et=. Sia < b on dit quea a la précédence
plus faible que celle db. Par exemple} < x, ou/ = —. Attention, ces relations en principe peuvent ne pas
respecter pas des propriétés de relations d’'ordre connues en algébre. En particulier, il est possible d’avoir dans
un langage: < b eta = b en méme temps. Il n'est pas sOr qué- a.

Si dans le texte analysé le parseur découvre une séquefitelle, qu'entre les terminaux et 5 aucune
relation de précedence n’a pas été définie, ceci est une erreur, la combinaison de ces deux terminaux estillégale.
Exemple : deux nombres qui se suivent dans une expressions, ou deux mots-clés en dehors des structures de
contréle bien formées. En général le tableau des précédences est assez creux. Nous proposons alors une
simplification de la stratégie de précédences générale.

L'ensemble d'objets terminaux d’un langage se divise en deux sous-catégorie®niegeet lesopérateurs
On peut considérer qu'une donnée est un opérateur trés spécifique, mais c’est inutile. Une donnée est un objet
qui ne figure pas dans la liste des opérateurs

6.2 Opérateurs de précédence et associativité quelconques 91

Un opérateur dont la précédence relative par rapport a un autre est plus haute, est «plus fort», et attrappe en
priorité I'argument entre les deux.
La stratégie du parsing opérationnel peut se réduire aux regles suivantes.

e On définit deux piles, la pile des données, et la pile des opérateurs.

¢ Initialement la pile des données est vide, et la pile des opérateurs contient un opérateur «bidon» (mar-
queur) de tres faible précédence.

e En consommant le flot on trouve les données et les opérateurs. Une donnée est toujours empilée. Un
opérateur est comparée avec le dernier opérateur empilé, et si ce dernier est plus faible, le nouvel opéra-
teur est empilé. Sile nouveau est pluis fort, 'opérateur déja empilé est réduit, avec ses argument, et un
noeud est formé.

e Aprés chaque réduction on continue avec la réduction (peut étre il faut réduire plusieurs opérateurs
empilés).

e Quand I'expression se termine, on dépile le reste.

Commencgons par la définition de nos arborescences syntaxiques, mais aussi d’'un type qui définit I'opérateur :
sa précédence, et associativité : gauche, droite ou aucune. Construisons aussi une lise d’opérateurs.

data Assoc = Lft | Rgt | Non deriving (Eq,Ord)
termop = ("$$$$",0,Non) -- Opérateur bidon, faible

infops =[(""",8,Rgt),("*",7,Lft),("/",7,Lft),("quot",7,Lft),
("+",6,Lft),("-",6,Lft),("++",5,Rqt),
("<",4,Non),(">",4,Non),("<=",4,Non),("==",4,Non),
("elem",4,Non), termop]

Rappelons gédaskell permet 'usage d’une fonction binaire quelconque comme I'opérateur, a condition de
mettre son nom entre apostrophes inverb@sKquotes Donc, un opérateur est un tuple qui contient le nom,
un attribut entier, et une propriété de tyfissoc .

La fonction qui trouve un opérateur dans la listtops (ou échoue) est une simple boucle :

findop x (p@(y.a,b):q) | x==y = Just p
| otherwise = findop x ¢
findop x [] = Nothing

mais nous pouvons envisager une stratégie plus efficace. En fait, on peut mettre les opérateurs dans une table
des symboles globaux — hachée ou arborescente.
Voici la définition des arbres :

data Gentree = None | Lf String | Nod String Gentree Gentree
deriving Eq

instance Show Gentree where
showsPrec _ None = showString "()"
showsPrec _ (Nod op a b) =
showChar '(" . shows op . shows a . shows b . showChar)

showsPrec _ (Lf a) = shows a

constrnod (op,_,) X y = Nod op X y

(La derniére fonction est une abréviation). Pour simplicité, les feuilles sont des chaines, laissons au lecteur de
rétablir toute la structure algébrique déja discutée, avec des nombres, variables, etc. Le parseur qui trouve un
opérateur est :

infixop = spaces >> (many opchar) >>= \o ->
let a = findop o infops
in case a of
Nothing -> fail "™
Just oper -> return oper

92 Analyse syntaxique Il — développement et optimisation

Voici la définition d’'un parseur primitif, atomique, et d'un objet «primaire» — atomique ou parenthésé. La
généralisation aux cas plus sérieux est triviale, et en tout cas ceci a déja été discuté.

Ajoutons a cela la définition de la fonction qui compare les précédences, et qui répond a la question si le
premier argument est plus fort que le second.

atomp = spaces >> (many letter)
primp = spaces >> (brack Ipar opexpr rpar # transf Lf atomp)

domin (_,pl,asl) (_,pr,asr) -- nom n’a pas d'importance
| pl > pr = True
| pl < pr = False

| pl == pr = (asl==Lft)
Finalement, le parseur principal. Le lecteur doit lire soigneusement sa définition et essayer de le comprendre.

opexpr = shift [termop] [] where
shift opstack dstack = primp >>= \x -> pseq opstack (x:dstack)
pseq opstack dstack =
(infixop >>= reduce opstack dstack) # e_reduce opstack dstack

reduce ops@(lastop:rops) dstack op

| domin lastop op = reduce rops (cst lastop dstack) op

| otherwise = w (op:ops) dstack
e _reduce (lastop:rops) dstack@(top:_)

| lastop == termop = return top

| otherwise = e reduce rops (cst lastop dstack)
cst op (x:y:xrdat) = (constrnod op y x) : rdat

Les précédences sont des «forces d’attraction» exercées par I'opérateur a sa gauche et a droite, selon I'associativité.
D’autres convention que celle adoptée ci-dessus existent, par exemple, au lieu de préciser uAsdtrtbut
spécifique, nous pouvons affecter a chaque opérateur deux précédences : gauche et droite. Si la précédence
droite est plus grande que la gauche, cela implique I'associatigiééiéhe Le parseur est itératif.

Latechnique peut étre généralisé a I'extréme : pratiquement toute la structure syntaxique peut étre représen-
tée par les opérateurs. , then etc. peuvent étre des opérateurs, et les parenthéses aussi ! Ceci demande des
techniques décisionnelles assez compliquées. Par exemple, une parenthése ouvrante «vue de gauche» a une
précédence si forte, qu’elle est toujours empilée. Mais elle force la réductitmusles opérateurs a droite,
jusqu’a la parenthése fermante (ou les deux parenthéses s’annulent réciproquement, et ne généerent aucun code).
En général les techniques opérationnelles seules sont difficiles & déboguer, et elles sont utilisées éventuellement
en combinaison avec des techniques plus orientées vers une grammaire fixe. Elles doivent étre complétées par
les procédures de vérification de Iégalité des constructions analysées. En général il ne faut pas s’appuyer trop
si le langage est complexe. Il existe un algorithme qui lit une grammaire et qui en déduit les précédences des
opérateurs, mais cette stratégie est rarement exploitée. Répétons : I'application la plus fréquente est la pos-
sibilité d’élargir la syntaxe des langages existants, s'ils prévoyaient les déclarations des opérateurs et de leur
précédences.

6.3 Exercices

Q1. Compléter le parseur des expressions arithmétiques par le module qui reconnait les appels fonctionnels :
fun(el,e2,...,en)

R1. La premiere question qui doit étre traitée est : quel est le résultat fourni par ce parseur? Nous devons
étendre notre code-cible (arborescent ou postfixe) par un opérateur d'«appel» procédural. La partie
analytique est si simple que nous la laissons au lecteur : identificateur et une liste d’arguments entre
parentheses. Rien de nouveau.

Q2. Comment optimiser la création du code postfixe par le parseur des expressions arithmétiques en évitant
la création de nombreuses listes éphémeéres recopiées plusieurs {gis)par

R2. Ce probleme a déja été discuté. Sion construit une fonction d’aplatissement qui parcourt un arbre binaire
et qui concaténe le résultat de I'aplatissement avec un deuxieme argument «tampon», la récursivité en

6.3 Exercices 93

Q3.

R3.

cascade se transforme en linéaire(4et) disparait. Mais la réalisation de cet algorithmest pas
triviale. Ce «tampon» (la suite du code) doit étre présent tarses parseurs.

Construire un scanneur de mots (alors un parseur vraimmegsimple), qui ignore (mais pas totalement !)

les espaces et les fins de ligne, et qui retourne les mots accompagnépqsatida: le numéro de ligne

et le numéro de colonne du premier caractére du mot. Ceci est indispensable pour le déboguage du
programme.

On peut reformuler le scanneur des mots en lui ajoutant un compteur spécial, incrémenté chaque fois
guand un caractére est consommeé. La construction explicite n’est pas compliqguée, mais assez pénible :
on compte toujours en consommant les lettres, mais on n'attache pas le compteur a chaque lettre du mot,
seulement a la premiére.

La stratégie la plus universelle consiste a modifier le type décrivant le flux d’entrée : au lieu d’avoir une
chaine, l'objet de typ&tring , nous définissons

type Flux = Fl (Int,Int) String

ou les deux nombres entiers dénotent la ligne et la colonne courantes. Le parseur primitif que nous avons
appelétem aura la forme :

item = Pa (\(FI (y,x) inp) -> case inp of
0 >0
(x:xxq) -> [(x, case x of
\n” > Fl (y+1,0) xq
U -> Fl (y,x+8) X
> Fl (yx+1) xq)])

Bien sir, le tabulateur peut étre interprété difféeremment, et nous pouvons ajouter quelques caractéres de
contréle, y compris le «backspace», mais c’est inutile.

On peut faire beaucoup de choses concernant la position, a conditidougaeonsommation du flux
passe par ce parseur. Voici un parseur-observateur qui ne consomme pas le flux, mais qui rapporte la
position actuelle.

posit = Pa (\imp@(Fl pos str) -> [(pos,imp)])

Si maintenant un parseur quelconque, par exemyued consomme le flux et construit une chaine
spécifique, et s'il utilise le protocole conforme avec le pargeon , il nous suffit de déclarer

wordPos = posit >>= \pos -> — juste avant le mot
word >>= \wrd -> return (At pos wrd)

Nous ajoutons ainsi I'information positionnelle la ot nous voulons.

Chapitre 7

Informations complémentaires sur les
parseurs descendants

7.1 Diagrammes syntaxiques

Les productions BNF ne constituent pas le seul moyen de représenter les structures syntaxiques dans un lan-
gage. Les structures particulierement simples, itératives, s’expriment mieux par les expressions réguliéres ou
par les automates. Ces derniers, visualisés par ses graphes de transition, offrent une technique particulierement
intuitive et élégante, qui facilite la compréhension des régles par un lecteur humain. Le codage d'un automate
est une autre chose, mais en général, le dicton folklorique : «une image vaut 1000 mots» mérite une attention.

Quand le langagPascal est né, sa premiere définition syntaxique popularisée par son créateur Niclaus
Wirth, allait a I'encontre des archetypes établis par le langsgel 60. Au lieu de décrire tout en BNF, ce
qui était toujours possible, les auteurs ont préféré de décrire tout a travers des graphes, ou des diagrammes
de transition. Chaque symbole terminal ou non-terminal est un sommet du graphe syntaxique, I'enchainement
séquentiel entre deux symboles devient un arc, et l'alternative est la bifurcation d’un arc (plusieurs successeurs).
Les itérations (productions récursives a droite) deviennent des boucles.

Les diagrammes apportent un peu d’esthétisme graphique au domaine de la compilation et facilitent la
compréhension des structure syntaxiques, et nous allons montrer quelques uns, mais ils ne sont pas directement
utiles pour un travail sérieux comme un outil de codage.

La Fig. (7.1) montre le diagramme pour le signe optionnel :

signe = o | + 1 -

~®—
O

Fig. 7.1: Signe optionnel

Et voici, sur la Fig. (7.2) la construction du graphe qui représente une expression algébrique, d’abord récursive
a gauche, et ensuite normalisée selon 'algorithme de Greibach, et optimisé.

Fig. (7.3) montre le résultat de la normalisation de Greibach. Il a fallu introduire un nouveau non-terminal
trmSeq . Fig. (7.4) présente les optimisations de la nouvelle syntaxe.

7.2 Optimisation classique des parseurs descendants

94

7.2 Optimisation classique des parseurs descendants 95

expr: J-, terme ', >

expr—(&)—{Terme]

Fig. 7.2: Expressionterme | expr + terme

expr: terme trmSeq}—

trmSeq: — (+) terme trmSeq >

Fig. 7.3: Représentation graphique de la normalisation de Greibach

Dans les sections suivantes nous aborderons encore les techniques ascendantes LR. Mais la technique de-
scendante, récursive, reste toujours la plus pédagogique et mieux structurée. Elle est irremplagable pour la
construction de petits parseurs pour des petits langages bien formalisés.

Mais la stratégie descendante est par nature non-déterministe, ce qui implique une certaine inefficacité,
si le langage compilé est déterministe, et le non-déterminisme de I'analyse reflete uniqguement le fait que
l'information sur la structure phrasale ne soit pas transmise au parseur suffisamment t6t. Répétons : le non-
déterminisme signifie simplement que le parseur n’est pas suffisamment prévoyant. L'usage de la pile récursive
est plus intense que nécessaire.

Le backtrackingéventuel doit étre découvert trés tét, et les parseurs présentés dans cette partie de notes
sont parfaitement utilisables dans les compilateurs sérieux. Il faut naturellement préparer manuellement ou
automatiqguement la grammaire — éliminer la récursivité a gauche, factoriser le préfixe gauche commun, etc.
Dans presque tous les cas intéressants le non-déterminisme est éliminé (le parseupdmliiEift apres la
reconnaissance du premier item sur le flux d’entrée.

Encore une fois : si le parseur réduit la chaine par la produ&iars A | B , il essayeA, et siA échoue,
alors lebacktrackingrelance la variant®. Si I'échec deA se produit aprés la consommation de plusieurs

expr: terme + terme

expr: ————fterme] >

Fig. 7.4: Optimisations du diagramme : expr

96 Informations complémentaires sur les parseurs descendants

lexemes, et création de plusieurs morceaux d’'arbre syntaxique, la stratégie non-déterministe est visiblement
inefficace.

Cependant, si la factorisation a été faite correctement, si I'alternative plus longue précéde la plus courte,
etc., souvent la décision de basculer vers I'autre alternative est basée sur un simple test, ou il n’y a aucune
différence entre I'alternativé ou B, et I'expression if test(A) then A else B . (Toute alternative
devient exclusive).

La gestion du non-déterminisme dans un langage fonctionnel est commode. On peut «consommer» la téte du
flux d’entrée, mais rendre le méme flux intacte & un autre module du parseur. Un parseuwt@staui peut

étre combiné avec autres objets de la méme catégorie (mais pas forcément du méme type ; il suffit de regarder
les exemples).

Les techniques de programmation impérative sont plus brutales. Il n’y a pas de flux d’entrée, mais une
procédure de lecture qui consomme une partie du buffer d’entrée, et cette action est extérieure par rapport au
programme, elle constitue un effet de bord. Il est difficile de restaurer le contexte précédent. On a élaboré
alors la stratégie dmok-ahead: la lecture de I'item suivant passe par un double tampon, le parseur a la
possibilité de regarder un peu en avant (d’habitude un item suffit), et de reconnaitre un objet sans le consommer.
Ainsi I'ambiguité, par exemple I'alternativeun facteur, ou un produit de facteucenstitue un terme additif
arithmétique — est réduite quand le parseur voit que I'item aprés le premier facteur est/n’est pas un opérateur
multiplicatif. Mais il n’a pas le droit de le consommer s'il s’agit d'un opérateur additif, car le parseur qui
construit la somme de termes en aura besoin. La technique classique d’optimisation est basée sur les éléments
decrits ci-dessous.

7.2.1 Elimination de la récursivité

En fait, elle ne peut étre vraiment éliminée, les productemgrécursives. Il s’agit simplement de construir le
parseur sous forme d’une procédure non-récursive, qui manipule explicitement toutes les piles indispensables
pour sauvegarder les données et le fil de contréle.

L'élimination de l'usage de la pile systéme en faveur de nos piles privées est une partie mineure de la
stratégie. Ce qui nous intéresse est I'invention d’'un «oracle» qui nous dira quelle production alternative ap-
pliquer, comment rendre le parsearédictif? Il nous faudra introduire utableau de pilotagelu parseur, qui
spécifie la production «éligible» pour le développement d’'un non-terminal.

Pour cela on introduit deux tableaux accessoires : PREMIER et SUIVANT, qui déterminent le tableau de
pilotage.

Un parseur descendant prédictif contient un tableau bi-dimensidiifdl a], ou A est un non-terminal, et
a dénote un terminal (ou un marqueur de fin spécial, souvent noté comme $). Il posséde également une pile
capable de stocker les symboles de la grammaire. Au début on y place le marqueur $, on on le couvre avec le
symbole de départ de la grammaire.

Le programme du parseur regatiie- le symbole au sommet de la pile eet le lexéme d’entrée. L'action
du parseur est alors determinée :

e SiX =a =4, alors le parseur s’arréte.

e Si X = q, mais il est différent de $, alors le parseur a reconnu un symbole litt&rast dépilé et la
lecture du flux d’entrée progresse d’'un item.

e Si X estun non-terminal, le programme consulféX, a]. Ceci peut étre unproduction ou la signal-
isation d’erreur. Si la production a la forme ::= a3, X est dépilé, et il est remplacé pdn. Une
procédure sémantique construit le résultat du parsing.

Bien sdr, si le programme trouve un élément du tableau de pilotage qui correspond a une configuration illé-
gale, 'analyse s’arréte et le parseur essaie de se calmer en cherchant un terminateur ou un autre terminal de
synchronisation. Le tableau SUIVANT peut étre utile dans ce contexte.

7.2.2 Tableaux PREMIER et SUIVANT
(Dans la littérature anglophone ils s’appellent : FIRST et FOLLOW.)

7.3 Exercices 97

Pour toute chaine de terminaux et non-terminaugui aprés son développement se transformera en
chaine terminale, définissons une fonction PREMIERét cette fonction définit 'ensemble de tous les
terminaux qui peuvent se trouver au début de la chaine réduite.

Il est évident que le premier symbole de la chairtétermine cet ensemble, alors il suffit de construire un
tableauPREMIER(X), ou X est un symbole quelconque de la grammaire. Pour un symbole terfinal
PREMIER(P) se réduit a f}. Si une production vide pouk existe, il faut ajoutery a PREMIER(X).

Nous avons menti. ST peut se réduire a la chaine vide, alors PREMIER() dépend de PREMIERY),
et n’est pas déterminé par seXil Il faut continuer la construction.

Pour un non-terminak on trouve PREMIERK) en regardant la productio — Y1Ys...Y, eten
calculant PREMIER pour la chaine a droite.

Pour chaque non-terminal on construit un autre tableau, SUIVANA), qui contient 'ensemble de
tous les terminaux qui peuvent apparaitre a droiteld#ans une phrase, c’est a dire peuvent suivre le
développement dél. S'il existe une dérivation (finale) S = «Aag, ol a est un terminal, alorg
appartient a SUIVANTA).

La construction de SUIVANT procéde récursivement, en réduisant les productions. Si dans la production
ci-dessus n’est pas un terminal, on récupére son PREMIER.

Si A figure dans la productiod = aB, tout dans SUIVANTA) se retrouvera dans SUIVANE). Les
regles sont vraiment simples.

Voici la construction du tableau de pilotagé. Il faut exécuter les opérations suivantes pour toute production
A = «delagrammaire :

e Pour chaque terminal dans PREMIERY), ajouterA ::= «aaMIA,al.

e Sila chaine vide) se trouve dans PREMIERY, il faut ajouter cette productioA := « aM|[A,b],
pour tout terminab dans SUIVANT(A).

Faire la méme chose pour le marqueur $ — s'il se trouve dans SUIVANT(A), il faut ajouter la production
courante dans/[A4, §].

Tout élément du tableau qui n’est pas défini, signale I'erreur du parsing.
7.3 EXxercices

Q1. Essayer de construire un tableau de précédences permettant de structurer les expressions conditionnelles
if ... then ... else ...en considérant tous les mots-clé comme des opérateurs.

Cit D
Ghen)

* Celse>

Fig. 7.5: Arbre d’'une expression conditionnelle

98 Informations complémentaires sur les parseurs descendants

R1. Cest facile, sachant que toutes les expressions algébriques, etc. doivent étre liées par des opérateurs
«plus forts». Le moif est un opérateur préfixe, et les autres sont infixes. Mais on peut former des arbres
alternatifs, p. ex. celui sur la Fig. (7.5), et l'autre, atken et elseéchangés. Ce qui compte c’est la
génération d’'un code correcte, mais aussi la possibilité de reconnaitre des erreurs syntaxiques de tout
genre. Analysez cette question.

Q2. Construire les tableaux PREMIER et SUIVANT pour une grammaire classique qui décrit les expressions
arithmétiques avec les 4 opérations et les parenthéses.

R2. Ceci est un bon sujet d’examen. Pas de réponse ici.

Chapitre 8

Stratégie ascendante d’analyse
syntaxique

8.1 Idée générale

Nous avons essayé de démontrer que les parseurs construits par des techniques fonctionnelles combinatoires
— qui formellement appartiennent a la catégorie des parsiestendantsstructurellement correspondent aux
productions de la grammaire du langage. Ainsi, la construction du parseur est plus statique. La technique
descendante (fonctionnelle ou autre) convient bien a la construction manuelle des parseurs. Rappelons nous
pourquoi elle est descendante. Une production type

S:taABe

correspond a un parsefiqui s’applique au flux de données courant, et construit son fragment de I'arborescence
syntaxique finale. Son no% peut étre considéré comme I'étiquette de la racine de cet arbre, et par cette racine
la construction commence. Le pars@iappelle ses composant@sA, etc., terminales ou non-terminales qui
construisent les sous-arbres et les feuilles. La récursivité des définitions syntaxiques se traduit clairement par
la récursivité des parseurs.

Une production qui contient des alternatives est équivalente a plusieurs productions «parall&iésini-a
tion de la régle posséde des alternatives, mais une dérivation concréete de I'arbre doit étre unique, dans chaque
contexte une seule alternative doit étre applicable, sinon le langage est mal congu.

Cependant, une autigratégie analytique est également possible. Cette technique, qui gravite autour des
symboles cryptiques comme grammaires LR(1), stratégies LALR etc. est reconnue par son universalité et
efficacité dans le domaine de compilation des langages classiques. Cependant, elle est difficile a implanter
«a la main», les parseurs construits par les méthodes ascendantes d’habitude sont des résultats du travail d'un
générateur de parseurs, etils sontlourds. Nous allons présenter ici deux variantes de la stratégie ascendante : les
grammaires d'opérateurs, qui a I'avantage de pouvoir enrichir la syntaxe des langages existants, et la stratégie
générale LR propice a la construction des générateurs de pargatastion, les grammaires d’opérateurs
seront a peine mentionnées — un exemple de leur usage dans le monde de parseurs monadiques se trouve
dans un des chapitres précédents.

L'idée générale de la technique ascendante est la suivante. Prenons encore une fois la production exemplaire
écrite ci-dessus, mais complétons-la par la définition des composantes.

S (=aABe
A =Abc]|b
B :=d

Si le flux d’entrée contient la chainekbcde », un parseur ascendant commence la création de son arbre par
les feuilles. Il déplace sa «téte de lecture» et consomme le lexe@ette opération s’appelle en jargoshift»
(décalage).

Avant de procéder, le parseur vérifie s'il peut faire quelque chose avec la feuille acceptée. S'il y avait une
regleX :: a , le parseur aurait pu construire le graphe- a, mais avec notre grammaire il est obligé de
relancer leshift et consommeb. Cette fois il est possible de construide— b. Cette opération s'appelle

99

100 Stratégie ascendante d’analyse syntaxique

«reduce>. Elle ne consomme rien, seulement remodéle I'état interne du parseur, en réduisant les sous-arbres
déja stockés sur une pile interne en leur nceud-pére. Souvent une réduction est suivie par une autre réduction,
et c’est ici que le compilateur déclenche I'exécution des procédures sémantiques.

«Virtuellement» notre chaine est équivalentfdcde , et dont les deux premiers items se trouvent déja
dans le parseur, sur la pile. Il n'y a pas de producion:= a A , alors le parseur est obligé d'exécuter le
shift Litem b suivant peut étre réduit & comme avant, mais supposons qu’un oracle magique informe le
parseur de la possibilité de faire une autre réduction, a condition de consommer encore quelques items. Ceci
s'appelle la résolution du conflghift-reduce Quand leshift suivant résulte en séquenalbc sur la pile, le
parseur la réduit aA. Le reste est immédiatd se réduit 8B, e est consommeé, et la pile qui contieamABe
donnesS ce qui termine I'analyse.

Donc, toute difficulté pour implanter une telle stratégie d’analyse consiste a identifier la «poignée» (ang.
handlg, la chaine d'items qui doit é&tre consommée afin d’effectuer une réduction.

e Quelle production choisir?
e Comment résoudre les conflits enstaft et reducesimultanément possibles?

Il nous faudra aussi répondre a la question comment résoudre le conflit entre deux réductions alternatives
possibles (conflit : reduce-reduce). Les techniques ascendantes utilisent les tableaux de pilotage, comme le
parseur descendant prédictif décrit dans la section consacrée a I'optimisation des parseurs descendants. Ces
tableaux de pilotage constituent I'oracle dont nous aurons besoin.

8.2 Grammaires d’opérateurs

Rappelons que formellement, une grammaire de précédence, qui constitue la base de la technique ascendante
avec des opérateurs, se caractérise par deux exigences :

e il n'y a pas de production dont la partie droite est la chaine widet
e aucune production ne contient deux non-terminaux adjacents.

La forme
E :=E+E|E-E|E*E|E/E|'C E | Am

possede cette structure, mais pour enlever les ambiguités, chaque objet spéciakcombas parentheses,
doit étre équipé avec des priorités (précédences) et I'attribut de I'associativité. Un tel objet portera le nom
d’opérateur, et ce qui reste, ce sont des données : termes, atomes, etc.

Dans la section précédente nous avons défini la précédence des opérateursucomamére entier, et
I'associativité (gauche, droite ou aucune) était un attribut séparé. Mais les deux peuvent constituer une seule
propriété, la précédence, avec deux champs : a gauche et a droite. Une daquiéee trouve entre deux
opérateurs, par exemplé = B, aprés avoir été empilée, participe a la réduction suivante. Si la précédence
droite deA et plus grande que la précédence gauch8da pile des données (contenantest réduite, sinon
B est empilé. Siles précédences sont égales, on peut effectuer des opérations spéciales, par exemple réduire
les deux opérateurs a la fois.

La construction d’'un parseur complet basé sur ces principes constitue un joli exercice, mais le déboguage
d’un tel parseur pose quelques problémes. ..

Voici un perseur opérationnel basé sur cette stratégie. Il est plutdt rudimentaire, et il posséde la méme
structure qu’un parseur déja vu dans cec notes, dans la section (6.2). On commence par la définition du
tableau de précédences. On considére que le marqueur $ initialize la pile. Notez comment représente-t-on les
parenthéses.

optab=[("=",31,30),("+",49,50),("-",49,50),("*",59,60),
(*/*,59,60),("(",-1,10),(")",10,-1),("$",0,0)]

data Op = Nil | O String Int Int
marg = O "$" 0 0

parse | = shift [] [marq] (I ++ ['$"])

8.3 Parseurs LR 101

shift datstack operstack (c:q) = case (assoc c optab) of
Nil -> shift ((F c):datstack) operstack q
op -> reduce op datstack operstack q

reduce op@(O nm If ri) datstack opst@((O np 11 rl):0q) q

| f < 0 = shift datstack (op:opst) q
| If >r1 = shift datstack (op:opst) q
| If <r1 = let (a:b:dqg)=datstack
in reduce op ((Nd np b a):dg) oq q
| f==r1 = if nm=="$" then (head datstack,q) else shift datstack oq g

Tout le débogage, les actions sémantiques, etc., sont laissées a la discrétion du lecteur qui un jour trouve besoin
d’exploiter cette stratégie.

8.3 Parseurs LR

Le parseur LR est un automate a pile, qui peut étre codé une seule fois, indépendamment du langage. Ainsi
Yacc en lisant la grammaire (décorée par les opérations sémantigeiesnstruit pas la procédure-parseur

Cette procédure, ou plutdt son squelette, médéfinie et stockée dans le génératetfacc construit des

tableaux de pilotage, les «scripts» statiques contenant des instructions pour I'automate. Les tableaux sont
ajoutés au squelette, «décorés» par les actions sémantiques prévues par I'utilisateur, et le parseur est généré en
sa forme-source, qui doit encore étre compilée par le compil@eur

Les avantages de la stratégie LR sont nombreux, elle est universelle et efficace. Les erreurs sont découvertes
relativement tét. On peut prouver que la classe de langages reconnus par les techniques LR (basées sur les
grammaired_R) est plus riche que celle décrite par les grammaires LL (et techniques descendantes). Bien sdr,

a priori il n'est pas sdr si cette richesse est vraiment utile, des langages vraiment complexes et atypiques sont
rares.

Mais la stratégie LR n’est pas facile a implanter, et nous allons seulement présenter la structure générale
de l'algorithme. La construction compléte d’un parseur LR est un peu longue. Nous ne voulons pas non-plus
de décrire dans ces notes le généra¥aac (ou Bison). Les lecteurs qui le veulent utiliser disposent de la
documentation officielle, librement accessible partout.

Comme il a été dit, I'algorithme général du parsing ne dépend pas de la grammaire. Nous allons alors con-
struire d’abord un automate général a pile, et la discussion de la construction des tableaux sera faite ultérieure-
ment.

Le programme opere sur une pile qui peut stocker les symboles de la grammaire (terminaux, et — apres leur
réduction — les non-terminaux), ainsi que quelques symboles spéciaux qui reprébétatede I'automate.
Si s;, dénote un état, eX; un symbole syntaxique, la pile contient la séquenck;s; X5 - - - X, 8m, OU Sy,
est le sommet. Dans une implantation concréte on peut éviter de stocker les symboles de la grammaire sur la
pile ; ceci peut étre restauré depuis le contexte, mais ainsi la présentation de I'algorithme (selon Aho, Sethi et
Ullman) est plus facile.

Le tableau de pilotage est composé de deux parties, nommées conventionnella@E@®N et GOTO.
Les éléments du segmeCTION contiennent une parmi les quatre valeurs possibles :

e shift s —l'action de décalage. Ia dénote le nouveau état de I'automate qui sera empilé ;
e reduce , action de réduction par la productien— ;

e accept - laterminaison du parsing, et

e error —puisque personne n’est parfait. . .

Le tableauACTION est indexé par I'état, et par un symbole terminal. Le programme du parseur apres avoir
consommeé I'item suivant de son flux d’entrée, disensconsulte I'élémenfCTION[s,,, a;] , o —comme il
a été dit —s,,, est le sommet de la pile. Le flux contient les items en attente de consommation; o

Le tableauGOTO est indexé par I'état et un symbole syntaxique, et génere un nouvel état. C'est la fonction
de transition de l'automate.

102 Stratégie ascendante d’analyse syntaxique

Si I'élément consulté contieshift s , 'automate passe a la configuration
(50X151X2 cee Xmsmais)

et procéde a consommey, ; etc.

Si ACTION[s,,,a;] estreduce A — [, le programme vérifie la production en question et récupgre
la longueur (le nombre d'items) d& Ensuiter états, et symboles syntaxiques sont dépilés. L'état .
devient le sommet, les étads,, s.,,+1 etc. disparaissent, et les symboles,, X, etc. se réduisent 4. Le
flux ne change pas, le lexéme suivant restemais la configuration de la pile devient

(SOXl e Xm—rsm,—rAs)

ou s est le contenu de I'éléme@OTO,,, .., A] . Ceci est presque tout. la signification des ente@eept
eterror estintuitive.

Exemple Reprenons notre grammaire d’expressions arithmétiques, et plus concrétement I'ensemble de regles :

1) E = E+ T
2) E =T
@»T ==T*F
4T ==F

(6) F = (EY
6) F = id

Le tableau de pilotage de cette grammaire aura la structure présente sur la Fig. (8.1).

State ACTION GOTO
id + *) $ |E T F

0 sb s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 6 r6 ré ré

6 sb s4 9 3

7 s5 s4 10

8 s6 sll

9 ri s7 rl rl

10 r3 r3 r3 r3

11 5 15 r5 rs5

Fig. 8.1: Tableau de pilotage de la grammaire algébrique

Son analyse n’est pas difficile quand on comprend intuitivement la stratégie. Peut-étre un exemple concret de
parsing aidera le lecteur.

Effectuons I'analyse diel * id + id. Fig. (8.2) montre la séquence d’états et la pile de la machine.
Avant de passer aux tableaux, remarquons que nos parseurs, descendants, et ascendants LR partagent une
inefficacité apparente générée par la structure de la grammaire. La séparation de I'expression en séquence
de termes, du terme en facteurs, etc. définit correctement les précédences et I'associativité des opérateurs
correspondants. Une grammaire style

Expr ::= Atome | Expr + Expr | Expr * Expr | Expr / Expr

etc. serait ambigué. Mais la réduction d'un atome en facteur, ensuite en terme, qui finalement aboutit a la
réduction en expressiastun gaspillage de temps.

Les techniques classiques du parsing détestent toute ambiguité. On peut traiter la grammaire mentionnée
ci-dessus, si aux attributs standard, spécifiés par les productions, et alors par le contexte d'utilisation de tel
out tel symbole syntaxiquen ajoute les précédences et I'associativitéa combinaison de la technique LR
réguliere et les précédences permet la construction des parseurs rapides et efficaces, mais cette construction est
délicate et difficile.

8.4 Exercices 103

Pile Flux Action
1 o id*id +id $ | shift
(2) 0id5 *id+id$ | reduce: F—id
(3 OF3 *id+id$ | reduce: T— F
(4) 0T2 *id +id $ | shift
(5) 0T2*7 id+id$ | shift
(6) 0T2*7id5 +id$ | reduce: F—id
(7 0T2*7F10 +id $ | reduce: T— T*F
(8 0T2 +id$ | reduce: E~T
(99 OE1 +id $ | shift
(10) OE1+6 id$ | shift
(11) OE1+6id5 $ | reduce: F—id
(12) OE1+6F3 $ | reduce: T— F
(13) OE1+6T9 $ | reduce: E— E+T
(14) OE1 $ | accept

Fig. 8.2: Exemple d’'analyse LR

8.3.1 Construction des tableaux de parsing

Dans la littérature courante on présente trois méthodes différentes de construction des tableaux de pilotage,
la méthode SLR9impleLR), la méthode dite canonique, et LALRleokaheadLR, la technique utilisée en
pratique, qui permet de traiter quelques cas en dehors de la stratégie SLR, et qui partage avec elle une certaine
simplicité du résultat. Pour un langage de complexité de Pascal le nombre d’états générés par SLR et LALR est
de quelques centaines. La méthode canonique engendrera dans ce cas un automate a plusieurs milliers d’états.
Nous aurons besoin de la notion de «grammaire augmentée», qui ajoute & une grammaire donnée avec le
symbole de départ S, une productionext®& : == S ,etouS’ estle nouveau symbole initial. Quand cette
nouvelle production est réduite, le parseur s’arréte. On n’'a pas besoin d'action spécighe En fait, les
actionserror sont redondantes elles aussi, on peut considérer I'erreur comme une réduction particuliere, avec
I'action sémantique qui doit «calmer» le compilateur, et synchroniser ses données (et, naturellement, écrire
le diagnostique, et bloquer la génération du code ultérieur, si aprés la découverte de la faute, la compilation
continue, pour découvrir d’autres éventuelles fautes).
Dans cette version de noteeus n’allons pasnontrer la construction des tableaux de pilotage. Ceci n’est
pas tres compliqué, mais pénible, et redondant de point de vue de notre philosophie. Si le lecenent
besoin de la stratégie LR pour le parsing, il peut utiliser un de tres nombreux générateurs. S'ils ne suffisent pas,
priére de contacter I'auteur personnellement.

8.4 Exercices

Q1. Comment implanter les appels fonctionnels de gdé(Me , ou la parenthése ouvrante n'est plus un
opérateur préfixe, mais plutét infixe?

R1. Tout d’abord, il n’est pas sOr que dans ce contexte la parenthése ouvrante doit étre considérée comme un
opérateur infixe entre deux données : le nom de la fonction, et les arguments. On peut toujours considérer
un identificateur comme un opérateur, et toute formg comme I'appel fonctionnel équivalenkgy) .

Alors, comment forcer l'interprétation d’un identificateur quelconque comme un opérateur? |l suffit
d’attribuer par défaut a toutes les variables (noms) qui n'ont pas été déclarées comme des opérateurs,
le statut d’'opérateur de trés haute précédence. Il sera donc toujours empilé, s'il suit un autre opérateur.
(Dallleurs, il doit étre toujours considéré comme opérateur préfixe, car telle est la structure des appels
fonctionnels standard). Mais dans la séqueiddeid2 + ... 'opérateurid2 trouve déja sur la

pile un identificateur, et nous pouvons leur attribuer la propriété de parenthésage — apres I'exécution de
la réduction, les deux disparaissent. Cette fois la procédure sémantique est plus élaborée que dans le cas
des parenthéses, ou le opérateurs disparaissaient sans laisser des traces.

104

Stratégie ascendante d’analyse syntaxique

Q2.

R2.

Q3.

R3.

Ici la réduction peut former un app@til id2) |, et ensuitde stocker a nouveau sur la pile des opéra-
teurs, avec les mémes attributsoccurrence de la séquenmil id2 id3 construira I'appe((id1
id2) id3)

Un opérateur de moindre précédence, I'addition par exemple, réduit la pile des opérateurs. Le dernier
«objet fonctionnel» trouvé se transforme en un simple objet et passe a la pile des données. C’est tout.

Comment implanter a travers les grammaires de précédence des constructiongepeane instructions
until condition enPascal, oudo { ... } while ... enC?

La situation est légérement plus générale que celle décrite en coundyitaou until dans les construc-

tions mentionnées semblent étre des opérateurs infixes, mais également les opérateurs de parenthésage.
(En fait, while en C est simple, entrelo et while on peut trouver une seule instruction, tandis que la
constructiorrepeat enPascal est plus délicate.

Lire la documentation delaskell et la partie du Prélude consacrée a I'affichage. essayer de comprendre
la fonctionshowsPrec , qui est un «anti-parseur». Dans quelles circonstances nous pouvons I'utiliser
pour nos messages diagnostiques, etc.?

Lire la doc...

Chapitre 9

Sémantique

9.1 Grammaires attribuées et décorées

Notre philosophie d'analyse suit la réglecomprendre signifie construire Les analyseurs ne sont pas des
simples machines a dire oui/non & la question : «est-ce une phrase correcte?», mais ils doivent retourner un
résultat qui correspond a la phrase analysée.

lIs sont donc déja des générateurs du code (au moins intermédiaire), et ceci signifie qu'une certaine dose de
sémantique doit y étre présente. Mais cette sémantique souvent est trés pauvre, dans la réalité la sémantique est
toujours contextuelle : le «sens» d’'une sous-phfgseut dépendre de son conteXtetY dans une production
S = X A Y ,etde plus, quelques propriétés du résultat fourni¥pars de I'analyse peuvent dépendre du
non-terminalS qui définit la production utilisée.

Commengons par l'introduction de la notion d’atiribut sémantique qui caractérise tout terminal et non-
terminal du langage. En particulier tout symbole de la grammaire posséde un ou plusieurs attributs, et toute
construction syntaxique peut propager les attributs soit de droite a gauche : les propri&tdstdeminent
les propriétés dé&, soit a I'envers, de gauche a droite. Dans le premier cas on parle d’atsynitsdtisés
dans le second — d’attribukgrités Les attributs peuvent aussi se propager entre les symboles a droite d’'une
production, ils sont alors aussi appelés hérités.

Il faut préciser que la séparation entre la syntaxe et la sémantique, entre le parsing et I'analyse sémantique qui
'accompagne, estn peuune question de convention. Nous avons d@&arporédes actions sémantiques dans

nos parseurs. L'avantage de séparer cette partie d’analyse comme une catégorie conceptuellement indépendante
nous permet surtout de

e Préciser la sémantique de maniére statique et homogéne ; parler de propriétés des objets syntaxiques
indépendamment des programmes d’analyse. Quand la technique de construction de parseurs était prin-
cipalement impérative, la sémantique cachée dans les procédures d’analyse était illisible. Ceci n’est plus
le cas dans le cas des parseurs fonctionnels modernes, ou des parseurs écrits dans un langage logique, les
actions sémantiques sont beaucoup plus claires.

e Grace a cette description statique, nos actions sémantiques peuvent piloter de maniére homogene un
parseur construit par la technique LR, ou nous spécifions les productions, mais nous ne construisons pas
les procédures du parsing qui sont générées automatiquement.

Ceci est tres utile aux fans dfacc, mais nous ne pouvons consacrer ici trop de temps a ce modeéle.

Ceci est tout concernant I'«<indépendance» de la sémantique et la syntaxe. Il va de soi que si la sémantique est
traitée a travers des divers attributs, et ceux-si sont attachés aux symboles de la grammaire, et que les actions
sémantiques sont pilotées par les productions syntaxiques, les deux parties de I'analyse sont intrinséquement
liées et inséparables. Passons a quelques exemples.

9.1.1 Valeurs des nombres

Rappelons les regles syntaxiques qui définissent un nombre entier par la concaténation des chiffres, ou N
signifie un nombre (entier), et C — un chiffre :

105

106 Sémantique

N :=CN
N = C

mais si a présent nous devons attacher des significations concrétes a tous les symboles ci-présents, il faut
désambiguér la double occurrence du mabrabre », puisque évidemmeié nombre a gauche, et celui a

droite ne sont pas identiques : celui a gauche contient un chiffre de plus. Traditionnellement nous pouvons
indexer les non-terminaux ambigus. Nous allons aussi numéroter les productions.

(1)N0::=CN1
2) N =C

Le choix de la récursivité droite joue ici un role trés important (et nous savons déja que ce choix n'est pas
judicieux...). A présent il faut affecter aux variables syntaxiques quelques attributs sémantiques. Sans doute,
I'attribut principal est lavaleur numériquel’'un nombre. Considérons que chaque symbole de la grammaire est
un record qui posséde plusieurs «champs» — un pour chaque attribut. Xjnsisera la valeur du nombre &
gauche de la production (1).

Nous avons vu que le poids d’un chiffre dépend — évidemment — de la position dans la chaine, et donc
sa valeurelative dépend de la longueur de la chaine a sa droite. Cette constatation nous permet d’'établir la
nécessité d’autres attributs : la longueur d’une chaine, et la valeur relative d'un chiffre. Il devient alors évident,
gue les identités suivantes, attachées a la production (1) ont lieu :

NQ.’U =Cuw + Nl.U

Cw=C.c-10M!

No.l=Ny.l+1
ouC.c est la valeur absolue du chiffre, soodenumérique (ASCII-48 ou autre). La production (2) donne

Nov=Cuw

Cv=C.c

Nil=1
et si notre systeme de compilation est capable d'accepter de telles identités (ou instructions), il est également
capable de synthétiser automatiquement les instructions sémantiques qui seront ajoutés au parseur. Ceci est fait
parYacc (avec sa syntaxe spécifique, et ses contraintes).

Mais nous savons que les régles

(1)N0:::N1C
2y N =C

sont mieux adaptées a la construction de la valeur finale. Nous avons discuté la normalisation de Greibach,
etc., mais cette fois nous sommes intéressés uniquement par la sémantique. La regle (1) sigeifie :
10 - N1.v + C.c, et C’'est tout, si le parseur (p. ex. ascendant LR) est capable de gérer la récursivité, il pourra
s’occupper de la sémantique également.

Les attributs hérités apparaissent quand on introduit la normalisation, et les régles changent de forme :

AN =CS
(2) Sy, =CS,
B)S = ¢
et la sémantique devient
(I)Nov=Sw
(1)S.h=C.c
(2)50 v = S1.1]
(2)S1.h=C.c+10- Sp.h
(3)S.v=25.h
ou S.h dénote son attribut hérité

9.1.2 Constance

Sile parseur est capable de synthétiser les valeurs des nombres, il peut également se rendre cBripte que
63, et pre-compiler cette expression sans étre obligé de passer au générateur du code un arbre syntaxique
comportant la multiplication. Il peut «plierfald) toute expression considéréenstantex condition de pouvoir

9.1 Grammaires attribuées et décorées 107

effectuer les calculs. L'attribut de constance se propage depuis des feuilles vers la racine, et la propagation est
bloquée seulement par la présence des opérateurs inconnus, par exemple des fonctions définies par l'utilisateur
(ou autres fonctions extérieures), ou des opérateurs, dont le comportement dépend des données disponibles lors
de I'exécution du programme.

On voit ici que les langages fonctionnels qui interdisent la présence des effets de bord doivent permettre
une optimisation plus agressive. Mais on voit aussi que les langages parpasééfautdoivent abandonner
une telle optimisation.

9.1.3 Temps de vie

Il s’agit d’optimiser les ressources, par exemple les registres rapides, ou la pile. Si le compilateur est capable
de prouver qu’apres avoir exécuté une instruction concréte, une ou plusieurs variables ne sont plus accessibles,
il peut naturellement générer le code qui alloue les mémes zones de mémoire a des variables différentes.

Dans le monde de la programmation fonctionnelle cette analyse peut avoir un autre «goQt». Le langage
Clean spécifie des objets @ccés unique Si xz est un tel objet, et si le programme contient la création d’'un
nouvel objety = f x, aprés cette créatiann’est plus accessible, son réle prend_e compilateur peut donc
générer le code qui au lieu de créer un nouvel objet, modifie I'original.

9.1.4 Formatage 2-dimensionnelle des formules mathématiques

Présentons ici un exemple assez riche et instructif, mais un peu en dehors de notre vision de compilation comme
d’un processus qui génére un code exécutable. Ici le texte source contient une expression algébrique classique,
avec les 5 opérations arithmétiques traditionnelles, les parenthéses, et quelques fonctions comme la racine,
etc. Nous pouvons y ajouter quelques fonctionnelles (au sens symbolique du terme) comme les sommes ou les
intégrales.

Le «code-cible» de notre compilateur est une joli représentation graphique, bi-dimensionnelle de I'expression
lue, formatée selon les regles de I'imprimerie. Ce formatage sera dirigé par la syntaxe. L'analyseur reconstruira
a partir de la forme syntaxique ledtributs géométriques de la phrase et de ses éléments : les dimensions
des objets et leur position relative. La manipulation constitue une sorte de «anti-parsing»... L'objectif de cet
exercice est de jouer un peu avec les attributs, et voir comment résoudre les problémes de dépendance entre
eux. Comme nous avons déja dit maintes fois, I'élément la plus important dans la construction d’un parseur
n'est pas la partie analytique, le module de reconnaissance (ils sont assez standardisésyémaiatlée
«code» généré.

Ici, comme montre la Fig. (9.1), le résultat du parsing d’'une expression, par exemple

a+b*(alpha/(beta-c*8"x) +f)

est une «boite» géométrique, I'espace occupé par I'expression formatée. Le contenu de cette boite est un

ligne de base

w

Fig. 9.1: Boite de formatage des expressions

ensemble de boites imbriquées, qui finalement se terminent par des boites atomiques. Si nos ambitions avaient
été plus grandes, nous aurions pu demander le formatage de la formule ci-dessus comme sur la Fig. (9.2), mais
nous serons satisfaits aussi avec la version ASCII. ..

108 Sémantique

(8
bl | —
a)+/bl B—EE8E+

Fig. 9.2: Expression formatée professionalement, avec des boites

\beta - ¢ 8 /

Rappelons que les détails du formatage ne nous intéressent pas vraiment. Nous allons donc utiliser une po-
lice de tallle fixe, avec les parenthéses construites comme ci-dessus, etc. D’ailleurs, le pareetiésage

affaire délicate : pendant le parsing «algébrique» les parenthéses servent uniquement pour I'analyse, elles spé-
cifient 'ordre des opérations, et c’est tout. Ici elles posseédent une forme visuelle, elles jouent un réle aussi
dans la «génération du code», et de plus, leur interprétation n’est pas évidente, parfois elles sont redondantes,
comme danga+b)+c , parfois non, donc on ne peut pas toujours les considérer comme des éléments pure-
ment graphiques, si nous voulons que notre «compilateur» effectue un peu d’optimisation, et qu’il élimine des
redondances.

Par convention une boite quelconque est coupée horizontalementlipaelae base L'extrémité gauche de
cette ligne c’est Igoint de basequi détermine la position de la boite par rapport & un répéere. Les boites
placées horizontalement a c6té, alignent leurs lignes de base. On voit que en présence des fractions, une partie
de la formule doit se trouver en dessous de la ligne de base.

Les boites possedent donc les attributs géométriques suivants :

e Lalargeurw. Pour un atdme c’est le nombre de caractéeres qui le composent. Sinon, c’est la somme des
largeurs des boites-composantes (horizontales).

e La hauteurh. Pour un identificateur, nombre, etc., la hauteur est égale a 1. La profondeur alors est égale
a zéro. Sinon, c’est la somme des dimensions verticales de toutes les boites intérieures, au dessus de la
ligne de base.

e La profondeurd. La dimension verticale sous la ligne de base est determinée par les dimensions du
dénominateur de la fraction.

Ces propriétés sont synthétisés. On voit que la juxtaposition linéaire (p. ex.qdanhsajoute les largeurs

des boites composantes, et prend le maximum de la hauteur et de la profondeur, comme des attributs de la
boite englobante. La puissaneé peut stocker les deux boites composantes sur la diagonale, et une fraction

& construit la hauteur de la nouvelle boite a partir du numérateur, et la profondeur — du dénominateur. La
hauteur/profondeur des parenthéses s’adapte a la hauteur/profondeur de I'expression parenthésée.

On voit aussi quelques attributs hérités ! La position (d’affichage) des fragments dépend naturellement de
la position de la structure compléte. Ainsi dans- b la position «»dub dépend de la largeur des éléments
précédants. Dans une fraction nous aurons le décalage vertical, la pogitioin «umérateur et deu dénom-
inateur par rapport a la ligne de base, mais également, ce qui est normalement envisageable — le plus court de
deux doit étre centré. Naturellement, la longueur de la barre correspond a la plus grande de deux largeurs.

Le parseur construit les boites avec tous les attributs géométriques, et pour afficher le résultat sur une feuille ou
sur I'écran, nous disposons de deux stratégies possibles ;

e Affichage «aléatoire», ou chaque élément aesising positionné sur la page comme ses attributs le
prévoient.

e Affichage séquentiel, par une imprimante ASCII. Dans ce contexte iltfiutles boites verticalement
et ensuite horizontalement pour pouvoir placer les éléments une fois, dans I'ordre prévu, sans possibilité
de reculer.

9.2 Exercices 109

Si le paguetage peut opérer avec des polices arbitraires, modifier la taille des atomes, jouer avec la largeur
des espaces blancs entre les items, la situation est plus complexe. Il faudra alors tenir compte du fait que les
exposants et les indices utilisent la police plus petite, que le décalage vertical est assez complexe et il est basé
sur quelques régles de typographie non-algorithmiques, etc.

9.2 Exercices

Q1. Compléter I'exercice d’affichage des expressions.

R1. Cet exercice est pour les ambitieux. On peut apprendre beaucoup de choses en lisant les livre de Donald
Knuth consacré augK (The EXbook et TEX: the progran).

Chapitre 10

Les types

10.1 Qu’est-ce qu’'un type et quel est son rble

Ce domaine est une exemplification paradigmatique de I'approche sémantique a I'analyse, et nous pourrions
placer cette section dans le chapitre précédent. En effgtpéed’une expression est un de#iributsles plus
importants dans un langage algébrique. L'analyse des types est absolument indispensable pour pouvoir utiliser
les opérateurs surchargés, et pour pouvoir reconnaitre la |égalité de presque toute construction de données.

Nous verrons dans cette section comment I'attribut de type se propage, comnisrtidgationsde types
influencent-elles les instructions du langage, quelle est la différence entre les langages typés statiquement et
dynamiquement, et comment réagir aux fautes de typage. D’abord il faut essayer de définir la notion de type.

Nous pouvons trivialiser la réponse en disant qu’un type est 'ensemble de toutes les valeurs qui peuvent étre
affectées a la variable appartenant a ce type, ou mieux : valeurs qui peuvent étre traitées par le méme algorithme
détaillé, sans besoin de conversions, etc. Ceci est plus ou moins correct, mais conventionnel, ambigu, et pas
tellement constructif. Il faut savoir vérifier les types par une procédure finie, et dont la complexité est faible
(polynomiale, de préférence linéaire). Laissons donc la définition du mot comme quelque chose intuitive, mais
formalisable.

Toute valeur dans un langage évolué a— conventionnellement — un type. Les constantes «naturelles» (numeériques)
peuvent étre entieres ou réelles, les constantes symboliques démemsScheme ou False enHaskell ap-

partiennent au type Booléen, et toute structure qui contient une balise particuliére aurait di étre déclarée. Sile
type est attaché a une valeur de maniére explicite, visible (p. ex. par balisage), on pgpleggedynamique

On peut affecter une valeur (ou la référence a cette valeur) a une variable quelconque, et la variable elle-méme
n'a aucun type. C'est le cas @cheme, Icon, Smalltalk, Python. .. La programmation est plus souple, mais
I'exécution est plus lente, car la discrimination du type des valeurs est effectuée par le noyau exécuteur (la
machine virtuelle). Les erreurs du typage sont donc reconnus pendant I'exécution du programme.

Par contre, les langages dont le typage est statique, cette discrimination est une affaire syntaxico-sémantique
effectuée par le compilatearvantl’exécution. Les variables (y compris les variables décrivant les objets fonc-
tionnels) sontéclaréeu leur type esinféréautomatiquement. Ainsi toute erreur de typage est diagnostiquée
avant I'exécution. Ceci ne signifie pas que la suit&€€en

double x;
X=7;

soit erronée, seulement que I'incompatibilité des types force le compilateur a ajouter au code quelques instruc-
tions de conversion. En général la régle syntaxique

var = expr;
doit déclencher la procédure sémantique, dismorapatible (var.type, expr.type). La réponse peut étre
plus forte : identique ce qui fait générer le code d’affectation sans aucun code supplémentaire, mais aussi

affecte le type reconnu a l'instruction elle-méme (rappelons g@'em peut écrirex = y = 2*z). Siles
types sont compatibles, mais différents, la conversion est ajoutée.

110

10.1 Qu’est-ce qu’un type et quel est son réle 111

L'expression2*z (ou toute autre expression numeérique contenant un opérateur) est analysée de maniere
analogique. Si les types des opérandes sont identiques, I'environnement doit permettre de décoder I'objet
syntaxiqug*) selon son type. Siles types sont mixtes, une conversion vers le type plus étendu est nécessaire.

En C++, avec toute la panoplie de constructeurs définissables par I'utilisateur la conversion peut étre am-
bigué, et elle doit étre pilotée consciemment. Voir la définition du langage.

10.1.1 Inférence automatique des types, systeme H-M

Notre expérience avddaskell a prouvée qu'il est parfaitement possible d’avoir un langage typé statiquement,
mais sans déclarations (sauf dans des cas spéciaux). Rien d’exotique, la section précédente montre clairement
gue le compilateur déduit le type des expressions et peut propager cet attribut en deux sens sans aucun probléme.
On peut se poser la question pourquoi des langages cothime Pascal forcent l'utilisateur a écrire les
déclarations?

La réponse est historique. Ici nous présentons de maniere superficielle le systeme de Hindley-Milner, le
protocole d’inférence automatique de types utilisé par exemple dans les langages de laMantAML,

SML, Hope, Miranda, etc.) La propriété commune de ces langages est : ils sont fonctionnels, la transparence
référentielle est assurée, un symbole (variable) signifie une chose. Sion rejete tout polymorphisme, I'expression
2*x forcel'objet x a étre entier. Si la fonctioh possede le type — b, et elle est appliquée a un objet de type

a, le résultat possede le typeMais sion écriy = f x ou on connait les types deet dey, le systeme H-M

déduit le type de la fonctioh sans aucune déclaration.

Plusieurs fonctions sont polymorphes, par exerhpigd (x;_) = x , applicables a toute liste non-vide.

Le systeme d'inférence déduit le type de cette fonctian+ a. L'argument et le résultat appartiennent au
méme type.

En général, I'inférence des types des expressions et des fonctions ressemble beaucoup a un raisonnement
logique classique, ou le fleche qui symbolise le type fonctionnel peut étre assimilée a la déduction logique.
L'inférence qui gere une application fonctionnelle peut étre lues:edia — b, alorsb. Aussi,a etb (poura et
b concrets, «vrais») impliqueat— b. Et ceci permet d’affirmer qu’il n’existaucune fonction polymorptoe
typea — b, car ceci n'est pas une tautologie, une vérité logique indépendante de I'assignatienbde

10.1.2 Structures composites

Avec la «curryification» des fonctions on n'a pas besoin de les traiter séparemment, les fonctions de type
a — b — ¢ — d appartiennent a la méme catégorie des entités «logiques». Le systéme de typage automatique
«sait» aussi que s,y appartiennent aux types légawet b, I'objet (x,y) , le tuple, appartient a un type
légal, disons: x b.

Il existe un nombre de constructeurs standard, par exemple List, qui transforme un typeciégal autre :
List a. L'opérateurcons aura donc le typeons :: a -> List a -> List a . Les constructeurs
définis par I'utilisateur entrent dans le méme jeu.

Ainsi, la vérification du typage d’'un programme deviane démonstration logique Les constantes possédent

des types concrets, considérés «vrais». Aux variables dans le programme on affecte des variables logiques, et
on effectue l'unification entre la gauche et la droite d'une assignation. C’est ainsi que I'on découvre que
I'expression(x:x) estillégale, car implique que = List a, unregressus ad infinitunMéme si la program-

mation avec des listes nous a habitué a I'existence des structures «infinies» (p. ex. cycliques), les types infinis
restent une calamité. Au lieu de parler d’'une «démonstration logique» on peut voir le processus comme la solu-
tion d’'une collection d’équation dans le domaine de types (ou on cherche évidemment les solutions finies. . .).

10.1.3 Quelques généralisations possibles

Le systeme de Hindley-Milner est un peu rigide. Sa version «canonique» pose méme des obstacles au polymor-
phisme arithmétique standard, la possibilité de mélanger les entiers et les flottants dans une expression comme
23 4+ 17.8. (Ainsi CAML prévoit des opérateurs arithmétiques flottants différents des opérateurs entiers. . .).

Il'y a d'autres problemes. La pai(8,True) estlégale. Mais la compilation du programme

prog f = (f 3,f True)
res = prog id

112 Les types

échoue ! Cependant la forme suivante marche :
res = (let f = id in (f 3, f True))

ce qui montre que trop de liberté peut bloquetylgecheckerCependant, le polymorphisme a été inventé pour
étre commode et utilisable par des non-spécialistes. Ceci implique que les systemes de typage continuent a
évoluer jusqu’aujourd’hui, et constituent un domaine de recherche tres actif.
En Haskell nous avons Igolymorphisme restreirpar le systéme de classes de types (discuté ailleurs).
Clean introduit un peu de typage dynamique sur sa couche statique, pour éliminer quelques contraintes.
D’autre part un langage dynamique comirisp peut étre équipé d’'un compilateur qui vérifie le typage
statiquement aussi. Dans le cas général ceci mene a rien, mais dans quelquesutessibudre un probléme
de typage avant I'exécution, et générer un code beaucoup plus efficace. Le futur des compiléehe e
appartient a cette catégorie.

Chapitre 11

Deux mots sur I'analyse lexicale

11.1 Qu’est-ce qu'un lexeme

Techniques universelles, adaptables a tout probléme d’analyse ne constituent pas la seule philosophie possible.
Une autre stratégie : moyens simples pour des buts simples, a également ses avantages. Selon cette philoso-
phie I'usage des techniques hautement récursives pour définir des structures réguliéres, itératives, comme les
nombres ou les identificateurs, pour éliminer les espaces du texte, etc., n'est pas idéal. Pour construire les
lexemes simples comme des identificateurs ou des nombres entiers on n'a pas besoin des piles. L'analyse
est strictement itérative, le parseur consomme les caracteres dans une boucle jusqu’a I'occurrence d’'un carac-
tere inacceptable dans ce contexte. Il s’arréte, et la chaine consommée forme le lexéme en question (ou une
procédure de recouvrement est lancée en cas de besoin).

Il est évident que pour promouvoir la modularisation du compilateur, une séparation compléte de la couche
lexicale et de la couche syntaxique pourrait étre utile. Nous pourrions construire des scanneurs plus simples
gue les parseurs génériques, et aussi nous pourrions découpler complétement la partie bas niveau du tableau des
symboles — le tableau des chaines, de I'analyseur syntaxique, qui a besoin seulement des attributs des symboles,
et jamais de leur apparence extérieure. Mais il faut se rendre compte d’une vérité souvent négligée.

Credoreligieux no. 14 : Il est évident pour tous, que ce qui est évident pour les uns, ne I'est pas pour les autres

11.1.1 Catégories lexicales

Il faut d’abord régler les problémes d'interfacage du scanneur et de sa couche «magique» — la définition de
l'alphabet, et les catégories lexicales. Tres souvent ces définitions peuvent étre statiques, par exemple on
définit unelettre par une primitive qui vérifie le code ASCI : le caractére doit se trouver entre 65 et 90, ou entre
97 et 122. Un chiffre : entre 48 et 57, etc.

Cependant le monde actuel est multi-lingue, et il serait préférable de pouvoir définir la catéyoriede
maniére plus réguliére, statiqueet non pas par une procédure. Les démarches a suivre sont les suivantes.

e Définir I'alphabet : tous les codes et leur glyphes, c’est asfiéxifier le codageCeci n’est pas trivial,
actuellement il existe plusieurs dizaines de codes qui convergent tres lentement. Le standard ASCII pour
les premiers 128 codes de l'alphabet s’est stabilizé, mais I'Unicode est loin d’étre accepté partout.

e Construire un tableaindexé par 'alphabet Chaque élément doit contenir la description du caractére
correspondant — sa catégorie lexicale.

e Etablir un nombre raisonnable de catégories lexicales : lettres, chiffres, chiffres étendus (p. ex. les
lettres qui peuvent former des chaines hexadécimales), parenthéses, caractéres opérationnels, caractéeres
d’échappement, etc. Déja cette partie de la conceptualisation de I'analyse lexicale est loin d’étre triviale :
on voit queBelle contient undettre B, mais le méme caractére peut étre (ailleurs) un chiffre hex.

Il faut par exemplddiendéfinir les caracteres — espaces blancs.

113

114 Deux mots sur I'analyse lexicale

e Décider ce qui est un identificateur, comment construire les opérateurs, etc. Si on décide de construire
un scanneur lexical manuellement, il >s avantageux de ramasser tous les mots-clés (mots figés par
la syntaxe du langage) et de les placer dans la table de symboles du parseur, de les traiter comme les
identificateurs, et jamais par des procédures lexicales spécialisées. ceci economisera beaucoup de temps.

. et sans lever le pied, commencer a refléchir comment réagir aux fautes lexicales.

11.2 Expressions réguliéres

Cette section et la suivante décrivent leurs sujets de maniére superficielle, les expressions régulieres et les
automates appartiennent au cours sur les langages et automates. Notre but principal est de donner quelques
exemplegratiques et d’élaborer une stratégie de construction des scanneurs.

Une expression réguliérssur un alphabel/ est :

e la chaine vide,

un caractere (élément de 'alphabet¥ U,

la concaténation des expressions réguliéges,

l'alternativee; |ea,

et la fermeture de Kleenee!, qui est une abréviation

e“=¢|e|eel|ecee]...

ou
e =¢|ee”

ou la concaténation et 'alternative sont associatives, et la chaine vide est I'opérande neutre pour la concaténa-
tion. L'alternative est symétrique, et 'ensemble est distributif comme en arithmétique :

a(b]c)=ab|ac

(@]lb)c=ac]|bec
On peut introduire d’autres abréviations comere;
et = eef ce qui implique
et = ¢let
e? = ¢le

etc. Elles sont utilisées paex. Voici la description lexicale réguliere des nombres sans signe (disons, en
Pascal) :

num = digit * (digit T)? (E(+|-)? digit)?

11.2.1 Automates
Cette expression correspond a I'automate fini présenté sur la Fig. (11.1).

Sur cette figure on a marqué seulement les états finaux Iégaux. Les transitionsdsdéhote un chiffre
(digit), eta—un «autre caractére», qui termine le parsing.

La construction d’un scanneur comme un parseur combinatoire, ou comme un automate piloté par la matrice
d’incidence de l'automate en question, tout ceci sont des questions secondaires sur le plan pratique. |l faut
surtout s’assurer que

e Le lexéme accepté est le plus long possible. Seulement quand il n'y a plus rien a faire, 'automate passe
a son état terminal (dans le contexte discuté).

e Les trois issues possibles doivent immédiatemment discriminer le type du nombre reconnu.

11.2 Expressions réguliéres 115

start

Fig. 11.1: Reconnaissance des nombres sans signe

e Une «bombe», par exemple une séque2®e qui viole évidemment la grammaire peut étre gérée par
des procédures de recouvrement spécialisées. En général, aprés la découverte d'une faute lexicale, le
scanneur doit faire tout pour terminer la construction du lexéme.

Il peut, ou méme il doit considérer que le programme est erroné, et de ne plus générer aucun code, mais
il peut compléter le lexéme en forma28.0 , et passer la main au parseur. Ainsi on pourra découvrir
plusieurs fautes lexicales pendant une passe du compilateur.

Chapitre 12

Gestion de mémoire dynamique

12.1 Allocation du tas

Pour I'efficacité d’exécution il serait idéale de pouvoir adresser les structures de données de maniére la plus
directe, sans passer par les piles, tableaux d’'indices, etc. Ceci en général est difficile (et moins portable). Mais
méme si nous pouvons opérer dans le programme avec les variables qui contiennent des pointeurs directs,
un autre probléme se pose : le dynamisme. Nous pouvons avoir besoin de quelques structures composites
intermédiaires qui vivent pendant I'exécution d’'un segment du programme, et deviennent inutiles. Il est donc
souhaitable de pouvoir demander au systeme d’exploitation I'allocation d’un segment de mémoire et pouvoir
le retourner aypool commun, utilisable par d’autres applications ou threads.

Tous les langages de programmation modernes permetienégaon dynamiquee structures de données.
En C++ nous avons la commanaew, et nous pouvons aussi détruire les structures. Mais la gestion manuelle
est toujours un peu délicate. Qu’'est-ce passe-t-il sinous détruisons la structure adressée par un pointeur, mais ce
pointeur avait été copié dans une autre structure, utilisée par un autre fragment du programme? Pour éviter cette
situation paradoxale, un des paradigmes de programmation modermaest retourne jamais au systeme des
structures inutiles. On les «oublieet le systeme (la partie systeme muntime le support logiciel qui n’est
pas directement contrdlé par le programme) s’en charge pour récupérer la mémoire. Cette facilité est une des
raisons de la carriére du langadmva. Les protagonistes de I'efficacité brute et du lang@gee peuvent pas
nier que grace a la gestion automatique de mémoire le nombre d'utilisateurs capables d’écrire des programmes
trés complexes a visiblement augmenté.

La technique sur un plan trés général est suivante. Chaque application peut demander au systéme qui est
le gestionnaire ultime de la mémoire, I'allocation d’'une tranchéVdectets. Le systéeme — s'il est capable
de rendre ce service, retourne au programme l'adresse de la zone allouée (sinon il déclenche une exception,
ou, ce qui est plus commode — il retourne une valeur illégale, p. ex., zéro). Le systéme maintient la liste de
zones/pages allouées et libres, et si le programme demande une zone ou retourne une zone, ces tableaux sont
mis a jour. Les détails dépendent du langage, et d’autres détails.

Par exemple, quand le programme retourne au systéme une zone inutile, il passe aux procédures de récupéra-
tion son adresse. Mais le systéme doit savombiend’octets récupérer ! On peut donc choisir deux stratégies :

e La premiére est universelle. Chageeordalloué et attribué au programme posséde un champ caché —
la longueur de la zone. Ce champ est utilisé pour la déallocation, le programme n’en a pas besoin.

e La deuxiéme est plus économique, mais beacoup plus difficile a implanter. Si le langage de program-
mation est typé, leompilateurconnait la longueur de toutes les structures. on peut donc (en principe)
prévoir plusieurs procédures de récupération de mémoire, chacune spécifiquement adaptée a un type
concret de données.

e On peut aussi envisager la variante orientée- objet de la stratégie précédente. Chaque classe de structures
posseéde sa méthode particuliére, un destructeur adapté. La différence de cette technique par rapport
aux destructeurs e@++ est que dans ce langage les destructeurs sont exécutés quand la structure est
retournée au systeme par I'utilisateur, tandis qu’ici il n'y a pasdigete> ou autre instruction équiva-
lente.

116

12.2 Compteurs de références 117

Il faut, indépendamment des détails, prévoir encore une procédure facile a implanter : le compactage de la
mémoire libre. Supposons que la mémoire est partiellement allouée, comme sur la Fig. (12.1). En retournant

I N (5

Fig. 12.1: Mémoire partiellement allouée

guelgues objets aoool on produit des «trous» — zones libres. Le systéme normalement construit une liste des
segments accessibles, qui peuvent étre utilisées pour des allocations ultérieures. On voit que le lien rouge sur
le dessin est redondant : le systéme doit compacter deux zones libres voisines en une plus grande.

Un problémebeaucoupplus compliqué serait : comment compacter les zones libres non-contigués par la
relocation des structures allouées. Nous en allons parler plus tard.

12.2 Compteurs de références

Une technique classique, souvent enseignée @va¢ mais plutt rarement implémentée correctement dans
un contexte pédagogique, c'est la méthode qui prévoit que chaque record alloué posséde un champ entier
supplémentaire : un compteur des références. Ce compteur est initialisé a 1 au moment de la création de
I'objet.

Si la structureS est affectée a une variable-pointeurp=S; , le systeme fait trois choses :

1. Vérifie la valeur précédente geSi la variable pointait sur une autre structure de ce type (ou compatible),
son compteur de références est décrémenté. S'il devient égal a zéro, la structure est retoponée au
systeme.

2. L'adresse dé& est passée au récepteur.
3. Le compteur d& est incrémenté.
Apparemment la technique est simple, efficace et sure. Mais il en faut voir quelques défauts :

e Le premier, bien reconnu depuis longtemps c’est I'impossibilité de gérer les références cycliques. Siune
structure possede un champ-pointeur qui adresse elle méme, I'affectation de ce pointeur incrémente le
compteur de la structure, et méme si toutes les variables extérieures ont «oublié» la structure en question,
sa mémoire ne sera jamais récupérée.

e Un probleme de discipline, qui, d'ailleurs, est commun, et frappe d'autres stratégies d’administration
automatique de mémoire : le clonage. En utilisant le compteur des références il faut éviter a tout prix
passer des structures composjtes valeurau procédures, ce qui risque normalement de recopier tous
les champs de I'objet. Le constructeur de recopieCer) ou une autre activité qui place la copie de la
structure sur la pile, peuvent produire des effets trés indésirables : modification incongrue de plusieurs
exemplaires du compteur attaché a une structure. De préférence il faut passer tous les parametres par
référence (adresse).

12.3 Ramasse-miettes «marquage et balayage»

La technique de compteurs permet de retourner au systeme un objet inutile au moment de sa libération. Mais
une autre stratégie devient a présent plus populairgareage collectiofGC), ou ramassage de miettes. La
mémoire est allouée jusqu'a I'’épuisement des ressources, et les structures oubliées résident dans la mémoire
du programme. Quand le programme demande une nouvelle allocation et le systeme n’a plus de ressources, le
programme entre dans la phase de ramassage, ou la mémoire est analysée, les structures «vivantes» localisées
et identifiées, et les structures mortes sont retournépsade la mémoire. Ce domaine a éloboré une certaine

118 Gestion de mémoire dynamique

terminologie. La «vraie» application, le module qui effectue les calculs et qui créé les structures de données
s'appelle lemutateur et le module GC — leollecteur
Il existe deux techniques traditionnelles de GC :

e Marquage-balayagenark and sweepet
e Recopie compléte.

Commengons par la premiére méthode. la Fig. (12.2) montre ce qui peut arriver a la mémoire, la présence
d’'un amas de structures liées avec les pointeurs, ou chaque structure possede également d’autres informations
(chaines, nombres, etc.) Chaque structure doit prévoir la présancéit supplémentairequi est inutilisé

\.A

Fig. 12.2: Un «plex» dans la mémoire

pendant le fonctionnement normal du programme, et égal a zéro (par exemple). Quand la mémoire est épuisé
et le runtime déclenche le GC, celui-ci doit avoir acces direct a un certain nombre d’objets, comme la pile
systeme, les variables statiques, et autres dordessées directement dans le programAppelons cette
collection lenoyaudes structures accessibleRoute autre structure doit étre accessible a partir du noyau en
suivant les pointeurs.

Le GCmark-and-sweefonctionne en deux phases. La premiére consiste a marquer (positionner le bit GC
a 1) toute structure accessible dans la mémoitgeci peut étre facilement réalisé par la récursion : Le GC
accede a une structure, disords,Si elle a déja été marquée, on ne fait rien et on retourne. Sinon, la structure
est marquée, et le GC récursivement traite toutes les structures accessibleslddpsiecords3, C' et F' sur
la Fig. (12.2).

En analysanB3 le GC n’arien a faire aved, il marque seulemen®’. Quand le contrdle retourne dea
A, la structure”' est déja marquée, rien a faire. Ainsi, en exploitant le parcours de ce graphe en profondeur, on
marque toute structure vivante, accessible depuis le noyau.

La seconde phase est le balayagedeping C’est une opération de bas niveau, qui ne respecte pas le
typage des structures, et traite la mémoire comme un tableau contigu. Ce tableau est fiaézitementle
GC visite toutes les structures dans I'ordre des adresses. (Il doit donc savoir quelle est la longueur de chaque
structure ; on ne peut pas se permettre d’avoir dans la mémoire des zones étrangéres, gérées par un autre
mécanisme ; ceci rend tres difficile la co-existenceydibage collectoret de procédures externes, p. ex. des
sous-programmes D attachés a un programme Easkell).

Pendant cette phase toute structure marquée est restaurée a son état d’origine (le bit GC est nettoyé). Les
structures qui n’ont pas été marquées sont mortes, et peuvent étre liées ensemble, en formant la zone libre.

Cette technique posséde un défaut majeur — I'usage de la pile a cause de la récursivité peut devenir dangereux.

12.3 Ramasse-miettes «marquage et balayage» 119

Le tas normalement est beaucoup plus volumineux que la pile systeme, et I'implantation naive de cette tech-
nique de GC peut étre défaillante.

12.3.1 Optimisation de Schorr-Waite

Un pseudo-code qui réalise le GC (la partie marquage) présenté ci-dessus serait

mark object =
if object.gc!'=Marked then
object.gc=Marked
for_each x=address_ field(object) do
mark X

et on peut envisager quelques optimisations, comme le remplacement de la récursivité par une pile privée, ou
un parcours en largeur du graphe. Cette derniére possibilité sera discutée dans le contexte du GC copieur, ici
nous présentons une tres intéressante idée de Schorr et Waite, qui modifie temporairement le graphe de données
dans la mémoire, et utilise les données elles-mémes pour implanter une pile temporaire.

La description intuitive de I'algorithme est la suivante. Le GC en marquant un abjgarde toujours
I'adresse de I'ancétrd, I'objet qui contenait le champ adressant I'objet en train d’étre marqué. A présent

nous devons descendre devers les fils de ce dernier, disonsFaadressé par le chamf comme montre la
Fig. (12.3).

el
-
A .
.

Fig. 12.3:

On descend par une simple ré-affectation de I'argument dans une boucle, sans aucun appel récursif, mais en
descendant on mémorisé dansf. Apres le marquage complet de on réinsere son adresse dafjsen
récupérant I'adresse dé& On peut alors marquer un autre champ, ou, si tous ont déja été marqués, on remonte
versA. Voici un pseudo-code un peu plus disciplifiéest conseillé de le lire et comprendre.

On organise treés légerement differemment I'administration du marquage, la procédure sopjoossque
son argument n'a pas été marqué, la décision de ne rien faire dans le cas contraire est prise avant la «descente».

mark_SW object = msw object NIL where
msw obj anc =
obj.gc=Marked
for_each f=address_field(obj) do
if f.gc!=Marked then
f=anc
msw f obj

120 Gestion de mémoire dynamique

12.3.2 Problémes avec le compactage de la mémoire

Un probleme persistant de la stratégie de marquage-balayagefegrieentation de mémoird_a fragmen-

tation extérieureest le résultat de 'allocation et libération répétées, ce qui peut provoquer la création d’'un
grand nombre de petits trous dans la mémoire. La liste des segments libres risque de ne pas étre contigué,
mais composée de petits segments séparées dans la mémoire par les zones allouées. Si le programme demande
l'allocation d’un segment plus grand que le segment libre actuel, le systéeme doit chercher plus loin. D’abord,
ceci ralentit I'allocation. Mais on risque finalement de ne rien trouver, méme si la quantité totale de mémoire
libre est grande !

Il existe aussi un phénomeéne flagmentation interneSi un segment libre contient 20 octets, mais nous
demandons, disons, 18 ou 19, il est hors de question d’allouer 18 octets de ce segment, et laisser 2 ou 1 octet
inutilisable, car on ne peut pas I'attacher a la mémoire libre, on n'a pas suffisamment de place pour y mettre
le pointeur sur le segment suivant. Donc, on alloue la totalité, 20 octets a la structure de données, méme
si quelques octets a I'intérieur ne seront jamais utilisées. On doit éviter que ce phénomeéne gaspille trop de
mémoire.

Il existe toute une théorie d’allocation optimisée. On peut prendre le premier segment libre suffisamment
grand. Ou, chercher le plus petit, mais encore convenable. Ou, chéegblels grandrestant, pour éviter
la fragmentation interne, etc. Tout ceci sont des moyens semi-heuristiques de prévenir ou de retarder les
problémes causés par la fragmentation, mais le vrai réméde est le compactage de la mémoire. Il faut déplacer
les objets vivants, les «glisser» dans la mémoire vers le bas ou vers le haut (pendant la phase de balayage),
et — naturellement — ne pas oublier la mise a jour de tous les objets qui référencent la structure déplacée.
L'algorithme de compactage qui marche avec le GC marqueur est assez compliqué, et il ne sera pas discuté ici.
La technique de recopie nous donne le compactage gratuitement.

12.4 Ramasse-miettes copieur

Cette catégorie de ramasse-miettes est trés différente, et est basée plutdt par un parcours du graphe de données
en largeur, avec une file qui est réalisée par les structures de données elles-mémes, pendant le processus de
ré-arrangement. Elle a été inventée par Cheney.

On commence par la séparation de I'espace de travail en deux moitiés distinctes, dont une seule est utilisée
(nous I'appelerons traditionnellemeindm-spacg et l'autre reste en jachére (qui deviendoaspacg. Ceci
peut paraitre un gaspillage inacceptable, mais, enfin, ... la mémoire est devenue un article de consommation
courante... On peutaussi prévoir I'allocation de la jachére sur le disque, ce qui économise la mémoire centrale,
mais ralentit considérablement le processus GC.

La mémoire est allouée toujours depuis une tranche contigué, il suffit de maintenir un pointeur sur la zone
libre (ainsi que sa longueur restante, bien sir). Quand la mémoire est épuisée, le programme est suspendu, et
le GC transporte tous les objets vivants defiiam-spacedans la jachéred-space, qui devient ainsi la zone
de travail. L'espace utilisé précédemment devient la jachére.

On commence par accéder aux objets accessibles directement (le noyau), par exemple I'objet A sur la Fig.
(12.2). Il est copié intégralement dans la mémoire de la nouvelle zone de travail, suivi par les copies d’autres
objets du noyau. Seulement la «surface» des objets est copiée, les pointeurs internes ne sont pas modifiés ! On
commence a traiter les champs internes par la suite. Le GC connait la structure de I'objet A, donc il reconnait
le champ qui adresse B. B est donc copié, et placé dans le nouvel espace, ici : suivant A. Aprés avoir terminé
cette copie, le champ correspondant de A est mis a jour. On fait la méme chose avec C et F, et la nouvelle
zone de travailto-spacepossede la structure comme sur la Fig. (12.4). Ayant épuisé les champs de A, on peut
passer aux champs de B. Mais le premier pointe sur une structure qui a déja été déplacé, donc il ne suffit pas
de copier une structure, mais il faut mémoriser ce fait. Ainsi, au moment de la recopie, la structure interne de
I'original est détruite, et remplacée par I'adresse de la copie. Loriginal doit également étre marqué comme
déplacé, ce qui suggere la présence d’au moins un bit de marquage (ou l'usage d’'un tableau spécial extérieur,
ou on sauvegarde les adresses de toutes les structures déplacées), mais en fait ceci est inutile : si un objet dans
from-spacecontient un pointeur appartenantcaspaceil a été déplacé et ce pointeur est sa nouvelle adresse,
le forwarding pointer Dans aucune autre circonstance on ne peut trouver une telle configuration.

En suivant cdorwarding pointerstocké dans A, on peut construire la vraie valeur du premier champ de B
(la ligne pointillée).

12.4 Ramasse-miettes copieur 121

| & o= v % [
A~ B C F
| FEE|
Aolt:l

Fig. 12.4: Processus de recopie

On traite I'autre champ de B ol le méme phénoméne se produit (record C qui a déja été traité depuis A), et
on passe a C, ce qui déclenche la recopie de E devant F.

Aprés avoir copié toutes les structures, I'espace de travail et la jachére changent de tdigsatedevient
le from-spacepour la callection suivante. |l est évident que cette technique produit toujours I'occupation
contigué de la mémoire. De plus, la complexité temporelle de cet algorithme est proportionnel au nombre de
structuresvivantes tandis que la stratégie de balayage force le parcours par la totalité de la mémoire, et la
complexité devient donc proportionnelle au nomtmrtal d’objets.

12.4.1 Ramasse-miettes générationnel

Dans un programme réel suffisamment compliqué le «temps de vie» de structures dynamiques peut étre trés
dispersé. Quelques structures temporaires sont allouées pour disparaitre presque immédiatemment, les autres,
hautement partagées deviennent permanentes, ou presque. Si on pouvait éliminer le traitement de ces don-
nées par le GC (ou au moins optimiser cette partie du ramassage), I'économie de temps pourrait étre assez
significative.

L'idée du GCgénérationnelest donc la suivante. On divise le tas (la partie exploitée dans le cas de
I'algorithme de recopie) en quelques (2 - 5) zones de longueur variable, p. ex. GO assez petite, G1 4 fois
plus grande, G2, quatre fois plus grande que G1, etc. Au début toutes les nouvelles allocations ont lieu dans
GO0. Quand la mémoire doit étre régénérée, on note dans les structures vivantes le fait qu’elles ont survécu
un ramassage (donc, chaque record est équipé d’'un compteur). Aprés quelques ramassages on transporte les
structures toujours vivantes dans G1.

Le nettoyage de GO est fréquent car la zone est petite. |l faut se rendre compte que les structures transportées
dans G1 peuvent adresser les objets dans Gddetversa. Pour nettoyer GO il faut donc parcourir G1, pour
trouver les objets accessibles. Une fouille exhaustive de G1 serait mortelle, donc quand on déplace un objet
de GO dans G1, et cet objet référence les structures dans GO, on place son adresse dans une liste/tableau
directement accessible. Normalement cimst étre rare. Posséder la référence vers un objet plus stable, donc
de GO vers G1 est normal, mais la situation inverse ne doit pas étre fréquente (un vieillard ne retient pas dans
la mémoire les événements récents. . .).

De temps en temps il faut nettoyer G1, et — éventuellement — on fait la méme chose, en transportant les
objets durs a détruire dans G2.

12.4.2 GC pour les données «binaires»

On peut en principe poser la question suivante : que faire si dans le record alloué il n'y a pas de place pour le bit
GC? Par exemple, si on alloue quelques octets qui seront remplis par un nombre flottant. Une solution serait de
restreindre l'intervalle des nombres, et de ne réserver qu 47 bits pour la mantisse au lieu de 48. Dans le cas des
entiers, utiliser seulement 31 bits et non pas 32. Le probjénneipal de cette stratégie n’est pas la perte de
précision/capacité, mais la nécessité de «décortiquer» ce bit inutilisable lansteepération arithmétique !

On peut allouer un octet entier supplémentaire, ceci ajoutefait’allocation de mémoire aux nombres
de typeDouble , mais une autre technique est possible aussi, surtout si toutes ces structures appartiennent au
méme type (méme longueur d’allocation), et peuvent étre allouées depuis une zone libre dédiée : on réserve un
tableau externe, traité comme une suite de bits. Chaque bit correspond a un record, et ainsi on peut utiliser la

122 Gestion de mémoire dynamique

technique de marquage classique, seulement le bit GC n’est pas physiquement attaché a la donnée en question,
mais séparé.

Si on décide de stocker tous les nombres flottants (de précision double : 8 octets par nombre) dans un
tableau dédié, le tableau accessoire aura la taille 64 fois plus petite, ce qui est abordable.

12.4.3 GC entemps réel : ramassage incrémental

Parfois le fait que le ramassage arréte le programme, fige son action pendant un certain temps, est génant.
Peut-on nettoyer la mémoire par thmeadparalléle (ou un processus lancé périodiquement par le programme
principal) pendant un travail normal? Le probléme est délicat, car pendant le GC la mémoire se trouve dans un
état instable, parfois elle est kendommagée» (algorithme de Schorr-Waite qui renverse les pointeurs crée dans
la mémoire des structures qui n’ont rien a voir avec le programme. . . ; durant la phase de recopie qui insére les
forwarding pointersaucune partie de la mémoire n’est utilisable. . .).

Il est difficile d'imaginer que I'on puisse dans un tel contexte faire une partie du ramassage (marquer
partiellement les structures, par exemple). Cependant, sile modéle de marquage (bit : oui/non) estréiendu a
couleurs: blanc, gris et noir, ou un noeud noir a été marqué (copié) entierement, avec tous ces descendants,
et un noeud gris a été traité, mais ses descendants pas encore, alors le ramassage incrémental devient effectif.
Ceci est tres important pour 'usage des langages évolués, qui exploitent I'allocation dynamique de mémoire
dans le contexte de programmation en temps réel.

Les détails de l'algorithme sont un peu compliqués. En fait, il existe déja plusieurs algorithmes incré-
mentaux, classés en deux catégories, les («vrais») algorithmes incrémentaux, ou le collecteur opére quand
I'application principale le demande, et le ramassage concurrentiel qui se déroule en «paralléle», en temps
partagé avec le consommateur de mémoire (le mutateur).

On commence par une description abstraite du processus GC. Pour les deux stratégies décrites ici, le marquage
et la recopie, on peut considérer que les nceuds possédent une de deux couleurs, ils sont Blancs («normaux») et
Noirs (visités : marqués ou copiés). La régénération de mémoire consiste a trouver tous les nceuds qui peuvent
étre «noircis» ; le marquage utilise une pile, et I'algorithme de Cheney — une file.

Ici les nceuds sont donc divisés en trois classes : les Blancs, les Noirs et les Gris.

e Les objets Blancs n'ont pas été encore visités, ni par I'algorithme de marquage, ni par la boucle de
recopie. Le GC démarre avec tous les nceuds Blancs.

e Les objets Gris ont été touchés (marqués ou copiés), mais leurs descendants non, pas encore. Dans
la stratégie de GC en profondeundrk-and-sweép ils sont accessibles par la pile de stockage des
descentes récursives. Pour la stratégie de recopie, ce sont des records copiés, mais dont les fils n'ont pas
encore subi le transfert.

e Les objets Noirs sont marqués avec tous les descendants immédiats. lls ont quitté la pile, ou ils ont été
recopiés avec leur famille descendante (les ancétres et les descendants lointains peuvent rester encore
Gris).

Un pseudo-code qui décrit le ramassage est trés succint :

while(objets Gris existent)
p = le premier objet Gris accessible
for_each(champs f i de I'objet p)
if(p.f_i est Blanc) p.f_i <- Gris
p <- Noir

La présence de la boucle intuitivement suggére que la stratégie décrite ici s’adapte mieux aux GC qui exploitent
la recopie, et, en effet, ceci est plus populaire. Nous constatont maintenant, que

e Quand il n'y a plus de nceuds Gris, tous les objets Blancs sont morts.
e Tous les objets Gris doivent étre physiquement accessibles (pile, ou file...).

e Finalement, aucun objet Noir n'a le droit d’adresser un objet Blanc ! Ce «racisme» est contagieux,
comme nous le verrons dans quelques instants. Les objets changent de couleur en fonction de nosuds qui
le voient.

12.4 Ramasse-miettes copieur 123

Quand le collecteur travaille, me mutateur doit pouvoir créer de nouveaux objets. (De quelle dpuleur?

Quand la procédure utilisateur stocke un pointeur sur une structure «normale», ancienne, Bldaoke
un champ d’un objet NoiB, il faut colorier GrisA et B. Le compilateur doit générer un code supplémentaire
pour chaque affectation d’un pointeur, afin d’assurer un bon déroulement de cette opération.

Quaand le mutatewacceédea un pointeur sur un objet Blanc, cet objet devient immédiatemment Gris. Le
mutateume peutjamais opérer sur la référence a un objet Blanc ! Donc, les acces sont compilés aussi avec
quelques instructions supplémentaires, ce qui est colteux.

Quelques autres procédures entrent en vigueur si le systeme utilise la mémoire paginée, mais nous allons
ommettre la discussion de ces problémes.

C’est presque tout. A présent les deux «adversaires», le mutateur et le collecteur peuvent travailler ensem-
ble. Essayons quand méme d'y ajouter quelques précisions.

12.4.4 Algorithme de Baker

Cet algorithme augmente la puissance (et ralentit) de I'algorithme de Cheney, et il est compatible avec le GC
générationnel.

Quand la mémoire est épuisée, femm-spaceet to-spacebasculent, et les objets dans le noyau sont dé-
placés. Ensuite le mutateur peut reprendre le travail. Mais chaque fois quand le mutateur demande I'allocation
des nouvelles cellules, un processus quasi-paralléle force le scanning de quelques objets par le collecteur. lls
sont déplacés, et le nouvel objet alloué prend sa place a la fin de la zone d’allocation asgdee Bien
sdr, quand le nouvel objet est initialisé, les objets-cibles de ses champs sont (éventuellement) reospiés.
mutateur n’adresse que lio-space; tous les pointeurs stockés appartiennent a la nouvelle zone du travalil

Quand le mutateur accede a un objet, les instructions supplémentaires générées par le compilateur assurent
le systéme qu’on reste dansttespace La découverte d’'un pointeur «ancien» provoque immédiatemment la
recopie de sa cible.

Le systeme GC est propre et lisible, mais son code est long. Nous n’allons pas le traiter plus, et on s’arréte ici.
Tout le domaine de GC n’a pas dit son dernier mot.

1Les étudiants répondent trop souvent «Blanche», ce qui est complétement faux !

Chapitre 13

Macros et pre-traitement

13.1 Transformations source — source

Ce chapitre est plus important que I'on n'y penke.pre-traitementgreprocessingest une étape qui précéde
d’habitude la compilation (translation en code intermédiaire/final) proprement dite. Pourquoi d’habitude? Sou-
vent dans les livres on trouve une discussion trés simplifiée, qui réduit les macros a la substitution textuelle des
symboles par symboles ou séquences de symboles. Mais la vérité est infiniment plus riche.
La substitution textuelle des symboles est tres utile, et 'usage des constantes et formes fonctionnelles sym-
boliques (pa#tdefine) est un des traits caractéristiques du langadkest évident qu’une pre-définition de
la constante P1=3.1415926536 économise le temps du programmeur et évite quelques fautes, et qu'une compi-
lation conditionnelle selon la valeur de la variaBl&s_ ENDIAN peut rendre le programme plus portable.
Cependant, la transformation générale source- source est une technique de compilation universelle,
qui doit étre connue. Elle peut réaliser plusieurs objectifs.

e Une possibilité de faire un compilateur vraiment portable, indépendant de la plate-forme cible. On
compile tout erC, ou un assembleur portable, dont un certain nombre existe sur le marché. Le résultat
peut étre moins efficace que la compilation native, mais ceci servira a rendre le langage plus populaire.
Tels étaient les débuts daskell.

e Transformations des structures syntaxiques spécifiques a un langage, en formes universelles. Par exem-
ple : transformation des boucles en récursivité terminale, ou vice-versa (selon les structures des langages
source/cible). Nous allons commenter ceci plus soigneusement.

e Une possibilité débootstrapperun compilateur, écrit dans le méme langage qui sera compilé. La pre-
miére phase consiste a écrire un compilateur simple, mais de le «compiler» (manuellement, ou par un
macro-processeur qui dgtaucoupmoins complexe qu’un vrai compilateur) €y ou autre langage uni-
versel, et ensuite utiliser le premier compilateur pour traiter la seconde version. Dans la pratique il faut
prévoir plusieurs passes source-source.

La réalisation d’'un macro-processeur intégré a un compilateur peut étre plus ou moins facile selon la puis-
sance du macro-langage souhaité, et le caractére du compilateur : est-ce un compilateur/interpréte qui donne a
I'utilisateur I'accés aux modules de compilation de l'intérieur du programme, comi@eterme ou Smalltalk,
ou c'est un compilateur «boite-noire» comme le compila@®r

La variante la plus simple, est la suivante :

e Le paquetage de compilation dispose ddictionnaire de macrasCeci peut étre une table de symboles
indépendante de la table principale, mais il est possible, pour des raisons d’homogénéite, d’utiliser une
seule. Ainsi tout symbole, macro, ou autre chose, possede une seule référence, et une macro peut étre
locale dans un bloc, comme tout autre symbole.

e Tout symbole — macro posséde un attribut.cro associé a une valeur qui est une liste de lexésaes
interprétation, sans structuratiorhutre possibilité : le systéme gére une liste d’associations séparée du
dictionnaire, et cherche les valeurs dans cette liste. Les systechesne populaires utilisent soit un
soit 'autre variante, selon I'option choisie par les concepteurs.

124

13.1 Transformations source — source 125

e Le scanneur remplace le symbole-macro par sa définition. Ceci signifie que I'analyseur doit pouvoir
changer localement le flux d’entrée et de passer a la macro-définition, en sauvegardant le contexte précé-
dent.

e Il est naturel de ne pas considérer le flux secondaire comme un flux de caractéres, mais de lexemes déja
construits avant, lors de la lecture de la macrodéfinition.

e En fait, nous avons menti encore une fois. Le préprocesseGrmirmet qu’'une macro soit réellement
une liste des lexémes, mais®cheme le macro-développement aste transformation des expressions
en expressions Si laforme (f x y) est reconnue comme une macro-expressions, c'est-a-dire si
possede l'attribut de macro, la forme entiére est transformée en une autre forme, mais qui constitue une
expressiorscheme légale.

Dans la pratique la situation peut étre encore plus complexe.

e Siles macros peuvent étre récursives (par exemple, nous voulons précompiler quelgues fonctions numeériques,
ou de traitement des listes), la sauvegarde du flux d’entrée doit utiliser une pile, avec toute la complication
que cela implique.

e Macros récursives sont inutilisables, si le préprocesseur n'est pas capable de prendre des décisions de
développement conditionnel, pour arréter le dépliage des macros.

e Les macros doivent alors étre parametrées, et ceci signifie que les macro-définitions constituent un lan-
gage dans langage. Le préprocesseustitue un interpréte, une machine virtuelle integrée au paquetage
de compilation

Si, comme erC le macro-développement est une substitution textuelle (lexicale), le préprocesseur doit
étre équipé avec un petit parseur, et un «générateur de code» dont le résultat est le flux constituant la
macrodéfinition. Le parseur doit au moins pouvoir reconnaitre des formes fonctionnelles de type

#define abs(x) ((x<0)?(-(x)):(x))

pour pouvoir remplacex par I'expression appropriée lors du développemerdliga-2/x) , et de ne pas
confondre les x».

Les macros comme labs ci-dessus ont 'avantage de profiter de la surcharge des opérateurs de relation
et du signe ; on n’est pas obligé de définir une macro pour les entiers, I'autre pour les complexes, etc. D'autre
part, sil'argument d’'une macro est une expression composite, il serait mieux de disposer d’un bon optimisateur
de code, et en particulier d’'un éliminateur des expressions communes. (Sinon, imagDdzexression
abs(XX) , ouXXest une expression vraiment trés large (plusieurs pages).. .

Les macros restent une technique ambigué. Les méthodologues des langages évolués modernéstomme

ol les macros ont été héritées @u préconisent plutdt 'usage des fonctioinsine que des macros, et leur
usage habituel se restreint aux constantes symboliques et des fonctions trés simples. En faigafales

macros sont des procéduriesline, les macro-définitions doivent étre despression$égales et bien typées.

Les templates e@++ sont également une sorte de macros structurées et typées. D’ailleurs, dans les deux cas
(Clean et C++), l'intégration du systéme de types rend impossible leur développement par un module séparé
du compilateur.

La substitution textuelle est une source de plusieurs problemes concernant la portée et le statut des identificateurs-
noms des macros. Est-ce qu'une macrodéfinition doit étre locale ou globale? Comment éviter le conflit
des noms, sachant que le macro-développement est une transformatiosodeci® Peut-on dynamique-
ment assembler et créer des identificateurs nouveaux a partir des fragments : imaginez une macro-boucle
for i=... x$i ... , qui crée les variablesl , x2, etc. Est-ce raisonable?

D’autre part, il existe des langages interprétés qui sont par excellence des macroprocesseurs, ou il n'y a
aucune, ou presqu’aucune différence entre les procédures et les macros. Tel est |lg28ast die MietaPost.

Le langageJavaScript est aussi un macro-langage, les navigateurs comme Netscape ne génerent pas de code
intermédiaire, mais développentline les définitions des fonctions présentes dans le document.

126 Macros et pre-traitement

13.2 Macros et langages-amibes

Des macros universelles peuvent en principe changer complétement I'apparence extérieure d'un langage. L'exemple
le plus saugrenu vu par I'auteur de ces notes était la réalisation d’'un langage de prograrBeakibpour les
machines CDC série CybeBALM était un langage relativement classique, fonctionnel, mais son compilateur-
interpréte était une merveille d’éclectisme : il avait 'apparence d’'un programnhéspravec des listes, la
récursivité, etc., et en vérité il a été écrit en assembleur. Chaque expressidrisgiyjgarenthésée, était une
macro-instruction qui dynamiquement optimisait I'allocation des registres, préparait des étiquettgstpour
gérait la pile des blocs lexicaux, etc. La puissance du macro-assembleur CDC était telle, que 'assemblage était
dix fois plus lent que la compilation d’un programmeRawscal. . .

Cependant le langage qui peut étre modifié a volonté manque tout simplement de stabilité. Il est trés difficile
a apprendre, et les programmes ne sont pas lisibles, ce qui va a I'encontre de I'idée méme des macros.

Voici quelques exemples-type de I'enrichissement d’'un langage par des macros. Les macro-fGonesen

grace auxquelles on définit de nouvelles formes spéciales (syntaxiques), par exemple des nouvelles structures
de contrble. Grace a la couche macroSaheme on peut simplifier la notation, ajouter des mécanismes de
destructuration automatique des parametres, ou méme optimise le programme au niveau source. On ne sait pas
comment compiler

(cond (a b ¢)
(d e f)
(else h i)

alors on commence par la réduction de cette forme en une cascdd€dacrétemenDrScheme produit

(#%if a (#%begin b ¢)
(#%if d (#%begin e f) (#%begin h i)))

Ainsi on peut réduiréet a une forme contenatdmbda, while alet nommé récursif-terminal, et celui-1a, a des
primitives de genréetrec, comme ici :

(et f (@@ b))
(9 a (f (paa(f(ra)
==>>

((#%letrec-values
]g)((f) (#%lambda (a) (g a) #%if (p a) a (f (r a)))))

b)

Ainsi le «vrai» compilateur, c’est-a-dire le générateur du code n’aura a traiter qu’'un nombre limité de primi-
tives.

Le compilateur déScheme ayant découvert qu'un symbofe possede I'attribut macro, lance la procé-
dureexpand-defmacrode la forme entieréf ...) . On peut attacher fa une procédure de transformation
guelconque, écrite éBcheme par l'utilisateur.

13.3 Exercices
Q1. Chercher (et trouver), ou construire la macro-procédren, qui transforme eischeme la forme
(when (a b) c d e f)
en
(#%if (a b) (#%begin c d e f))
R1. La voici:
(define-macro when

(lambda (test . body)
‘(if test (begin ,@body))))

13.3 Exercices 127

Q2.

R2.

Notez, que la forme-cible contierft dans la définition, les primitive§%if etc., sont construites au-
tomatiquement.

CommeniScheme développe la formeéefing? On sait par exemple que
(define (a b) ¢ d)
se transforme en

(#%define-values (a)
(#%lambda (b) c d))

mais comment gérer letefinelocaux a une fonction, ou les définitions des fonctions a nombre variable
d’'arguments?

Cherchez la réponse vous-méme. La deuxiéme question n'a pas de réponse unique. On peut prévoir
des opérateurs, ou des formes lambda n-aires, mais on peut aussi — dans quelques cas — faire des macro-
transformations du genre :

(*fabcd==>>(Fa((*b(*cd)

Chapitre 14

Modeles de code plus sophistiques

14.1 Evaluateur eval-apply

Cette section est entierement consacrée a la discussion de quelques machines virtuelles réelles, plus complexes
gue notre machine a pile, ou notre interpréte arborescent. C’est un joli jeu de mots : machines virtuelles réelles,
mais le sujet est tres pratique et incontournable pour tous ceux qui verdénentconstruire des compilateurs.

Il n'est pas difficile de trouver dans la littérature (par exemple sur I'Internet) la définition et I'implantation
d’'unevraiemachine virtuelle pourisp ou autre langage fonctionnel. On les enseigne comme outils d'implantation,
définitions de la sémantique des langages, et comme un terrain pratique por apprendre optimiser les algo-
rithmes. Un de ces modeles, la machine SECD de Landin, qui est toujours un bon modele de machine fonc-
tionnelle stricte, a été élargie a maintes reprises : il existe une variante paresseuse (CASE), une machine avec
des objets persistants, etc. Ces modeéles servent également a implanter les langages a objets.

La premiére machine virtuelle, récursive arborescente, ressemble a un évallispeclassique concu par
MacCarthy autour de I'année 1960. Les modifications indispensables pour qu’elle s'approche de l'interpréete
réaliste de ce langage sont les suivantes. (Décrivons le digetieme pour au moins deux raisons dif-
férentes : le lecteur doit le connaitre, et il est beaucoup plus simple et plus homogé@enguen Lisp). Le
passage ci-dessous est une répétition du modele déja discuté !

e Les opérateurs soni-aires. Tout nceud (expression) intermédiaire (non-feuille) a la forme di'stiee
d’expressionsdont la premiere joue le rbéle d’'opérateur. Le cas terminal est un atome, ou une forme
lambda explicite.

e Sil'opérateur est un atome, il doit étre associé (posséde la valeur) a une forme primitive — une référence
au code-machine, ou une foreenbda (déja compilée, bien sar).

e Sic’est une autre chose, la machine évalue cette expression jusqu’a sa réduction a un objet fonctionnel
explicit. Est-ce que ceci peut étre une macro? Evidemnmemt, le systéeme de réécriture des macros
aurait d0 se débarasser de toutes les transformations de la source avant I'exécution.

e La machine évalue tous les arguments de I'opérateur : tous les éléments de la liste sauf le premier (qui a
été déja réduit et attend ses arguments). Ils peuvent étre mis dans une liste temporaire, ou stockés dans
un vecteur temporaire.

e Sil'opérateur est une primitive, la machine exécute la procédure magique correspondante.
e L’'heure de vérité arrivel’objet fonctionnel est une formlambda avec parameétres, et un corps, qui est

une expression. Les paramétres sont des atomes. (Les extensions syntaxiques possibles, qui déstructurent
automatiquement les arguments ne seront pas discutées ici ; ceci appartient a la couche macro).

— La machine construit des associations entre les parameétres (chacun des symboles), et les valeurs
des arguments stockées au préalable dans une structure temporaire.

128

14.2 Machine SECD 129

— Cette association n’est pas statique, destructrice, mais elle empile des nouvelles associations
sur celles déja existantes 5i le parametre d’une formambda s’appellex, ceci n'a rien a voir
avec la variablex globale. Des associations hiérarchiques, empilées, implémentent la localité des
variables-parameétres.

— La machine évalue (récursivement, c’est-a-dire en empilant la continuation du contexte actuel) le
corps de la fonction, et ceci est le résultat de I'expression, passé au niveau appelant.

— Les associations locales sont détruites.

e Exception au protocole précédent : I'évaluation de I'opérateur résulte non pas en objet fonctionnel, mais
en une forme primitive, une structure de contrdle, par exemplié enA ce moment 13, la machine
peut déclarer son incompétence, et passer a I'opérateur spécial directement le reste de I'expression, par
exemple la liste

(<condition> <expression-then> <expression-else>)

et laisser tout le reste a I'opérateur.

e Le langage peut prévoir la possibilité de programmer les formes spéciales explicitement par le program-
meur. Ceci était jadis une technique populaire_ésp (les pseudofonctions de type FEXPR), mais est
tombé en désuétude, et a été remplacé par les macros (qui elles aussi sont des formes spéciales). Dans ce
cas les actions de la machine peuvent étre les suivantes.

— L'interpréte reconnait que I'opérateur est une forme spéciale de haut niveau, undléoninga |
ou quelque chose de ce genre.

— Les éléments restants de I'expression sont associés aux parametres de I'opéeasesans étre
évalués

— Ceci implique qude codepeut étre considéré comme uvaeur. Nous savons déja comment le
réaliser.

— L'opérateur, et alors le programmeur et le langage dispose de la fonction prieviéivequi relance
récursivement la machine, permettant d’évaluer une expression de l'intérieur du code.

— Sachant que cette évaluation se réduit dans la plupart des cas a 'application d’'un opérateur «nor-
mal» a une collection de valeurs, le langage dispose d’'une autre primapply , qui applique
son premier argument aux éléments de son second argument qui est une liste.

Attention. Toutest 14, décrit en frangais. Une demande de transformer ceci ertHaskell est unexcellent
sujet d’examen

En fait le mottout souligné ci-dessus ne correspond pas a la réalité. Plusieurs choses ont été «cachées sous la
moquette», et laissées a la discrétiorrain-timedu langage d'implantation de l'interpréte :

e Larécursivité dieval , et donc tout le bagage de la gestion des piles systeme.

e La création des associations paramétre — valeur. On peut utiliser des listes normales, mais la gestion de
ces associations doit étre primitive, malgré la simplicité des opérations.

14.2 Machine SECD

La machine SECD de Landin, publiée pour la premiere fois déja en 1964, précise quelques détails de maniére
plus disciplinée, et optimise |légérement le protoelal-apply , car c’est une machine de plus bas niveau,
plutdt proche de notre machine linéaire, mais moins intuitive, plus formelle. En tout cas, elle de plus bas
niveau que l'interpréte ci-dessus, et elle compte sur la couche pre-compilation qui transformelewten
instruction :charger la valeuyetc. SECD a été concue pour décrire la sémantique opérationnelle des langages
fonctionnels, mais Landin lui-méme s’est vite rendu compte qu’elle permet d’établir une correspondance entre
le calcul lambda et le langage Algol 60, impératif par excellence. La machine SECD est I'ancétre d’'un modéle
plus récent, CEK, qui exploite les continuations. (Moir aussi la machine FAM de Luca Cardelli, et plusieurs
exemples élaborés par ANdrew Appel).

Elle possede quatre registres globaux :

130 Modeles de code plus sophistiqués

1. S: (Stack) — la pile qui contient les résultats intermédiaires durant I'évaluation.

2. E: (Environment) — une pile ddsames qui contient les valeurs associées aux variables. Ceci combine
la liste temporaire et la liste des association mentionnées ci-dessus.

3. C (Control list) : le code — une structure dont I'élément directement accessible correspond a I'expression
évaluée, ou a l'instruction exécutée.

4. D (Dump) : zone de stockage d’autres registres utilisée quand la machine exécute une nouvelle procé-
dure. Ceci correspond a peu prés a notre pile des retours, mais est un peu plus générale.

La machine de Landin est un automate qui exécute des transitions
SECD — S FECD

Par exemple, I'empilement d’'une constante aura la forme décrite par la forftms s e ¢ d) en
Haskell

trans s e (LOAD (Const x) : ¢) d = ((x:s),e,c,d)
trans s e (LOAD (Var i) : ¢) d = ((assoc i e:s),e,c,d)

Simple, nest-ce pas? Sil'on veut, on peut passeads les 4-uples comme 1 argument, et non pas les 4
séparément («curryfiés»), mais ceci est une modification cosmétique. Nous ne décrivons pas ici la structure
du langageinterprété par la machine SECD et le lecteur doit regarder les exemples d’'une certaine distance.
On peut, par exemple, éliminer le mot-clé LOAD, ou I'amalgamer @enst ouvar en construisant les
Codeltems : LoadConst , LoadVar , etc. La liberté de préciser les détails, c’est-a-dire de dédiair
maniére préciselestypesdes objets concernés, avec leurs balises de reconnaissance correspondantes reste a la
discrétion du programmeur.

Si le code contient une fonction, qui sera empilée pour étre exécutée plus tard (p. e-tisonelse il
faut se rendre compte que celle-la n’est jamais autonome (sauf pour les opérateurs «purs», p. ex. primitifs),
mais peut étre obligée de décoder ses parametres et en général, le contexte de son empilement. Elle aura besoin
de I'environnemenéactuel

trans s e (LOAD (Fun f) : ¢) d = ((Funkv f e):s,e,c,d

ou FunEv est une constructeur de données (cela peut étre une simple paire, sauf pour le type qui doit étre une
valeur Iégale), qui stocke sur la pile la fonctiamsi que son environnemente probléme dans notre petite
machine du chapitre 3 a été a peine signalé sans détails, et nos exemples comme le cube ou la factorielle étaient
des fonctions pures

Les opérations primitives peuvent étre traitées cortagsou balises, et interprétées comme suit :

trans (x:s) e (CAR :i¢) d = (car x :s,e.c,d)
trans (xy:s) e (CONS : c¢) d = ((y:x):s,e,c,d)

etc. Le lecteur pourra sans probléme reconstruire autres opérations primitives. Pour varier un peu, l'instruction
IF cette fois sera parametrée différemment. On la considére comme un opérateur unaire qui attend sur la pile la
valeur de la condition. Mais le code conditionnel a exécfati¢éipartie de I'opérateuyconstitue son parametre
(double), comme pour les opérateurs de chargement.

trans (cnd:s) e (IF cthen celse : ¢) d cxxxx (c:d) where
cxxxx = case cnd of True -> cthen
False -> celse

Bien sdr :
trans s e (RETIF :) (c:d) = (s,e,c,d)

ou RETIF (appelée parfois JOIN) est le retour du branchement conditionnel. Ceci est une version tres simplifiée
d’un retour général d’'une procédure.

L'application d'une fonction «non-magique» mérite une discussion approfondie. Linstruction APPL at-
tend sur la pile des données une fonction a exécuter , ou plutét une fernfretolEy qui a «attrapée»
I'environnement actif au moment de la création de cette fermeture.

Le code est un peu symbolique, la ligtd, a2,...,an] symbolisen arguments stockés sur la pile,
oun correspond a l'arité de la fonction

14.3 Exercices 131

trans (Funkv f e’ : [al,a2,...an] : s) e (APPL : ¢) d =
0 ([a1,a2,....an] : €') f (s:e:c:d)

Le lecteur notera des particularités suivantes.

e Le codef s’exécute dans un environnement enrichi par les valeurs des parametres. (Ici mises dans une
liste, mais d’'autres stratégies sont possibles).

e L'adressage des parametres devient alors simple. Sila famizla possédait trois parametres formels :
X,y etz, la compilation du corps de cette fonction transforme la référenceravariable Oy en vari-
able 1, etc.Mais attention ! Et si la fonction faisait partie d’'une forme englobante, et possédait des
variables globales?

Le protocole SECD donne la réponse a la question qui n'a pas été abordée lors de notre construction de
la machine virtuelle : la co-existence des environnements locaux, hiérarchiques. On introduit la notion
deframesou instances de’activation. lfeamele plus proche, I'environnement local porte le numéro O,

etz n'est plus identifié comme la variable avec indice 2, mais son indice est (0,2). L'accés a la variable
globale appartenant a I'environnement englobant immédiat utilisera I'indidedfc. La création de ces
références est la tache du compilateur qui transfdris (ou autre langage) end code SECD.

Il faut donc modifier I'interprétation de I'instructio. OAD (Var i)) !

e La pile de données est vidée. Ceci est différent de notre machine=R&H, ou la pile ne changeait
pas. Dans notre machine une fonction pouvait faire absolument tout avec la pile de données : placer 6
valeurs, récupérer 15, bouleverser I'ordre dans toute la pile, etc. Ceci a ses avantages, et c’est grace a
cette liberté que le compilateORTH ou PostScript est simple, mais la programmation manuelle est
une galére. La machine SECD est plus structurée. Pour les langages Hespymhaque procédure doit
consommer exactement le nombre d’arguments qui correspond a son arité prédéfinie. Ainsi, I'exécution
de I'expression (symboliguement) al a2 ... an) procéde de maniére simple. La pile des
valeurs incomplétes n’est pas concernée, I'expression prend une pile toute fraiche, mais les valeurs des
arguments sont diment stockées dans I'environnement. Un tel appel doit sauvegarder pas seulement la
continuation du code, mais aussi I'environnement et la pile du contexte.

e Le retour aura la forme suivante :

trans (x:s’) e (RET:)) (s:e:c:d) = (x:s,e,c,d)

La construction incrémentale des environnements hiérarchiques ne suffit pas pour construire des fonctions
récursives. En effet, di appelle soi-méme, ou va-t-elle trouver le décodage de la varigbléa machine

SECD en enrichissant I'environnement lors de I'appef dearf aura des difficultés pour attribuer un statut

a cette variable. En construisant notre machine nous avons résolu le probléme par une indirection statique :
Le code accede a une variable, dont 'indice correspond a I'association contenant ce code. C’'est une solution
correcte, mais pas trés élégante et dangereuse. Le code récursif doit étre autonome, de ne pas dépendre d’'un
tableau d’associations des variables. Il doit alors étre auto-référentiel.

De nombreux exposés de la machine SECD, notamment ceux qui présentent la construction de cette ma-
chine enScheme, proposent une solution qui utilise la modification physique de I'environnement. (Avec les
procédures de modification physique il est facile de faire des listes circulaires, et autres abominations.) La so-
lution purement fonctionnelle trés intéressante existe, mais elle est un peu «magique», basée sur la sémantique
paresseuse, et elle ne sera pas discutée ici. Elle a été présente plusieurs fois intuitivement.

14.3 Exercices

Q1. Trouver sur I'Internet les définitions de quelques machines virtuelles théoriques et pratiques, comme
CEK, l'interpréete de Reynolds, la spécification de la machingad@, description du noyau du langage
Smalltalk, le sf Pascal de UCSD, le CASE, etc.

R1. Pas de réponse ici. Cet exercice n'a pas beaucoup d'utilité pour ceux qui veulent seulement passer
'examen, mais peut étre trés enrichissant.

132 Modeles de code plus sophistiqués

Q2. Transformer les spécifications informelles de I'interptal-apply en code réel. Coder dtiaskell cet
interpréte. Ajouter un nombre minimal de primitives et de fonctions d’interfagcage, et tester la machine.

R2. On ne peut priver le lecteur de son travalil intellectuel en fournissant la réponse a cet exercice.

Chapitre 15

Omissions

15.1 Geénéralités

Aucun cours de compilation n’est complet. Les omissions peuvent étre assez importantes, et elles peuvent étre
classés en deux catégories :

1. Incompatibilité avec la philosophie du cours. Ainsi, nous ne pouvions discuter les techniques de tres bas
niveau.

2. Priorités. On ne peut satisfaire tout le monde, et le temps est toujours limité.

Le seul moyen de pouvoir reconnaitre les limitations de ce cours est de chercher ailleurs, snawnstFeups
consacrés a la compilation, lire livres et articles. Il est évident qu'’il sera alors difficile de distinguer entre les
choses plus ou moins importantes.

La suggestion qui s'impose est alors : essayer de faire son propre compilateur. Pas trop ambitieux, mais
réalisé dés le début jusqu’a la fin. Il n'est pas judicieux de commencer par I'écriture d’un parseur, ni par
la construction d’'une machine virtuelle. La technique la moins douloureuse est d’exploiter les paquetages
et les langages déja existants, et de faire un compilateur-interpréte qui Btlesme, ou Smalltalk, ou
Python — des langages qui offrent un bon support a la manipulation des structures de données représentant

,,,,,

visibles. Passons a quelques lacunes concrétes.

15.2 Grammaires et parsing

e Nous avons a peine glissé sur la surface de I'analyse lexicale, expressions réguliéres, automates finis. ..
Ceci fait partie d’'un autre cours, mais un cours complet de compilation doit traiter ceci également, de
point de vue plus pratique.

e La construction des parseurs LR (p. ex. la construction LALR) doit un jour faire partie de ces notes.
Mais nous n’envisageons jamais traiter la théorie d’automates.

e Peut-étre une introduction raisonnable a Lex et a Yacc serait utile, avec quelques exemples raisonnables
(méme si ceci est trés contraire a la philosophie de l'auteur. . .).

¢ |l faut plus d’exemples de la technique de transformation source-source.

e Nous n'avons pu traiter quelques dispositifs d’optimisation, notamment I'élimination des sous-expressions
identiques (communes). Aussi : élimination du «code madiea¢l codginaccessible, qui peut étre
généré par le développement automatique d’une macro non-optimisée. Aussi : élimination des variables
(registres) redondantes. Tut ceci ce sont des exercices en parcours des graphes.

e Nous n'avons pas traité sérieusement les erreurs du parsing, et les dispositifs permettant de «calmer»
le parseur qui se trouve dans un état inextricable, et de reprendre la compilation. Un compilateur qui
panigue aprées la premiére faute découverte, est un jeu académique.

133

134

Omissions

Finalement, nous n’avons pas traité fesnespacesi les modules, pratiguement incontournables d’'une
facon ou autre si on veut compiler des programmes relativement volumineux.

15.3 Sémantique et génération du code

Nous n’avons pas discuté le filtrage — la compilation des définitions fonctionnelles ou la reconnaissance
des arguments se fait ppattern-matching C’est un petit fragment de la compilation, mais vraiment
fascinant. Il constitue d’ailleurs un formidable champ d’entrainement de la technique des continuations.

La création et la compilation des fermetures n’ont pas été décrites suffisamment bien. En particulier le
«lambda-lifting» et/ou la liaison entre les blocs lexicaux dans un programme méritent un peu plus de
place.

Parfois un changement de la grammaire permet de remplacer les attributs hérités par des attributs syn-
thétisés, ce qui est plus commode pour le parsing ascendant (a I'envers, nous avons insisté sur I'opération
de normalisation quintroduit les attributs hérités). En général, le langage des attributs est tres riche et
varié, une bonne maitrise de ce domaine distingue un vrai expert en compilation des gens qui «ont en-
tendu parler de». ..

Notre discussion des types &sih d’étre satisfaisante, et la version suivante de ces notes verra le chapitre
correspondant beaucoup plus épais. Nous présenterons un vérificateur de types concret et relativement
complet (sauf si nous décidons de proposer cela comme le devoir obligatoire ; dans ce cas tous les
ingrédients seront diment discutés).

Il faudra également dire quelques mots surctampilation modulairg séparée. Comment préparer
l'information pour un éditeur des liens (et qu’est-ce que c’est, cet éditeur des liens), comment gérer
les relocations des adresses, etc. Malheureusement les détails sont ici tres dépendants de I'architecture-
cible, et les solutions portables sont peu nombreuses (mais elles exgstieaime Smalltalk et Python

en sont des exemples).

Il serait bien de pouvoir dire quelques mots concernamolapilation des librairiesstatiques et dy-
namiques.

15.4 Modeles d’exécution

Programmation logique et la machine de Warren (WAM). Peut-étre aussi la «machine de continuations
binaires» de Paul Tarau, le noyau du BIN-Prolog. La programmation logique malgré I'échec du projet
Japonais de «V-eme génération» continue a progresser, et l'unification, ainsi que le non-déterminisme
trouvent de plus en plus leur place dans les systémes de solutions de contraintes, interfaces graphiques,
etc. Il est utile de savoir comment compiler de tels langages.

Programmation par objets et fonctions virtuelles. Ceci a été évoqué plusieurs fois, mais jamais de
maniére bien structuré. Un jour nous pourrons — peut-étre — décrire la machBmalkalk, et une
partie essentielle de la machine dfva.

Le probléme a deux «visages». |l faut savoir générer le code qui profite de I'héritage, qui évite toute
indirection qui peut étre résolu statiquement, et d’éviter trop d'«arithmétique des pointeurs». Il faut aussi
optimiser les indirections dynamiques — I'acceés aux méthodes virtuelles.

Programmation paresseuse : la technique de réduction paresseuse des graphes doit étre au moins men-
tionnée. Les modeles déaskell et Clean sont faciles a comprendre et bien documentés.

Des machines fonctionnelles (ou presque) vraiment efficaces et pratiques, notamment le noyau du CAML,
et la machine FAM de Luca Cardelli.

15.5Run-timeet l'interfacage 135

e Programmation événémentielle. En fait il ne s'agit pas d’'une machine virtuelle proprement dite, mais
d’'un protocole de collaboration entre les modules, qui peut étre impla@éanautre langage impératif.
Le code d’'un programme piloté par les événements est un code «normal», impératif ou fonctionnel. Mais
c'est un code spécifique, qui insiste sur la synchronisation, qui gére les ressources partagées, qui est
adapté aux interruptions, etc.

Il y a au moins deux problémes distinctes ici : I'interfacage, la communication du programme avec le
systeme d’exploitation (gestionnaire des ressources) et ses gestionnaires d’événements, et la structure du
code.

15.5 Run-timeet l'interfacage

e Démarrage et arrét. Tout programme qui va s'exécuter doit étre chargé dans la mémoire par un module
spécial du systeme d’exploitation. Ceci est une opération complexe. La gestion des processus, les
opérationdfork ou exec(sous Unix) sont discutées ailleurs, ce domaine n’appartient pas a un cours de
compilation. Mais le programme compilé doity étre préparé, surtout s'il contient des adresses accessibles
de I'extérieur (p. ex., s'il s'agit d’'un module faisant partie d’une librairie dynamique : DLL ou SO, selon
le systéeme).

[l faut donc dire quelques mots a propossdebsqui démarrent I'exécution, et sur la présence dans le
code de I'information symbolique, facilitant le débogage.

e Les exceptions et les dispositifs de débogage font la différence entre un langage utilisable et un pro-
jet strictement académique. Ceci n'a pas été traité en détail, mais évoqué plusieurs fois. Il faut plus
d’exemples et la discussion approfondie de la sécurité de programmation. Concrétement, il faut qu’aucune
erreur ne soit capable de mettre en danger la sécurité ni la logique de 'allocation de mémaoire, les fichiers
et le systeme d’interruptions.

e Nous n'avons pas parlé ni des systémes de fichiers, leur bufferisation, leur sécurité, etc., ni de la gestion
des «pseudo-fichiers» liés aux événements extérieurs, comme la lecture de la console. Ceci évidemment
ne fait pas partie de la compilation proprement dite, mais il faut savoir générer le code qui accomplit de
telles taches, qui est capable de collaborer avec la couche-systeme du langage.

15.6 Varia

e Plus d’exercices ! (Et plus de solutions, n'est-ce pas?)

e Eliminer au moins 25% de bavardage.

Annexe A

Introduction a la veritable
programmation fonctionnelle et a Haskell

A.1 Pratique de la programmation en Haskell

Ceci n'est pas un manuel ! Pour apprivoiser ce langage il faudra lire la documentation. Cette section est
pour votre pratique, pour pouvoir commencer a écrire des programmes relativement compliqués. Bien sdr, les
exemples seront trés nombreux, et leurs sujets seront choisis en fonction de leur utilité pour la compilation et la
construction des interprétes, mais aussi pour montrer quel est le véritable sens du conpepgidenmation
fonctionnellex.

Nous allons utiliser un compilateurGlasgow Haskell Compiler GHC, et deux interprétes ddaskell
— Hugs (écrit par Mark Jones, actuellement a Oregon), et GHCI (Glasgow Interpreter, plus compatible avec
GHC) installés sur les plates-formes Linux. Il faut que las binairies se trouvent sur le PATH, et il faut lire la
documentation. Les interprétes se lancent depuis la ligne de comniargge §u ghci), et on peut leur passer
guelques options d’exécution. Nos exemples (avec quelques rares exceptions) ont été exéddtégssous

On peut intéractivement entrer les expressionsiugts affiche le résultat. Voici le transcript d’'une courte
session :

Hugs mode: Restart with command line option +98 for Haskell 98 mode
Reading file "\Lang\Hugs\libVPrelude.hs":

Hugs session for:

\Lang\Hugs\lib\/Prelude.hs

Type :? for help

Prelude> [1,2,4,5] ++ [2 .. 9]

[1,2,4,5,2,3,4,5,6,7,8,9] :: [Integer]

(292 reductions, 521 cells)

Prelude> ch x where

ERROR: Undefined variable "x"

Prelude> ch x where x=1.5; ch y = (exp y + exp (-y))/2
2.35240962 :: Double

(35 reductions, 132 cells)

Prelude> product [1 .. 120]
66895029134491270575881180540903725867527463331380298102956
71352301633557244962989366874165271984981308157637893214090
55253440858940812185989848111438965000596496052125696000000
0000000000000000000000 :: Integer

(2552 reductions, 6660 cells)

Prelude>

On note l'usage de I'opérateur de concaténafior) et la forme abrégée de lintervall@: .. b] . La
totalité de I'expression doit étre placée sur une ligne, les expressions incomplétes ne sont pas admises. On peut
séparer les parties d'une définition par les points-virgules. On peut aussi utiliser les accolades pour définir des

136

A.1 Pratique de la programmation en Haskell 137

«blocs», mais nous allons éviter ce style. Notons également le faitigge peut opérer sur les entiers de
longueur quelconque.

On peut entrer une définition fonctionnelle, mais elle doit faire partie d’une expression, comme ci-dessus.
Onnepeutpas écrigh x = ... etespérer quelugs accepte ceci comme une définition fonctionnelle ! Si
nous voulons définir des fonctions persistantes, ou simplement écrire des définitions longues, il faut les mettre
dans un fichier extérieur, et le chargétugs veut avoir la possibilité de lirgoutesles définitions courantes,
afin de pouvoir effectuer leur analyse globale. (Il faut admettre que ceci n’est pas commode).

Les commandes de chargement saht... pourload, ce qui annule les définitions précédentes (sauf le
Prélude), oua ... (add), ce qui augmente I'environnement par des nouvelles définitions. Il existe aussi un
systeme de modules en Hugs (etttaskell en général), mais pour I'instant nous allons l'ignorer. La directive
:? affiche la liste de toutes les directives :

Prelude> :?
LIST OF COMMANDS: Any command may be abbreviated to :c where
c is the first character in the full name.

sload <filenames> load modules from specified files

:load clear all files except prelude

:also <filenames> read additional modules

‘reload repeat last load command

:project <filename> use project file

-edit <filename> edit file

-edit edit last module

:module <module> set module for evaluating expressions
<expr> evaluate expression

‘type <expr> print type of expression

? display this list of commands

'set <options> set command line options

:set help on command line options
:names [pat] list names currently in scope

sinfo <names> describe named objects

browse <modules> browse names defined in <modules>
:find <name> edit module containing definition of name
:lcommand shell escape

:cd dir change directory

:gc force garbage collection

:version print Hugs version

:quit exit Hugs interpreter

Prelude>

et la directiveset permet de voir/changer plusieurs options d’exécution de I'interprete :

Prelude> :set

TOGGLES: groups begin with +/- to turn options on/off resp.
Print no. reductions/cells after eval

Print type after evaluation

Terminate evaluation on first error

Print no. cells recovered after gc

Literate modules as default

Warn about errors in literate modules

Print dots to show progress

q Print nothing to show progress

w Always show which modules are loaded

k Show kind errors in full
0
u
i

O Q" nm

Allow overlapping instances

Use "show" to display results

Chase imports while loading modules
m Use multi instance resolution

OTHER OPTIONS: (leading + or - makes no difference)
hnum Set heap size (cannot be changed within Hugs)

138 Introduction a la véritableprogrammation fonctionnelle et a Haskell

pstr Set prompt string to str

rstr Set repeat last expression string to str
Pstr Set search path for modules to str
Estr Use editor setting given by str

cnum Set constraint cutoff limit

Fstr Set preprocessor filter to str

Current settings: +stfewui -gl.gkom -h3000000 -p"%s> " -r$$ -c40

Search path . -PD:\Lang\Hugs98 --- etc. ---
Editor setting : -E

Preprocessor . -F

Compatibility : Hugs Extensions (-98)

Prelude>

Les fichiers extérieurs comportant les définitions des fonctions (et des types, etc.) nhormalement doivent avoir
le suffixe.hs . Si le fichier a été accepté et chargé, et si vous voulez le modifier, pour le recharger il suffit
d’écrire:r (commereload).

Les techniques présentées ci-dessousfsoptionnelles et purgsans effets de bord). Programmation dans
un style impératif, avec deffets qui «font» quelque chose, et non pas seulement évaluent une expression, est
aussi possible, mais elle est assez particuliére et difficile a maitriser. |l faudra d’abord maitriser bien le concept
de typage emaskell.

A.2 L'essentiel

Dans le style fonctionnel les notions d'un objet et de sa valeur se confondent. Il n'y a pasdifecations

de valeurs (affectation ::z »), et dans le méme environnement la variabkgnifie toujoursla méme chose.

Il est évident, que pour pouvoir construire des nouvelles valeurs il faut savoir appliquer des opérations aux
arguments, mais toute affectation, toute opération de gemser1l est strictement interdite. Braskell la
définitionx = y est une identification.

Cette propriété est essentielle pourtdansparence référentielldes programmes fonctionnels. Le fait
gu’une variable signifie (dans son contextepchose, permet une optimisation assez agressive da la compila-
tion.

La méme syntaxe, un peu généralisée sert a définir les fonctions, on n’a pas besoin de mots-clés, comme
function , SUBROUTINE, etc. Pour définir le cube d’'un nombre nous écrivons

cube x = x*x*x

Absence d'affectations n’empéche pas I'usage de variables locales qui s’identifient avec les expressions qu’elles
représentent. Voici la définition du sinus hyperboliqudHaskell :

sh x = (y-1.0/y)/2.0
where y=exp X

ou, alternativement

sh x = let y=exp x
in (y-1.0/y)/2.0

ouwhere oulet sontde rares mots réservés. Il faudra s’habituer & une particularité syntaxitizeskis|
(existant dans quelques autres langages, co@lean ou Python : l'indentation remplace le parenthésage
— si la ligne suivante est plus indentée que la précédente, ceci signifie la continuation. La méme indentation
dénote une définition collatérale, au méme niveau, et une indentation plus courte termine la structure syntaxique
précédente, sans besoin de parenthéses. On peut aussi utiliser les accolades pour construire les blocs, et les
points-virgule pour séparer les entités syntaxiques, mais nous allons éviter leur usage.

La méme définition eScheme serait, bien sar

(define (sh x)
(let ((y (exp X))
(/' (- y (recip y)) 2)))

A.2 L'essentiel 139

Dans les deux cas conceptuellement important est le fait que ces définitions de fonctions sont des abréviations
des opérations plus primitives :

e Création d'unobjet fonctionnel, d’'une valeur qui représente la fonction, et

e Assignation de cet objet fonctionnel a une variable.
Des fonctions anonymes existent aussi, la folamebda en Scheme

(lambda (x) (let ((y (exp x))) (/ (- y (recip y)) 2)))
se traduit erHaskell par

\x -> (y-1.0/y)/2.0 where y=exp X
ou, si vous voulez :
\x -> let y=exp x in (y-1.0/y)/2.0

Si la variable définie danet n’est pas utilisée de maniére récursive, cette structure peut étre remplacée —
comme nous le savons déja — par I'usage d’'une fonction anonyme. Voici donc encore une autre variante de la
fonction ci-dessus :

X ->
(\y -> (y-1.0/y)/2.0) (exp X)

La définition

fx=g9gx
est équivalente a

f=W%->g9x
ce qui peut étre réduit a

f=g
mais attentiontoutela vérité de cette simplification\x->g x = g est un peu complexe a cause du typage,
et sera discutée ailleurs. La derniére forrfyag() peut ne pas étre acceptée par le compilateur, tandis que la
premiere si.

On peut aisément passer la valeur fonctionnelle d’'une variable & une autre, par exemsgite = sh, et

appliguermonsh a une valeur. Alors une fonction est une donnée comme toute autre, avec quelques particu-
larités :

e D’habitude il n’est pas possible de comparer deux fonctions. Nous ne pouvons dire si deux fonctions
sont égales.

e Nous pouvongppliquerune fonction, et cette application est une opération «magique», primitive de la
machine. En fait la définition de I'application fonctionnelle est la partie la plus importanteddéétion
d’'une machine virtuelle. Rappelons que le mot «magique» sera utilisé trés souvent et sa signification est
trés concréte : une action magique signifie que sa sémantique et sa réalisation appartiennent a la couche
plus basse que celle qui est actuellement discutée.

La partie la plus importante du code d'un langage fonctionnel est la possibilité de construire des procédures
parametréeset de pouvoimommerles arguments. Mais les noms existent uniguement dans le programme-
source, pour la machine virtuelle qui exécute le programme, ceci n'a pas d'importance. Par contre, la possibilité
de construire dynamiquement un objet fonctionnel (une fermeture) pendant I'exécution du programme, est trés
important et délicat pour toutes les couches d’exécution. Cette possibilité n’existe @as en

Mais attention ! La construction dynamique des fermetures n’implique nullementdempilation dy-
namique! Les morceaux de code «pur» (sans références extérieures) doivent étre compilés statiquement, se
qui se forme dynamiquement, lors de I'exécution du programme, c’est la liason de ce code aux valeurs de
variables non-locales.

Le trait syntaxique le plus caractéristiquetdieskell est la présence dagplications partielles(qui, d’ailleurs,
constituent la maniére la plus simple de création des fermetures).

Silafonctionf accepte deux argumentsfex y estune expression correcte, la forfne en est correcte
également, et définit unbjet fonctionnelqui peut s’appliquer a 'argument manquant. A quelques détails
pres,f x =\y -> f x y . En généraHaskell obéit a l'ordre normald’évaluation des fragments d'une
expression, de gauche a droite, et il est toujours possible d’instaurer ou d’effacer les parentheses a gauche :

140 Introduction a la véritableprogrammation fonctionnelle et a Haskell

fxyz=Ffx)yz=>0Ffxy)z=((Ffxyz

EnSchemelaformely -> f x y estlaseule syntaxe possible (concretemé@ambda (y) (f x y))).
Mais enHaskell nous pouvons méme écrife 2) , définissant ainsi une fonction d’'un argument, qui le mul-
tiplie par 2. La forme(2 *) est |égale aussi. La form@) parfaitement correcte aussi, est une variante
fonctionnelle de I'opérateur de multiplication, appliquée de gauche comme toute fonction typique, avec le nom
alphanumérique. On peut écrif® x y

A.2.1 Reécursivité et processus itératifs

L'algorithme de Newton permettant de calculer la racine carré d’'un nognarda forme itérative suivante :

1
xo =1, Tn+1 = 5 (xn + j) . (A1)

n

La réalisation fonctionnelle d’'un tel processus n’est pas évidente pour ceux qui ont été conditionnés par le
langageC. La solution, trés classique, exploite au maximum les propriétés d'abstraction offertes par un bon
langage fonctionnel. Nous aurons

1. Une fonction qui géneére la valeur suivante, ici
nxt y x = (x + y/x)/2.0
ou la valeury doit constituer un parameétre supplémentaire, car nous voulons éviter I'usage de variables
globales spécifiques a un probléme.

2. Un prédicat (fonction Booléenne) qui vérifie la convergence.
cnv X xnx = abs(x-xnx) < epsilon

ouepsilon peut étre une constante ou une variable globale.

3. Unitérateur qui a partir de deux valeurs, la précédente et I'actuelle, construit une séquence qui se termine
quand la convergence est atteinte.

iterf x_prec x_nouv fun condit =
if condit x_prec x_nouv then x_nouv
else iterf x_nouv (fun x_nouv) fun condit

La solution est donnée par I'expression
racine y = iterf 1.0 (nxt y 1.0) (nxt y) cnv

Il suffit de lanceracine 2.0 pour obtenir 1.4142... Notez l'usage de I'application parti@ibet
y) passée comme le paraméfwma . On peut éliminer I'un des deux appelsxt y

racine y = let fun = nxt y in
iterf 1.0 (fun 1.0) fun cnv

Nous devrons savoir implanter effectivementéaursivité, ce qui implique non seulement I'usage non-trivial
despiles (des données et de contrdle), mais aussi I'optimisation déclarsivité terminale et lesexceptions
dans la gestion de la pile. Par contre, il faut éviter le piege d’implanter la récursivité en utilisant la récursivité,
ce qui parfois est exploité pour modéliser I'interprete.dg enLisp.

Il est a retenir également le fait que dans le monde fonctionnel onté&sitsouventles fonctions qui
prennent d’'autres fonctions comme parametres, et les appliquent, comme notre itérateur. Mais a part cela la
machine virtuelle fonctionnelle sous-jacente est la simplicité méme. Elle doit savoir

1. décoder les valeurs des variables dans I'environnement ;
2. exécuter I'opération primitive «application» ;

3. posséder au moins une structure de contréle primitiveifyiben-else: application def ou g selon la
valeur d’un troisieme objet, la condition;

4. gérer la mémoire, posséder un systeme des entrées/sorties, etc., tout ce qui appartient a la couche «sys-
teme».

A.2 L'essentiel 141

A.2.2 Evaluation paresseuse

Quel est le résultat de I'application fonctionndl{#/0) ? (Supposons que le compilateur n’est pas trés intel-
ligent et que la singularité n’a pas été découverte avant son apparition lors de I'appel incriminé. Typiquement
le programme déclenche une exception. Mais si la fondtiata pas besoin de son argument, par exemple

f x xtra = if xtra<O then sqgrt x else xtra
f (1/0) 7

le résultat peut étre égal a 7, a condition que la fonction «avale» I'expression singuliere sans déclencher une
erreur.

Le protocole d’évaluation qui le permet, s’appealiealuation paresseuseunon-stricte Plus précisément,
un langage est strict, sbute fonctionf appliquée a I'expression qui symbolise un calcul qui ne peut se
terminer, rend aussi.. La fagon pratique de réaliser le protocole paresseux gstdsage de parameétres par
nom et non pas par valeur. Quand I'application fonctionnélle) est compilée, une partie du code est le
résultat de la compilation de. Ensuite. ..

e Dans un langage strict ce code est exécuté d'abord, et la valeur retournée ou sa référence est transmise
au code qui exécute.

e Le protocole paresseux demande que le code représentamtsoit pas exécuté tout de suite. Il est
transformé en une procédure anonyme et sans arguments qui traditionnellement porte letmamk de
Ce thunk est transmis a la fonction qui peut I'exécuter ou non. Il est exécuté quand la fonction utilise
explicitement cet argument, quand sa valeur devient indispensable.

L'utilité de I'évaluation paresseuse repose sur le fait fpsefonctions paresseuses peuvent représenter des
structures de contrble Par exemple, I'expressidfi c then A else B peut étre considérée comme I'application
fonctionnelle de I'opérateufelse : (ifelse ¢ A B) . Mais il est évident qué etB ne peuvent étre éval-
uées avant de passer le contréle a la fondfielse . Seulement une de ces expressions sera évaluée, selon
la valeur de la condition. Donc, c’est la fonctidelse qui doit «consciemment» demander I'évaluation soit
deA, soit deB.

Ensuite, comme nous verrons plus tard, les listes paresseuses constituent une méthode tres lisible et intuitive
de représenter un flustrean) — de caracteres, de mots, etc., ce qui permet d’établir la communication entre
plusieurs modules du compilateur. La transformation tf@amsduction) des flux de données est devenu si
paradigmatique, que méme des langages fonctionnels stricts cthnfreotammentCAML) définissent des
flux paresseux. Et les langages classiques cof@fhici ce concept est réalisé par lg@pes(Unix), mais les
pipessont des dispositifs purement techniques, sans trop de théorie sous-jacente. Les flux paresseux peuvent
aussi modéliser avec une grande souplesse et destprocessus itératifet ceci jouera un role trés important
dans notre cours.

Exemple. ErHaskell le caractérd:) est I'opérateur connu drisp commecons — le constructeur des
listes. L'expressiorl : 2 : [] signifie le méme qué : [2] et[1,2] . Voici la construction d’'une
listeinfiniel, 2, 3, 4, ... , qui peut étre utilisée comme telle dans un langage paresseux : il suffit de
ne pas regardela queue de la liste pour gu’elle soit cachée dans son thunk, un «démon» procédural fini. Si on
demande la valeur du second élément de la liste, le démon le génére et se cache derriére, etc. La construction
de la liste a la forme suivante :

infint = intseq 1
where
intseg n = n : intseq (n+1)

Notez une propriété sémantiquement pratiquement illégalé eta fonction récursiventseq n’a pas de
clause terminale !
(Notez aussune fois pour toutesqu’en Haskell la construction(1 : 2) estabsolumenillégale a
cause du typage. Le second argument doit étre une liste, non pas un objet quelconque. Pour former des tuples
on utilise la notatior{1,2) .)

L'évaluation paresseuse, surtout cascadée peur encombrer la mémoire atlaenéiese qui peut étre trés
indésirable. En général la paresse introduit une certaine pénalité d’exécution, et si on pouvait dans quelques
cas critiques forcer I'évluation stricte desarguments d’une fonction, ceci augmenterait la vitesse d’exécution du
programme. Ceciest possible grace ala construsgon:: a -> b -> b

142 Introduction a la véritableprogrammation fonctionnelle et a Haskell

La sémantique de cette construction est simgeq a b =b, sia # L. Le Prélude définit la fonction
$! , 'opérateur d’application stricte:

f $! x = x ‘'seq" f x

associatif a droite, et de faible précédence.

A.2.3 Déstructuration automatique des arguments

En C, Pascal ou Lisp classique, y compriScheme, les parameétres formels d’une procédure sont toujours

des noms simples. Sil'argument actuel lors de I'appel est une expression composite : une liste, un record, etc.,
il faut lancer manuellement un sélecteur d’accés : CAR, CADBYMgum.champ , etc., pour pouvoir voir
l'intérieur de I'argument.

Les langages fonctionnels de nouvelle génération (ainsi que quelques langages logiques, notamment la
famille Prolog, et les nouvelles implantations dliisp) offrent a I'utilisateur la possibilité de déstructurer les
parameétres automatiquement vigaiern-matching (filtrage). Sile parameétre formel dans la définition d’'une
fonction n’est pas un nom, mais une structure, par exelxpdg (enHaskell) ceci signifie que I'argument
actuel sera une liste dont la téte est accessible dans la fonction par |e,reina queue s’appellerq Le
caractére_ dénote une variable anonyme, toujours différente des autres, et qui ne nous intéresse pas (elle ne
sera pas utilisée par la fonction).

La constructiomom@struc signifie : le paramétre s’appelfemmet il possede la structustruc . Voici
la fonction qui duplique la téte d'une liste, p. €%, 3,4, 6] — [5,5,3,4,6] :

dtete l@(x:_) = xl

A.2.4 Quelques exemples de programmes éfaskell

Le but de ces exemples est principalement pédagogique, il nous faut maitriser ce langage.
Voici le tri par insertion d’une liste numérique. Le lecteur daign connaitre la versiocheme de cet
algorithme. Notez comment au lieu de proliférer les conditibiisen-else , le programme est décom-
posé en clauses. Notez aussi comment les alternatives sont représentées par les clauses internes, séparées par
les barres verticales.

instri [] =[]
instri (x:q) = inserer x (instri q) where
inserer x [] = [X]
inserer x 1@(y:r) | x<y = x --(Nouvelle téte, sinon
| otherwise =y : (inserer x r) -- garde I'ancienne)

Le deuxieme exemple sépare une liste en deux morceauxn peemiers éléments, et le reste. La valeur
retournée est ungaire (prm,rst) , une structure primitive delaskell, trés commode. Il existent aussi des
triplets(x,y,z) , etc., qui sont implantées de maniére plus efficaces que les listes.

La premiére ligne de I'exemple (qui est une fonction prédéfinie) edéskaration de typeElle est redon-
dante, mais le typage explicite peut nous étre utile plus tard, pour restreindre le polymorphisme, ou simplement
pour la documentation. La notation est plus compacte gG'en

splitAt 2 Int -> [a] > ([a], [a])
splitAt 0 xs = ([I,xs) -- téte vide
splitAt _] = (0. -- tout vide
splitAt n (x:xs)
| n>0 = (x:xs',xs") -- récursive
where (xs',xs”) = splitAt (n-1) xs -- sinon. ...

splitAt = erreur "neg. arg."

A.3 Langage de base 143

Le dernier exemple est 'usage d’une fonctionnelle de réduction des listes. Comment calculer la somme de tous
les éléments de la lisfgl, x2, x3, ... XN] ? La technique apprise a I'école maternelle est simple

on ajoute le premier élément a la somme des éléments restants. Mais avec le produit nous ferons le méme,
seulement I'opérateur changera. La structure récursive du code reste la méme, et il est de rigueur dans le
monde fonctionnel de profiter de toute généricité, et de définir les fonctions permettant leur généralisation
facile. Alors dans notre cas la somme est le résultat dedaction(folding : «pliage») de I'opérateyr) sur

la liste.

somme | = foldl (+) O |
ou le réducteur a la forme
foldl :: (@ >b ->a) ->a->[b] >a

foldl op z [] =z
foldl op z (x:xs) = foldl op (op z x) xs

Naturellement le produit des éléments sera donnégbdir (*) 1 |

A.3 Langage de base

A.3.1 Opérations

Aprés un avant-go(t syntaxique et quelques exemples, soyons un peu plus formels. Récapitulons les ingrédients
syntaxiques de base. Les expressions peuvent étre des constantes (numériques ou autres), variables comme
alpha 23] , etc. On peut utiliser la notation fonctionnelleun argl 15 arg3 etc., ou opérationnelle :
(p ‘mod’ 23)*12 + 77U , etc., avec les précédences des opérateurs arithmétiques similaires a d’autres
langages.

Toute fonction binaire, p. eXunct peut étre utilisée comme opérateur infixe par la notateorifun’ b
et tout opérateur infixe peut étre utilisé comme une fonction préfixe en I'entourant par les parenthéeses :
(*) a b . On peut définir les opérateurs utilisateur, et leur donner les précédences et I'associativité (gauche
ou droite) grace aux commandaesixl, infixr etinfix (aucune associativité). Voici un fragment du
Prélude :

infixr 9

infix 9 Il

infixr 8 A, AN

infixl 7 * /, 'quot’, 'rem’, 'div’, 'mod’, :%, %

infixl 6 4+, -

- infixr 5 -- Cette déclaration est figée dans le noyau du Hugs
infixr 5 ++

infix 4 == /=, <, <=, >=, >, ’elem’, 'notElem’

infixr 3 &&

infixr 2 ||

infixl 1 >>, >>=
infixr 1 =<<
infixr 0 $, $!, 'seq’

Le nombre plus élévé signifie la précédence (la «force» de I'opérateur) plus grande. L'application fonctionnelle
a par défaut la plus grande précédence de tous les opérateurs.

Pour définir un objet il suffit de le faire suivre par le caractéréce n’est pas un opérateur), et par sa
définition. Si a gauche de I'affectation on trouve une forme plus complexe qu’une simple variable, c’est une
définition fonctionnelle. Exemples :

pi = 3.1415926536

tg X = sin x/cos X
ff X y = sgrt (X*x+y*y)

Notons I'absence de parenthéses redondantes autour de parardesksll dispose de toute la panoplie de
fonctions et d’opérateurs numériques standard. Les fonctions caauing exp etc. acceptent les arguments

144 Introduction a la véritableprogrammation fonctionnelle et a Haskell

flottants, etsqrt x ou z est égal a 4, est illégal. Cependant I'expressiqrt 4 est correcte et donne

2.0. Haskell automatiguement compile les constantes numériques, p. ex. 4 ciomiateger 4 , ou
frominteger est une fonction surchargée, qui effectue une conversion de son argument vers un autre type
quelconque — le type qui est attendu par le contexte. Puisque la fqptionattend un argument flottant, le
résultat de la conversion sera flottant.

A.3.2 Types de données prédeéfinis

En Haskell nous pouvons utiliser les nombres entiers de précision illimité : le liypger , (les entiers
courts standard existent aussnt), les flotantsFloat etDouble), les BooléensBool : True etFalse ,
et les caractereShar : 'c’ comme les données atomiques standard. Il existe aussi un objet «\()deide
type()).

Les objets composites standard sont :

e les «tuples» (a,b) ,(a,b,c) ,etc., ouleséléments peuvent étre de type quelconque (aussi les tuples).
Donc, les tuples constituent une collection infinie de types possibles.e5b designent un type, alors
(a,b) ainsique(a,b,c) etc., sont des types légaux.

e Les listes :[a,b,c,d] , etc. Cette liste est équivalenteazb:c:d:[] ; ('opérateur(:) est
I'équivalent du «cons» ehisp). Tous les éléments d’'une liste doivent appartenir au méme type, p.
ex.a — alors le type de la liste ef] .

Les chaines alphanumériquesBelle Marquise" sont équivalentes a des listes de caracteres :
['B',,e',,l,,'l,,,e,,, ’,’M','a','l",’q','U','i’,'S','e'] . Leur type eS[Chal’] ,
mais souvent on utilise une abbréviati®tring

Plus tard nous verrons encore les «records», et les tableaux, mais nous allons utiliser de préférence les listes, et
les structures «algébriques» définies par I'utilisateur.

Le langage dispose d’'un outil syntaxique trés élégant — les compréhensions. Pour transformer une liste de
nombres en une liste de leur cubes on peut naturellement utiliser la fonctiomaglle

[1, 3, 5, 2, 4]
map cube | where cube x = X*x*x

I

r

Ceci est la syntaxe standard. Avec les compréhensions nous écrirons
r = [cube x | x<-l]

Donc, les compréhensions remplacent le génératempar une syntaxe plus lisible, mais elles peuvent égale-
mentfiltrer les éléments d'une liste. L'expression ci-dessous renvoie la liste des entiers qui ne soient pas
divisible par 3 :

=1 .. 20
r=[x | x<-l, x 'mod" 3 /= Q]

Le résultat affiché est
[1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20]
Normalement on n’a pas besoin de déclarer les types des variables, fonctions, etc., mais ceci peut étre utile

pour la documentation, ou pour supprimer les ambiguités qui parfois peuvent se produire. Voici deux styles de
déclaration de variables avec leur types :

x :: [Double]
x = [1.2, 2.6]
y = "Belle Marquise" :: String

Un type dérivé trés important c’est le type fonctionnel.aS#t b sont deux types, la fonction qui prend un
argument de typea et renvoie le résultat de tyde, possede le typa -> b . Si la fonctionf prend deux
arguments, de type eth, et son résultat est de type on écrira :

A.3 Langage de base 145

fr:a->b->c¢c

La fleche peut étre considérée commeop@rateur associatif & droit®n peut placer explicitement les paren-
thesesf i a -> (b -> ¢) . Cette convention est en accord avec le protocokecderyifications selon
lequel I'expressiorf x y est équivalente & x) y . Une «application partielle» d’'une fonction binaire a
son premier argument est Iégale, et dénote une fonatiaire qui attend le second argument. Concrétement,
nous avons (presque) I'équivalence

f x = Wy >fxy

Important! Analysez pourquoi I'associativité a gauche des applications fonctionnelles produit I'associativité
a droite de la fleche qui dénote les types fonctionndB:ailleurs, pour les débutants la fleche ldaskell est
une source de confusion. Elle est utilisée aussi mt@finir les fonctions- comme ci-dessus (et non pas
seulement pour spécifier leur type), et pour la structure de cortadke).

Les opérateurs infixes peuvent faire partie des «sectioffs:8) ou(8 /)

A.3.3 Lutilisation de I'évaluation paresseuse

La puissance de la paresse est visible quand la fonction en question eshstructeur de donnéepar
exemple 'opérateuf:) . On peut construire facilement une liste infinie (cyclique) d’'un ou plu5|eurs éléments.
\oici comment construire des listes comi{2e2,2,...] ,oul2,3,1,2,3,1,2,...] :

repeat ¢ = w where
wW=cCc:Ww
deuxs = repeat 2

cycle | = w where
=] ++ w
ccl = cycle [2,3,1]

ou on aurait pu définirrepeat ¢ = ¢ : repeat ¢ , mais cette derniéere définition malgré sa simplicité
est moins efficace. La raison est trés simple. La premiére variante génére une liste cycliquey bsbjetito-
reférentiel, et la représentation de cette liste dans la mémoire est trés compacte. La deuxiéme variante construit
une paire dont la téte est égale @mais la queue est une fonction dont I'appel génére la méme liste.

Voici un autre exemple, la listd,2,3,...]

entiers = ent_de 1 where
ent de n = n : ent_de (n+l)

Le trait caractéristique des fonctions récursives paresseuses est la présence de réuvsitgtéans la clause
terminale. Ceci n’est pas génant, car une consommation incrémentale d’une liste infinie «voit» uniquement le
segment initial, et la queue infinie est «virtuelle», représentée par un thunk qui se «dé-virtualise» au fur et a
mesure quand le programme progresse.

Les fonctions récursives ouvertes n’épuisent pas nos surprises. L'évaluation paresseuse permet également
de créer deslonnées récursivesdUn exemple a déja été vu : les listes cycliques. Mais regardons une autre
définition récursive de la liste des entiers :

entiers = 1 : (entiers <+> uns) where

uns = 1 : uns

(x @ xq) <+> (y : yq) = (xty) : (xq <+> yq)
Ici 'opérateur(<+>) sert a ajouter deux listes, élément par élément. Il peut d’'ailleurs étre défini par une
fonction prédéfinieipWith qui applique un opérateur quelconque a deux listes, élément par élément :

zipWith _] [I = [
ZzipWith op (x:xg) (y:yq) = op x y : zipWith op xq yq
(<+>) = zipWith (+)

Cette définition degntiers est loin d'étre triviale. C’est une liste dont la téte est égale & 1. La queue est
le résultat d’addition desntiers et la liste infinie des 1. Apparemment ceci n’est pas faisable, mais on sait
quelle est la téte du résultat+ 1 = 2. Donc, deux éléments sont définientiers = [1,2,...] .Sile

146 Introduction a la véritableprogrammation fonctionnelle et a Haskell

second élément de la liste est égale a 2, le second élément de sa queue est égal a 3, ce qui établit la valeur du
troisieme élément, etc.

Nous voyons donc que I'évaluation paresseuse permet de remplacer un processus itératif par une struc-
ture de données «auto-génératrice»

Un autre usage des listes paresseuses est la consommation de flots qui modélisent les fichiers dans le
programme. On peut considérer qu’un fichier lu est une liste trés longue de caracteres. lls sont «virtuellement»
tous présents dans le programme, et on peut consommer itérativement ce flot. Dans la réalité ils sont lus
incrémentallement. On n'a pas besoin de lire les items dans une bouditdedithier une seule fois, dans un
seul endroit dans le programmet on traite le contenu comme s'il était une structure interne.

Attention ! La construction d’un tel programme peut étre délicate. Si on consomme un flot paresseux par une
structure itérative, mais on oublie de «libérer» les éléments lus et traités, la liste entiere se forme physiquement
dans la mémoire, et on risque le débordement du tas. C’est une de nombreuses raisons pour lesquelles dans
les modeles sérieux d'entrée/sortie ldaskell on procede difféeremment. Mais la fonctionnalité existe, et

elle est bonne pour I'entrainement. Il faut d’abord charger le fid@&xts.hs qui réside dans la librairie
d’extensions duHugs. Ensuite la définition :

chaine = unsafePerformlO (readFile "nom_du_fichier")

place — paresseusement — dahaine la totalité du fichier lu.

A.4 Structures de contrble

Ici Haskell est trés austére. Nous disposons de fonctions et d’opérateurs infixes, et nous pouvons créer des
applications partielles, et fonctions anonymes, p. \&xs;> 6*x (ce qui est équivalent a la secti¢ét)).
Le nombre de dispositifs syntaxiques qui facilitent la création d’un programme complexe est limité.

e |l existe naturellement I'expression conditionnafle « then [else ~. Elle n'est pas trés souvent
utilisé, car les «gardes», et le filtrage des paramétres sont souvent plus commodes.

e On peut créer des variables (et les fonctions) locales a une fonction par leblodéfinitions locales
in expression Les blocslet peuvent étre imbriqués a volonté, et les définitions locales peuvent étre
récursives (y compris indirectement). L'alternativiets est, bien sdr, la constructiamhere . (Il faut
seulement souligner que la présencevtiere en cascade, a plusieurs niveaux, n'est pas lisible, et dans
les version précédentes Heigs ceci était interdit).

Les définitions locales donnent un autre moyen de créer des fermetures non-triviales. La forme

f x = let
gy = Xty
in g

utilisée dans le contexteh = f 5.0 affecte ah une fonction qui ajoute 5.0 a son argument. La
constante 5.0 a été «attrappée». (En fait, cet exemple est trop simple, on peut le transformer en :
fx = (+ x) oumémeer = (+) .Mais vérifier le typage !

e |l existe une conditionnelle a choix multiples :
case expressionof

valeurl -> resultatl
valeur2 -> resultat2

A.4.1 Clauses, gardes et filtrage

Comme nous avons déja mentionkiaskell partage ave®rolog la possibilité ddiltrer automatiquement les
valeurs et les formes des arguments des fonctions, ce qui permet d'éviter la prolifération des conditionnelles.
La factorielle récursive peut étre définie ainsi :

A.4 Structures de contrble 147

fac 0
fac n

1
n * fac (n-1)

au lieu d’expliciter :

fac n = if n==0 then 1 else n* fac (n-1)

On peut exploiter encore un autre style, avec des «gardes», formes conditionnelles qui ont la forme un peu
similaire aucase , mais ou ce ne sont pas des valeurs, mais des conditions Booléennes qui déterminent les
branches a suivre. Exemple :

fac n | n==0 = 1
| n>0 = n * fac (n-1)
|otherwise = error "Factorielle ; argument négatif"

Le mototherwise est un synonyme d€rue .

Le filtrage des paramétres permet de déstructurer automatiquement un argument composite. Si dans une
définition fonctionnelle le parameétre n'est pas un identificateur, mais une forme composite, sa structure doit
correspondre a I'argument actuel, et les identificateurs présents dans cette forme sont instanciées avec les
éléments correspondants de I'argument. Voici la précédure qui renverse une liste (avec accumulateur) :

reverse | = rev | [] where
rev [b=5b
rev (x:xq) b = rev xq (x:b)

Le filtrage enHaskell n’est pas 'unification compléete, comme Brolog. Il n’y a pas de «variables logiques»
non-instanciées. Chaque identificateur peut apparaitre une seule fois geiteta (forme), et méme une
seule fois dans la liste qui spécifie les patterns pour tous les parametres d’une fonction.

Si on veutnommerle paramétre, comme dans d'autres langages de programmation, et avoir en méme
temps sa structure, on utilise la notatisom@forme. Voici une fonction qui parcourt une liste de paires :
[(nom1,vall),(nom2,val2),...] , et qui retourne la paire dont le premier élément est égal Bn
cas d’échec on renvoie un message d’erreur (plus tard nous apprendrons comment sortir d’une telle situation
de maniére plus douce).

cherche _ [] = error "Echec de recherche"
cherche z (e@(x,) : rst) | x==z = e
| otherwise = cherche z rst

Notons l'usage des variables anonymekla, ou leur instanciation est inutile.
Méme si les sélecteurs des éléments des structures de données composites cldssaguestail pour
les listesfst , snd pour les paires, etc. sont prédéfinis, on les utilise rarement, grace au filtrage structurel.

A.4.2 Fonctions d’ordre supérieur

Dans un langage fonctionnel sérieux, les fonctions sont des données comme les autres. Elles peuvent étre
stockées, passées comme parameétres des autres fonctions, ou constituer le résultat d’'une opération. L'usage
des fonctions qui opérent sur d’autres fonctions est un trait tres typique de la programmation fonctionnelle. Le
style fonctionnel préconise la définition et 'usagefaiections génériquesuniverselles : les itérateurs, filtres,
opérateurs de composition et autres combinateurs. Une partie obligatoire du cBatedese est la définition

et 'usage de la fonctionnellmap. EnHaskell elle aura la forme

map fun [] = []
map fun (x:xq) = fun x : map fun xq

mais nous connaitrons encore beaucoup d’autres. Dans un langage fongiiorihelage des fonctionnelles
remplace les structures de contrdle typiques comme les boucles avec I'accumulation, etc. Par exemple, pour
trouver la somme des éléments d’une liste on peut écrire

somme [] = 0
somme (X:xq) = X + somme Xxq
-- ou, avec I'accumulateur
somem | = sm | O where
smi[n=n
sm (X:xgq) n = sm xq (n+x)

148 Introduction a la véritableprogrammation fonctionnelle et a Haskell

mais pour les fondamentalistes fonctionnels il est de rigueur 'usage de la fonctionnelle unidetdelléelle
existe en deux variantes prédéfinidsldl (I — left) récursive terminale, doldr (r —right), incrémentale,
adaptée a la programmation paresseuse, et déja présentée). Voici leur définitions et 'usage :

foldr f z [] =z
foldr f z (x:xgq) = f x (foldr f z xq)

foldl f z] =z
foldl f z (x:xxq) = foldl f (f z X) xq

somme | = foldl (+) O |

Pour combiner élément par élément deux listes nous asipkigith (définie précédemment).
Voici un «itérateur» typique, la fonctioiterate f x qui construit la liste infinigx, f x, f(f

x), f(f(f x)),...]
iterate f x = x : iterate f (f x)

Une telle liste peut étre ensuite parcourue par un autre itérateur-filtre, qui — par exemple — cherche a satisfaire
une condition satisfaite par un élément, ou une convergence de cette suite. Voici comment chercher la solution
numérique, itérative de I'équatiatp(z) = 3z.

eps = 0.000001
x0 = 1.0
fun x = (exp x)/3.0

converg (x:xq) = cvg X xq where

cvg x (y:iyq) | abs(x-y)<eps =y
| otherwise = cvg vy yq

solution = converg (iterate fun x0)

On peut utiliser aussi une fonction de filtrage universel, qui élimine de la liste tous les éléments qui ne satisfont
pas la condition Booléenne

fiter p [=0
filter p (xxxq) | p x = x : filter p xq
| otherwise = filter p xq

Plus tard nous connaitrons ecore plusieurs autres fonctionnelles. Rappelons encoraghkédina fonction-
nellemapet les filtres prennent souvent la formeadenpréhensiongormes de genrgexpr | gen_et filtr]
Au lieu d’écriremap f | nous pouvons coder la forme un peu moins compacte, mais trés lisible :

[f x| x <1
Si accessoirement nous voulons filtrer le résultat par le prégjcadus écrirons
[fx] x<-1 p X

On peut générer I'expression a gauche de la barre a partir de plusieurs listes, et utiliser plusieurs filtres. La forme

[xx<-[1 .. 3ly<-[2 .. 4]] engendre(1,2), (1,3), (1,4), (2,2), (2,3),

(2,4, (3,2), (3,3), (3,9)] . Hugs et GHC permettent aussi I'usage des compréhensions «par-
alléles» :

[(X!y)|X<'[13]|y<'[24]] - [(1!2)1(2!3)1(314)]

A.5 Types définis par l'utilisateur

On peut affirmer que la richesse du systeme de typage est le trait fondamental des langages de programma-
tion modernes, et en particulier des langages fonctionnels. Nous allons aborder ici la construtfjpesde
algébriques équivalentes aux records (balisés) avec des variantes. Dans la notation qui sera désormais inten-
sément exploité le type prédéfiaool est algébrique, défini par

A.5 Types définis par I'utilisateur 149

data Bool = True | False

Le mot-clédata introduit la définition d’'un nouveau type. A droite du signe d’affectation on trouve I'énumération
desconstantes symboliquegui représentent les valeurs appartenant a ce type. On peut définir d’autres types
de ce genre, p. ex. :

data Ordering = LT | EQ | GT
data Couleur = Rouge | Blanc | Bleu | Vert | Marron | Arc_enCiel

(Le premier est prédéfini dans la librairie standard). Les constructeurs des constantes doivent étre distincts. Par
convention les constantes symboliquesdaskell commencent par la lettre majuscule.

Les types structurés sont parametrés par les types des composantes. Voici comment on peut définir les
nombres complexes comme des paires de deux réels :

data Complex = Complex Double Double

ou l'identificateurComplex dénote simultanément le nom du type, et de son constructeur (le seul ici). Pour
construire un nombre complexe concret il suffit d’écfemplex 1.3 8.7 etc. Les structures de ce genre
sont correctement traitées par le mécanisme de filtrage des entétes. Voici la définition de la fonction qui
multiplie deux nombres complexes :

cmult (Complex a b) (Complex x y) = Complex (a*x-b*y) (a*y+b*x)

Les types erHaskell peuvent étrepolymorphes parametrés par des types «variables», inconnus. Le con-
structeur n’est pas forcément une constante alphanumérique, il peut étre aussi un opérateur infixe. Voici la
création des fractionsum/den nous ne voulons pas figer le type des composantes. |l peulnétger

mais aussint , ou, peut-étre représenter le polynémes, pour qui I'arithmétique classique comme I'addition, la
multiplication et la division Euclidéenne avec reste, est définie comme pour les entiers. Nous écrirons donc

infix 7 %
data Fraction a = a % a

ol a dénote ce type inconnu. Plus tard nous apprendrons comment restreindre la catégorie de types «éligibles»
pour le numérateur et le dénominatur (pour éviter la formation de fractions composés de chaines de caracteres,
ou des chauve-souris). Une variable de type rationnel peut étre défini par :

frct = x % 8 :: Fraction Int

En fait, la vie est plus difficile. ERlugs I'utilisateurn’a pas le droit d'utiliser 'opérateur:%) ! La raison est
trés simple : ce constructeur permet de former impunément des fractions réductibles 2o®me4 . Donc

cet opérateur est «caché» (il n'est mxportédu Prélude Standard), et I'utilisateur peut former les fractions
avec un autre opérateur, par exempléo 6 Ce dernier opérateur force la simplification de la fraction.

Dans un programme de type compilateur ou interpréte il est souhaitable parfois d’opérer sur des objets de type

«donnée numérique(éventuellement plus riche, comprenant les chaines de caractéres) de fagcon homogene :
une valeur est une valeur, pour I'analyse syntaxique il est souvent redondant de préciser si cette valeur est
entiére ou réelle. On peut aisément introduire des types «multiples» grace au balisage. Voici un exemple :

data Value = | Integer | F Double | S String | O Operator | Err String

ol — par exemple — la variant&rr dénote une donnée illégale, avec le diagnostic d’erreu® -euin objet
fonctionnel, désigné ici par I'abbréviati@perator

On aura besoin de données structurales récursives, comme des listes ou des arbres. Voici leur possible
implantation/spécification, avec deux types d’arbres binaires — I'un stocke I'information dans les feuilles, et
l'autre dans des noeuds intermédiaires :

data List a = Nil | Cons a (List a)

data LTree a
data NTree a

Leaf a | Node (LTree a) (LTree a)
Empty | Nd a (NTree a) (NTree a)

Bien sdr, le typelist est redondant, nous avons déja des listes standard. Les arbres N-aires peuvent étre
construits a I'aide des listes, par exemple

150 Introduction a la véritableprogrammation fonctionnelle et a Haskell

data RTree a = Lf a | RNode [RTree a]

Voici le codage d’une procédure de tri arborescent qui utiliséNlBsees . On place les éléments de la liste
triée dans un arbre binaire, en suivant la branche gauche si I'élément est plus petit que la racine, et la branche
droite s'il est grand. On répéte cette procédure récursivement, jusqu’au niveau des feuilles.

tsort | = flatten (instree | Empty) where
instree [] arb = arb
instree (x:xq) arb = instree xq (ins x arb)

ins x Empty = Nd x Empty Empty
ins x (Ndy gd)| x<s<y = Ndy (ns x g) d
| otherwise = Nd y g (ins x d)

flatten Empty =
flatten (Nd x g d) = flatten g ++ (x : flatten d)

A.5.1 Types-synonymes

Il existe enHaskell deux manieres de spécifier un type qui est équivalent a un type existant, mais dont la
notation est différente (p. ex. constitue une abbréviation). La faype définit un simple synonyme, p. ex.,

type String = [Char] -- Ceci est prédéfini
type Binop a = a -> a -> a

On peut aussi définir un type de données dont la représentatiizneestexactement la méngpie de données
d’un autre type, mais qui est considéré comme vraiment distinct. Si nous déclarons

newtype Binop a = Op (a -> a -> a)
(notez la présence de la bali€m), alors la représentation interne des objets de ce type sera identique aux
opérateurs binaire@ -> a -> a) , sans aucune perte de mémoire ou de temps pour la reconnaissance

de la balise, mais le compilateur traite une telle définition pratiquement catatae, c’est-a-dire comme la
définition d’'un nouveau type distinct.

A.5.2 Introduction a l'inférence automatique des types

Nous avons déja mentionné le fait gdaskell ne demande pas la présence des déclarations de type (sauf dans
des cas spéciaux, discutés ultérieurement). Normalement le compilateur découvre le type d’'une fonction assez
facilement en regardant sa définition (et parfois son usage). Prenons la définition de la ftsurtion et
essayons de dériver son type, et les types de ses fonctions locales.

La fonctionflatten prend un argument de typdiree a (avec a qui n’est pas spécifi€), et qui retourne
une liste. Cette liste contieix : ...) , alors c’est la liste des éléments du méme typa] : . Donc, la
déclaration explicite serait :

flatten :: (NTree a) -> [a]
De méme, il est évident que
ins :: a -> NTree a -> NTree a

Mais la définition deinstree est un peu plus délicate. Le premier argument est une liste, mais le second
n'est pas spécifié du tout. Le compilateur doit regarder la définitiansdepour trouver enfin que

instree :: [a] -> NTree a -> NTree a
Finalement tsort :: [a] -> [a] . La vérité est plus complexe, le systéme nous dira :
tsort :: Ord a => [a] -> [a]

ce qui signifie que la fonction transforme des listes, mais ses €éléments doivent obligatoirement appartenir a un
type qui admet la comparaison (I'applicabilité de I'opératgy)). Ces contraintes seront discutées plus tard.

Parfois les fonctions sont beaucoup plus polymorphes, et leur type est trés difficile & découvrir «a I'oeil nu».
Prenons la fonctiofoldr dont la définition a la forme déja bien connue

A.6 Intermezzo : exemples fonctionnels trés spécifiques 151

foldr f z [] =z
foldr f z (x:xgq) = f x (foldr f z xq)

On peut procéder de maniére suivante. la fonction prend trois arguments, et renvoie un résultat, donc le type le
plus général sera

foldr : a >b >c¢c >d

Mais il y a des contraintes. La premiéere clause établit I'équivalence entre le type du second paramétre et le
résultat. Par ailleurs, le troisiéme paramétre est une liste. Donc, on peut écrire :

foldr : a -=> b ->[c] > b

La deuxiéme clause montre gliest un opérateur binaire, dont le premier argument est diwctypele second
est le type du résultat renvoyé galdr , ce qui est également le type de son résultat. Finalement

foldr : (c =>b ->b) ->b ->[c] > b

(Les noms actuels des variabkesh etc. n'ont pas d'importance). On peut facilement découvrir que
map :: (@ -> b) -> [a] -> [b]

et que le combinatewubs défini ci-dessous se présente comme

subs f g x = f x (g X
subs : (@a->b ->c¢c)>(@->hb)>a->c

Le type le plus général d’'un objet polymorphe, découvert par ce procédé sera appetgsoprincipal

A.6 Intermezzo : exemples fonctionnels tres spécifiques

A.6.1 Combinateurs de Curry

L'importance de cette section sera reconnue un peu plus tard. Son objectif est de montrer comment définir
des fonctions en faisantdbstraction des parameétrédont la forme triviale se réduit a I'’équivalence entre la
définitionf x = g x etf = g .). La construction de programmes complexes de nature fonctionnelle peut
utiliser en fait un seul mécanisme principal : les compositions de fonctions. Les compositions deviendraient
plus simples a maitriser, a comprendre et a implanter si nous pouvions éliminer au moins partiellement le
lest des données inertes — les paramétres présents dans les définitions. Il faut avouer que le résultat d’'une
«optimisation combinatoire» peut ne pas étre trés lisible, mais ceci n’est pas grave, car elle peut étre une
opération interne du compilateur, et son résultat ne sera jamais vu par un humain (sauf si on adore la «folie
combinatoire» ; un langage combinatoire conckitlambda a été concu spécialement comme une blague.
C’est le plus illisible langage fonctionnel existant).

Un combinateur de Curry est une fonction pure dont le role est de «coller» d’autres fonctions ensemble,
ou de modifier leur comportement de maniere universelle. Nous verrons comment les combinateurs facilitent
la construction des continuations.

Certains combinateurs, proposés déja par le mathématicien Haskell Curry, sont considérés standard. Parmi
eux nous avons l'identité :

id x = x

qui dans le langage traditionnel des combinateurs s’appeliaais nous préférons utiliser ici le lexique de
Haskell pour pouvoir implanter les combinateurs sans problémes.
Le combinateur suivant est la «constante» qui ignore son deuxiéme argument :

const X y = X

Ensuite il y a le combinateur qui échange les deux arguments d’une fonction :
flip fxy="fyx

Le combinateur qui duplique un argument :

dupl f x = f x x

152 Introduction a la véritableprogrammation fonctionnelle et a Haskell

Finalement, parmi les combinateurs tres simples il y a le compositeur de fonctions :
comp fgx=1f(g x)

Tous ces combinateurs sont prédéfinistaskell ; le dernier est un opérateur infix¢.) . Nous aurons besoin
encore d’'un autre combinateur de Curigubs considéré standard, et trés important.

Voici la définition combinatoire de la fonction qui calcule le carré de son argunsgmt x = x*x . Nous
réécrivons :

sgqr x = (*) x x = dupl (*) x

et alorssqr = dupl (*) . Pas de paramétres ! Bien s(r, la vraie sémantique repose quand méme sur la
présence d’'une fonction concréte, la multiplication. Les combinateurs sewdent capables de réseoudre
aucun probléme concretlls constituent a peine un outil de structuration.

Voici le cube exprimé de maniére combinatoieube x = x*x*x = (*) x ((*) x x)

() x () x x) = ((*)) ((*) ¥ %)

comp ((*) x) ((*) x) x = dupl comp ((*) X) X
comp (dupl comp) (*) x x

dupl (comp (dupl comp) (*)) X

et il suffit d'abstraire lex pour obtenir une version combinatoire. Le lecteur ne doit pas craindre, des manip-
ulations de ce genre ne sont presque jamais effectuées par les humains (mais elles constituent des jolis sujets
d’examen).

Un combinateur trés important, appartenant au «canon» de Curry est le «substituteur» :

subs f g x = f x (g X)

Il peut étre réduit aux combinateurs introduits ci-dessus, mais il est préférable de le laisser comme primitif. Il
peut générer les autres, par exemple adrs etconst on peut générer l'identité ;

(subs const const) x = const x (const X) = X

En fait, presque toute imaginable composition fonctionnelle peut se réduire a ces deux combinateurs (dans les
ouvrages théoriques ils s'appelldft(const), etS (const). Bien sdr, I'identité doit dans la pratique rester
primitive, pour des raisons d’efficacité.

Les combinateurs constituent une des techniques de compilation des langages fonctionnels ! Si on arrive a
transformer une expression arbitraire & I'enchainement de combinateurs, ceci permet de définir une machine
virtuelle tres simple qui réduit cette combinaison au résultat final. Cette machine est trés compacte.

Credoreligieux no. 15 : Depuis des siécles les théoriciens travaillent pour réduire toute complexité de la
Nature aux combinaisons de formes simples. Un jour on trouvera des combinateurs communs pour spécifier
le chant de Barbara Hendrics, la choucroute Alsacienne, et le débogueur de Microsoft Windows. Mais ceci
probablement ne rendra pas I'Humanité plus heureuse.

A.6.2 Arithmétique de Peano-Church

Nous sommes tous habitués a la présence des nombres dans des programmes. Les nombres sont considérés
comme des objets primitifs, internes, irréductibles, et pour des raisons d’efficacité implantés a un niveau tres
bas. Mais sur le plan formel les langages fonctionnels sont capables de modéliser I'arithmétique compléte et
minimaliste sans vraiment avoir besoin de connaitre la représentation de nombres !

Construirons donc I'arithmétique des nombres entiers qui est basée sur quelques axiomes assez primitifs
de Peano — I'existence d’'un objet spécifiquezéeq et I'existence de la fonctiosuccesseuqui permet de
passer d’'un nombre a... son successeur (quelle surprise). Ces objets seront considérépomptateament
abstraits et opaques Aucune fonctionarithmétiquene doit demander a notgrosa carte d'identité. Par
contre, pour tester le modéle et pour afficher quelques résultats, nous allons concrétiser ces abstractions.
deuxieme but de cet exercice est de montrer que les constructions récursives dans un langage évolué ne
se réduisent pas a de simples appels d’'une fonction par elle méme !

Alors, le seul moyen de spécifier un nombre dans ce mondendnéral de Churchest de le paramétrer
par nos abstractions. Si, disonembre représente un nombre |égal, il aura une définition de genre

A.6 Intermezzo : exemples fonctionnels trés spécifiques 153

nombre s z =

ol z ets représentent leéroet lesuccesseur
La premiere définition concerne teodélede zéro dans notre espace de nombreaptabre zéro. Bien
sar, il ne doit pas dépendre d la fonctismccesseyiet nous pouvons écrire

zero s z = z Attention, on changera le nom zero en zer

Le nombreun (ou, de préférencene pour ne pas mélanger I'Anglais et le Francais) est le résultat de
I'application du successeur au zéro, donc la définition suivante est Iégale :

one s z = s z

et, en fait, nous pouvons «concrétiser» (en faire un objet tangible) un successeur universel, en définissant une
fonctionHaskell

succnsz=ns (s z

(Rappelons qusucc n s z peutetdoit étre lu(succ n) s z , ou, sion préfére :
succ n =\s z->ns (s z

On peut définir d’autres instances concrétes de nombres :

two s z = s (s 2)
three s z = s (s (s 2))

etc., mais ceci est un peu ennuyeux. Mieux serait de définir

two = succ one
three = succ two
four = succ three

etc., mais cette solution n’est pas tellement plus intéressante. ..

Passons donc aux définitions des opérateurs arithmétiques comme I'addition, multiplication et I'exponentiation,
mais d’abord préciseront comment tester le systéme et afficher quelque chose. Il suffit de moddédisetle
le successeupar des objets directement visibles, par exemple

zz = 0

ss = (1 +)

shown n = n ss zz

mais ce n’est pas la seule possibilité. Nous pouvons utiliser le «systéme unaire» de manipulation des nombres,
comme chez les anciens. Le nomhrsera affiché comme une suite détoiles :

7727 =
sss = (™ 1)
showx n = n sss zzz

(Un méta-commentaire est nécessaire. Le neob dénote un objet prédéfini eraskell, et pour tester le
modele il est préférable de donner un autre nom au numéral de Church correspondantep. . eReut-étre
un jour les processeurs de notre langage préféré vont accepter des lettres accentuées !

L'addition est facile a trouver quand on réalise que la sémantique d’'un numéral de @rastttappliquer
n fois son premier argument a son second argument. Ceci implique (ou, au moins, suggere)

add n1 n2 sz =nl1ls (n2 s 2)

On applique d’aborch2 fois le successeur, et ensuite encafe fois, au résultat précédent. |l est trivial
de prouver quedd n zer est égal an, et quesucc (add nl n2) =add nl (succ n2) , ce qui
compléte la démonstratiofEssayez de faire cette démonstration formellement).

A présent nous pouvons définir avec joidiree = add two one ,four = add two two |, five
= add two three etc., maisil esttoujours difficile d’aller ainsi trés loin. Définissons donc la multiplication
des numéraux de Church, et il nous sera utile de reconnaitre que si le typeo@istrait est, alors le type
du successeuesta -> a , et c'estexactementle type d’'une application partiellen succ , ounn est un
numéral quelconque, sticc — un successeur quelconque.

Alorsnn succ est un «super-successeur», un successeur applidoiés. A quoi? Bien sdr, a largument
manquant. Alors, pour multiplienl parn2, nous allons utilisen1 pour appliquer &éron, fois le super-
successeur lié a; :

154 Introduction a la véritableprogrammation fonctionnelle et a Haskell

mul n1 n2 sz =nl1 (n25s) sz

et nous pouvons défingix = mul two three |, eighteen = mul three six , etc. Notez que ni
I'addition ni la multiplication ne sont pas des fonctions primitivement récursivebléanmoins I'addition est
définie par l'itération des successeurs, et la multiplication par I'itération des additions.

A.6.3 Nombres de Peano-Church et combinateurs de Curry

Les définitions des opérations introduites ci-dessus : le successeur (modele), I'addition et la multiplication
peuvent étre abrégées grace au style combinatoire, simplifications des arguments a droite, et 'usage des com-
binateurs standard comrfls , const et la compositior{.) . On voit que

zer sz =12z = (flip zer) z s =z ou
zer = flip const

Le modéle de 1 est encore plus simple :

(one s) z=sz =ones =-:s ou
one = id

La simplification de I'addition ne va pas si loin :

add n1 n2 sz =nl1ls (n2 s 2) =add nl n2sz=(nls). (n25s) z
ou
add n1n2s =nls.n2s

et I'élimination des n’est pas trés trivial (méme si possible. Essayez, pensez au combigalsur...) La
simplification du successeur modeéle est trés simple également :

s (s 2) =(s).s ou

succ n s z
= . S

=n
succ ns=ns
mais une forme alternatives: . n s est vraie aussi, car nous pouvions partir de la définition
succ nsz=s(ns 2z

Ces formes deviennent combinatoires instantanément, grace au combsudteurCependant, la simplifica-
tion de la multiplication est étonnante :

mul n1 n2 s z=nl1(n2 s) z =l .n2) sz ou
mul n1 n2 = nl . n2

et dans un langage trés soutenu nous dirions que dans le monoide des fonctions la multiplication est la compo-
sition !

A.6.4 Lexponentiation

Pour calculer la puissaneg” il faut itérerm fois la multiplication den par soi-méme. Le niveau d’abstraction
monte, et, paradoxalement, la définition de simplifie :

pow nms z =mns z ou
pow n m = m n

Une dérivationab ovode cette définition n’est pas trés difficile, mais elle ne sera pas donnée ici. Observons
seulement que dans la théorie des ensembles la notifiaiénotd’ensemble de toutes les fonctions — A.
Donc, le résultat n’est pas accidentel. Observons aussi que pour les ensembles finis le cardinal de cet ensemble
satisfait|B — A| = |A|lPl. Ceci peut étre prouvé comme suit. Pour tout élénbede B il existe |A|
possibilités de trouver un élémente A et de former une instance de la fonctiBh— A, a savoir :b — a.
Mais il y a | B| possibilités de choisib, donc le nombre total d’instances devieat! .

Si le lecteur a toujours des doutes, donnons une preuve inductive de notre résultat. Vérifiafs=gue
1,n' =n, etn(m*+1) = n . n™, La démonstration utilise la simplification combinatoire sans trop de commen-
taires :

A.7 Exercices 155

pow n zer s = zerns = s
donc, son agissement szérodonne 1.

pow none = pownid = idn = n
et finalement

pow n (succ m) = succmn = n.(mn

Cet exercice montre clairement quelle est la puissance du raisonnement abstrait dans le domaine aussi concret
que l'arithmétique.

A.6.5 Soustraction

Comment décrémenter un numéral de Church? Le probléeme n’est pas trivial, et sa soluf@muéssent
inefficace. Notre «théorie» est close, et nous n'avons aucun moyen de passer au prédécesseur d'un nombre.
Mais nous pouvons construire une opération d’incrémentation spécifique qui agit pairdss’'objets, et qui
sauvegarde I'original, comme ci-dessous :

s2 s (a,b) = (b, s b)

En agissant avec ce sucesseur spécifbis sur(z,z) on obtient le le nombre: concrétisé,avec son
prédécesseuioici la définition compléte de la décrémentation, avec un peu de simplificatie? de

dec n s z = p where
s2 (_,b) = (b,s b)
(p.0) = n s2 (z,2)
Pour la soustraction il suffit d’itérer 'opératedec . Ainsi on doit reconnaitre quec (dec (dec ten))
donne un nombre équivalensaven . Laissons les détails de la construction au lecteur. Analysez également sa
complexité ; il faut tenir compte que 'opératadrc est onéreux : la formélec n) lancel'incrémentation
n fois.

A.7 EXxercices

Q1. Optimiser la procéduresort , ou au moins analyser en détail sa complexité, et découvrir toutes les
sources d'inefficacité.

R1. Des programmes comme ¢a sont trés fréquents dans la littérature «pédagogique» consacrée a la program-
mation fonctionnelle. On découvre facilement la structure et le sens de I'algorithme. Mais tel quel, il
est trés inefficace, méme si nous avons déja effectué une légére optimisation, en construisant la fonction
instree de maniere récursive terminale. (La version encore pire aurait la forme

instree [| = Empty
instree (x:xq) = ins x (instree xq)

méme si syntaxiqguement elle est plus simple).

Une optimisatiorévidenteconsiste a supprimer la concaténat{grt) duflatten . Rappelons que

la concaténation recopie son premier argument ! Avec une variable-tampon on élimine cette création de
copies éphémeéres, et de plus on transforme la fornction en itérative :

flatten Empty tmp = tmp
flatten (Nd x g d) tmp = flatten g (x : flatten d tmp)

(Il faut ajouter le tampofi] a l'appel deflatten partsort).

Malheureusement la source principale d’inefficacité est ailleurs : Chaque insertion d’un élément dans
I'arbre reconstruit complétement la branche concernée, de la racine, jusqu’a la feuille qui sera insérée.
Dans un langage impératif on aurait modifié physiquement I'arbre en remplacant le pointEozyr

par la référence de la nouvelle feuille, ce qui n’est pas possible directement ici.

Cependant une solution qui construit la structure d’'un seul coup existe, mais elle est suffisamment com-
pliquée pour abandonner sa présentation. (Elle utilise la programmation paresseuse de maniére assez
agressive ; trouver le programragbmin dans le texte).

156

Introduction a la véritableprogrammation fonctionnelle et a Haskell

Q2

R2.
Qs.

R3.

Q4.

R4.

Q5.

R5.

DémontreZformellementa validité des opérations arithmétiques sur les numéraux de Church, par exem-
ple la commutativité et I'associativité des additions et des multiplications.

Ah, quel beau sujet d’examen.

Montrez qu’un véritable langage fonctionnel n'a pas besoin de structures de données, elles peuvent étre
construites comme des fermetures.

Présentons ici un exemple. Essayez d’en trouver autres. \Voici une collection de définitions un peu
bizarres :

consabs=sahb

car x = x const
cdr x = x (flip const)

Définissons, par exempke = cons 17.0 "Belle Marquise" . Lavaleur dex n’a aucune représen-
tation visuelle, c’est un objet fonctionnel, opaque. Mais I'information stockée a son intérieur est récupérable.
Voici la réduction de I'appel

car X — cons 17.0 "Belle..." const — const 17.0 "Belle..."
— 17.0

Vérifiez quecdr marche également, et que structures plus complexes peuvent étre composéns par

Quels sont les types principaux de fonctions standard (prédéfinies dans le Prélude Standard) ci-dessous :
flip f xy =fyx
until p f x = if p x then x else until p f (f x)
foldr f z [] =z
foldr f z (x:xs) = f x (foldr f z xs)
L'analyse des types est importante pour le déboguage, alors considérez cet exercice comme important.
Et ce qui estraimentimportant c’est le raisonnement, non pas la réponse.
(a) flip prend trois paramétres, et donc son type le plus universel, «xamorphefisera a
-> b -> ¢ -> d . Mais le premier paramétre est une fonction qui s’applique aux deux autres,
et retourne le résultat qui sera également le résultéltpdu . Nous auronsdonc:: ¢ -> b
-> d . Ceci est équivalenta. Finalement flip :: (c->b->d)->b->c->d
(b) Dansuntil laforme(p Xx) estune condition Booléenne. Sunous ne savons rien, sauf qu'il
est argument dp et également de. Mais en regardant lformede la définition, sa cohérence, on
découvre que le résultat dex estle méme que celui de Donc :until :: (a->Bool)
-> (a->a) -> a -> a
(c) Le résultat retourné pdoldr est le résultat dé, qui est une fonction de deux arguments. Mais
son second argument est de méme type que son résultatf alorsa -> b -> b
Le premier argument de, le x appartient a la liste qui est le troisieme argumentaddr , donc
foldr :: (a->b->b) -> b -> [a] > b
Quel est le type principal de la fonctica :

sd g x 1@(y:q) = (@ x:1):map (gy:)(sdgxq

Toujours le méme raisonnement. Trois parameétres, dont le premier est une fosdtian. (a->b)

> a -> [c] > [d]

Le résultalgy x ale méme type quie (ouq). Surx nous ne savons rien, mais le typeydest identique.
Le résultat final doit étre une liste, car il est le second argumerhap On trouve facilement les
contraintes manquantes :est égal &, et donc aussi a. En regardant I'argument gauchedu dans

le résultat, on découvre la réponse fingde :: (a->a) -> a -> [a] -> [[a]]

Annexe B

Introduction a la programmation en
Haskell (11)

B.1 Surcharge des types

Méme des langages qui n'implémentent pas le polymorphisme permettent la surcharge des opérateurs. Par
exemple(+) enC et enPascal sert a ajouter les nombres réels et entiers, et le compilateur sait réagir conven-
ablement dans le cas d’'une expression mixte : le fait est reconnu, et I'argument entier est converti en réel, soit
directement si c’est une constante, ou par la coercition : I'expressiorest (par exemple) compilée comme
toReal(n)*x . Ceci signifie que la reconnaissance des types est une partie trés importante de I'analyse
effectuée par le compilateur.

Il ne faut pas confondre la surcharge, appelée parfois le «polymorphisme ad hoc», et le vrai polymorphisme
(paramétrique). Dans le dernier cas, une fonction est définie totalement indépendamment du type de son
argument, par exemple dans la définition

dupl f x = f x X

la fonctiondupl ignore jusqu’au bout le type de et elle «sait» seulement géieest un objet applicablexa
un tel polymorphisme n’existe pas €nil peut étre simulé & I'aide des templates.

Par contre, la surcharge des opérateurs arithmétiques peut étre considéré conabevadon nous
avons simplement le méme nom pour plusieurs functions. Le compilateur transfdiie émaddinteger
ouaddReal , etc. Dans un langage typé statiquement cor@he c’est presque tout. Il n’y a aucune pénalité
d’exécution, car le code compilé contient seulement des fonctions spécifiques (sauf si une fonction est virtuelle,
bien sar).

En Haskell la situation est plus complexe, a cause de I'absence des déclarations du type. Nous pouvons
définir une fonction qui «hérite» la surcharge, par exemple la puissance :

cube x = X*x*x

Si l'utilisateur, aprés avoir chargé cette définition tapeube, le systéme va naturellement protester, car

il ne sait pas afficher une fonction. Mais, il va diment répertorier le type de cet ahjee« comme

Integer -> Integer . Pourquoilnteger ? Parce que les objets — non pas des fonctions, mais des
«choses» sans parameétres — qui existent sur le «top-level» de l'interpréte — et c’est exactement ce qui a été
compris paHugs — doivent avoir un type précis. Cependant, si on demande le typaloe par la directive

it cube ,laréponse sera

cube :: Num a => a->a

lu comme suit :cube est une fonction d’'un parametre qui rend le résultat appartenant au méme type que le
parameétrex condition que ce type appartienne a la classe des nombrést la multiplication est spécifiée
comme un opérateur surcharglumet autres classes seront discutées en détail dans la section suivante, (B.2).
Une restriction particuliere ddaskell actuel, fait que le compilateur prend une décision inopinée, et considére
gu’un argument numérique complétement inconnu soit entier. . .

157

158 Introduction a la programmation en Haskell (11)

B.1.1 Surcharge automatigue des constantes numériques

Haskell ne prévoit pas de conversion automatique (ceci en général aurait généré des ambiguités), mais il existe
une exception. Les constantes numériques entiéres ou réelles, p. ex. 7 ou 3.1416 ne sont pas compilées
directement, maiforcéesa se comporter comme des données surchargées. Le nombre 7 sera compilé comme
frominteger 7 , et s'il se trouve dans un contexte flottant, p. ex. si on tap®:5 , on obtient 17.5 sans
problémes.

Les constantes réellésse transforment effomDouble X . Ceci permet eilaskell existence de I'arith-
métique mixte, sans forcer I'utilisateur a placer explicitement les fonctions de conversion.

Il faut avouer que cette méthode n’est pas tres efficace, la conversion automat(Cjoe: €ortran est plus
rapide. Cependant, ces langages ne sont pas polymorphes, et demandent toujours des déclarations explicites,
donc il y a toujours un prix a payer.

B.2 Classes de types

Haskell réalise — a sa maniere — un de paradigmes de la programmation orientée-objet, a savoir une surcharge
dynamique, la possibilité de compiler des fonctions en (une certaine) indépendance des types des arguments.
Qu’est-ce le symboleNun» découvert dans la section précédente? Il dénote le nom dlasse

Dans des langages a objets connus, cor@rme (ou Smalltalk) il y a une «collusion» entre les notions de
classeettype EnHaskell ces deux notions sont trés différentefaskell opére avec deslasses de typedn
type et jamais une donnée, peut appartenir a une classe. Un type peut d’'ailleurs appartenir a plusieurs classes
(et ceci n’a presque rien a voir avec I’héritage multiple classique ; on peut cependant trouver une affinité entre
cette propriété, et plusieurs «interfaces» d’'un objelam).

Par exemple, les entiers et les flottants (et les rationnels, et les complexes, et tout ce qui vous pouvez définir
dans un cadre arithmétique) appartiennennt a la classe des «norluas»}.a classe précise quelles sont
les «fonctions virtuelles» susceptibles a agir sur les objets de type qui appartient a la classe donnée. Si nous
voulons définir une méthode surchargée, p.lgx.applicable aux entiers et aux chaines, et qui returne soit la
longueur de la chaine, soit I'entier lui méme, nous écrirons :

class Privée a where
lg :: a -> Integer

et ensuite nous précisons les implantations concretes, définies darstdesegsle la classe définie :

instance Privée Integer where
lg x = x
instance Privée Int where
lg x = tolnteger x
instance Privée [a] where
lg x = Ing x where
Ing] =0
Ing (_:q) = 1+Ing q

Bien s(r, I'exemple n'est pas trés sérieux, normalement les fonctions surchargées qui portent le méme nom
doivent faire des choses similaires.
Dans le Prélude standard nous trouverons :

class (Eq a, Show a) => Num a where

) (), () ~a->a->a
negate T a->a
abs, signum ta->a
frominteger o Integer -> a
fromint Dnt > a

ou on note la claus€Eq a, Show a) => qui préfixe la déclaration de la classlm a Elle signifie
gue le type génériqua peut appartenir a la cladéum a condition, qu’il appartienne déja aux clasSemw
('existence des fonctions d’affichage ; c’est un accident historique cette restriction, elle n’a pas beaucoup
de sens mathématique) e, ou on précise la fonction surchargée=) - I'égalité entre deux structures de
données quelconques.

La classeEq est simple, mais intéressante :

B.2 Classes de types 159

class Eq a where
(==), (/=) = a -> a -> Bool

X ==
X /I=y

not (x/=y)
not (x==y)

On y trouve pas seulement la déclaration de I'égalité et d'inéga(ité) : , mais aussi deux définitions «con-
crétes» de ces opérateurs, qui visiblement ne peuvent servir a rien, car elles sont cycliques. ..

Mais ellespeuventétre utiles. Si nous définissons une nouvelle structure de données, par exemple les
nombres complexes définis comme

data Complex = C Double Double
il suffit de préciser I'égalité :

instance Eq Complex where
Cxy=Cab=x==a && y==b
et l'inégalité est définigar défauten accord avec les définitioasins la classéplutét que dans l'instance).
Ainsi, dans la classMumnous retrouverons les définitions suivantes :

X + negate y
0 -x

X -y
negate x

ce qui nous permet de définir soit la négation, soit la soustraction, et I'autre nous est fournie automatiquement.
Nous pouvons donc définir

instance Num Complex where
Cxy+Cab=C (xta) (y+tb)
Cxy*Cab=C (xay*b) (x*b+y*a)

et la soustraction est définie aussi.

B.2.1 Restrictions sur les types
Définissons une autre structure de données, une «fraction rationnelle générique»
data Fract a = R a a

ou — intuitivement — nous voudrions q&e 7 9 représente la fractiofi/9. Mais nous n'avons pas spécifié le

type des fractions comnie Integer Integer , car nous pouvons un jour essayer de construire des frac-
tions a partir des polynémes, sachant que les polynémes admettent I'arithmétique similaire a celle des entiers
(addition, multiplication, division Euclidéenne, PGCD, etc.). Donc, le type des composants reste générique.
Alors la définition des instances aura la forme suivante :

instance Num a => Num (Fract a) where
R xy + R a b = simplifie (R (x*b+ty*a) (y*b))

La clauseNum a =>est nécessaire pour informer le compilateur que I'on ne peut assembler les fractions a
partir de n'importe quoi. Le numérateur et le dénominateur doivent étre d’'un type compatible avec la classe
Num

Lisez le Prélude Standard de Hugs. Il contient plusieurs dizaines d’exemples de classes et d’instances qui
peuvent vous inspirer

B.2.2 Classes de constructeurs

Le systeme de types dans un langage fonctionnel inclut naturellement les types fonctionnels. Si I'expression
f a b appartient au typ®ouble , et si la variableb estinteger , I'expressionf a appartiendra au type
Integer->Double . Ceci nous savons déja.

Mais ainsi les expressiotsou R qui sont lesconstructeursdes types€Complex ouFract appartiennent
aussi aux types spécifiques :

C : Double -> Double -> Complex
R @ a ->a -> Fract a

160 Introduction a la programmation en Haskell (11)

(on peut les considérer comme des applications partielles) et nous pouvons nous poser la question : a-t-il un
sens préciser des classssdonc, des opérations surcharggesur ces constructeurs? En effet, il existe une
raison. On trouve parfois des opérations similaires au sens qu’elles font «des choses pareilles» pas seulement
indépendamment de type des arguments, mais égalatadetr structuration Avec le typeComplex il n'y
arien a faire, mais si le type est paramétré, corfmaet — si. Nous pouvons préciser gieact tout court
appartienne a ungdasse de constructeurs

Autre exemple. Nous connaissons la fonctiap:

map f [] =]
map f (xxxq) = f x : map f xq

qui applique une fonction a tous les éléments d’'une liste. Mais nous pouvons vouloir appliquer une fonctions a
tous les éléments d’'un tableau ou d’'un arbre, par exemple

data Arbre a = Nil | Noeud a (Arbre a) (Arbre a)

tmap f Nil = Nil
tmap f (Noeud x g d) = Noeud (f x) (tmap f g) (tmap f d)

et il serait utile de pouvoir appeler cette fonctiomagp» aussi. Ceci est possible etaskell (avec une Iégére
modification du nom, une telle fonction est prdéfinie, et s’apdeiiep). D’abord on définit la classe :

class Functor f where
fmap = (@ -> b) -> (f a -> f b)

Notez que le type —argument de la clagsBgure dans un contex{é a) dans le type démap . Ceci signifie
quef est unconstructeur de typesin moyen de structurer des types composites. Nous pouvons maintenant
déclarer :

instance Functor Arbre where
fmap = tmap

et nous trouvons dans le Prélude la déclaration

instance Functor [] where
fmap = map

Icilaforme[] n’arien a voir avec une liste vide, la notation est un peu accidentelledi est urconstructeur
de listes le type qui aurait pu s’appeler par exemplgst ». Le nom[] est historique, il faut s’habituer, et
de ne pas le confondre avecdannéd]

Nous pouvons construire d’autres instances de cette fonctionnelle. Par exemple il est utile de prévoir un type
«peut-étre» qui spécifie (avec un balisage) les objets résultants de I'appel d’'une fonction qui peut «échouer»,
et rendre «rien». Dans le Prélude nous trouverons :

data Maybe a = Nothing | Just a
deriving (Eq, Ord, Read, Show)

(Pour l'instant acceptez I'existence de la cladseiving . Elle est trés utile et elle sera discutée ultérieure-
ment.) Si une fonction «normale» retounneune fonction étendue, qui peut échouer, retouum x (en
cas de succes).

Si nous voulons qu’une fonction appliquée pamap généralisée Alothing ne fait rien, et se comporte
«normalement» dans le cas contraire, nous définissons :

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

Pour le parsing nous aurons besoin d’'une autre classe de constructeurs, IMolaadequi sera décrite plus
tard.

B.3 Modules 161

B.2.3 Fonctions d’affichage

Tout langage de programmation doit permettre la lecture des données et I'affichage des résultats. Les langages
fonctionnels évitent les effets de bord, traditionnellement associés aux procédures d’entrée et de sortie. Dans
cette section nous allons traiter seulement une partie du probléme : la conversion entre des objets quelconques
et leur représentation extérieure, visuelle, concrétement : les chaines de caractéres.

En général le probleme est difficile : comment afficher un objet quelconque? La propéidtie enC
utilise des primitives qui reconstruisent les chaines depuis des entiers ou des flottants, mais dans les cas plus
complexes, I'utilisateur doit savoir ce qu'il veut. La situationtaskell est similaire.

Il existe une fonction universelle, surcharg&®w qui transforme son argument en chaine. Une autre
fonction :shows x s, «affiche» (transforme en chaine) 'argumenet concaténe le résultat avec la chaine
s, ce qui permet d’enchainer 'affichage de maniére plus efficace. Au lieu d'&trine x ++ show vy
++ show z, on peut écrirshows x (shows y (shows z ™)) ,ou(shows x . shows vy .
shows z) "™ - construire desombinateurs d’affichagefficaces qui évitent de recopier les chaines.

Quelques fonctions de base comst®w, showList , etshowsPrec sont définies comme membres
de la class&how, et les instances dghow pour les caracteres, et les nombres sont prédéfinies. La fonction
showsPrec est capable de gérerl'affichage de structures hiérarchiques, avec quelques régles de précédences
et avec l'insertion de parenthéses. Le lecteur doit lire les définitions dans le Prélude.

La fonctionshowsPrec pour des types nouveaux doit étre définie par I'utilisateur. |l faut déclarer au
compilateur deHaskell que le type de données soit «présentable» (qu'il apparti&hioav, ainsi il profitera
pleinement du polymorphisme des opérations d’affichage.

Il existe également la clas$tead, qui spécifie les fonctions de conversion entre les chaines et des objets
guelconques. En fait la fonctioead constitue un parseur primitif integré dadaskell. 1l est suffisamment
général pour étre pratiquement utilisé comme un scanneur lexical. Encore une fois, le lecteur est invité a lire la
documentation du langage.

B.3 Modules

Les langages respectables d’aujourd’hui doivent permettre la séparation de la source d’une grande application
en morceaux ‘modules qui communiquent, et peuvent profiter des définitions présentes ailleurs, mais qui
gardent une certaine intégrité, et — par exemple — la possibilité de définir des fonctions privées, invisibles de
I'extérieur, ce qui évite la collision des noms. Bien s(r, pour langage compilé vers un code binaire avec la
génération des applications autonémes, le systéme doit assurer le traitement indépendant des modules. Chaque
module qui veut utiliser des fonctions, constantes ou types définis ailleurs, doit les expliciterperter.
Chague module qui veut rendre visible une partie de ses définitiorexpeste

Haskell demande que tout fichier contenant une librairie-source d’entités exportables (fonctions, types...)
commence par le mot-cl@odule suivi par le nom et la liste de modules/entités exportés, par exemple

module Prelude (
map, (++), concat, filter, head, last, tail, init, null,
length, (1), foldl, foldll, scanl, scanll, foldr, foldrl,
scanr, scanrl, iterate, repeat, replicate, cycle,

Si la liste est vide, par défaut cela signifie doas les nomset leurs définitions) sont exportés. (Un module
qui n’exporte rien ne sert a rien). Par défaut un module ne ré-exporte pas des entités qu’il a importé.

Ensuite nous avons la liste d'importation et les définitions locales. On peut importer un module partielle-
ment, précisant par exemple que quelques définitions sont «cachées». Voici I'entéte d’'un tel module (en fait
c’est un module utilitaire réel écrit pour gérer differemment les nombres ; toute la dlassdisparait et les
opérateurs arithmétiques sont rédéfinis) :

module Math where

import Prelude as Pp hiding ((+),(-),(*),Num,(/),("),Fractional,
fromDouble,negate,abs,signum,recip,fromint,frominteger,Floating,
sin,cos,exp,log

162 Introduction a la programmation en Haskell (11)

infixr 8 »
infixl 7 *, [, #, >/

En cas de besoin on peut toujours accéder a un gkjetappartenant au Prélude par la notatRpixxx .

Le nom du module doit correspondre au nom du fichier dans lequel il se trouve. Les modules peuvent étre
réciproquement récursifs.

Nous ne pouvons pas donner l'information compléte sur les modules. |l est possible de changer de nom
d’entités importés ou de «qualifier» quelques noms a l'aide du majueéfied , ce qui permet de gérer
mieux les espaces contenant les noms conflictuels.

Il est possible d’exporter partiellement une structure de données : seulement son nom (et les fonctions qui
manipulent ces données), mais sans constructeurs. Ainsi, dans le module qui importe cela, ce type de données
devientabstrait On ne connait pas sa structure, on ne peut pas «manuellement» construire ses instances,
seulement utiliser les fonctions importées. Ceci augmente la sécurité de programmation.

Ainsi les fractions rationnelles définies dans le Prélude a I'aide de I'opéralr : 7:%9 est la fraction
7/9 — peuvent étre manipulées, mais I'utilisateur n'a pas le droit de construire, di&68,0u 3:%(-7) ,
car de telles fractions sont mal simplifiées. Le construc{g6) n’est pas exporté, par contre, le Prélude
exporte un autre opératedqui force toujours la simplification de la fraction, qui vérifie que le dénominateur
est différent de zéro, etc.

B.3.1 Clausederiving

Pour quelques procédures surchargées relativement universelles comme I'affichage, I'égalité, otiBskailé,
permet d'ajouter un peu d’automatisme, ce qui évite un travail pénible de définition de toutes les instances. Si
nous avons une structure de donnée composite, par exemple

data Value a = Rien | D Double a | A (Value a) | T (Value a) (Value a)

on peut attendre que I'égalité soit définié «naturellememien==Rien et a rien d’autre, qUA Xx==Ay Ssi
x==y, etc. Les structures comparées doivent étre homologues. La clause

data ... deriving Eq

demande a compilateur la construction des fonctions d’égalité et inégalité correspondantes.

On peut aussi dériveshow, Ord, et Read. L'affichage dérivé utilise les noms des constructeurs. Ceci
peut «dévoiler» les constructeurs que nous avons voulu cacher dans un module !

La classeRead est la réalisation d’un petit parseur dans la couche standarthdkell : elle permet la
lecture de structures de données définies par I'utilisateur.

B.4 Continuations: du fonctionnel a I'impératif

Le lecteur peut — & juste titre — avoir I'impression, que si on élimine des langages impératifs I'évaluation des
expressions, ce qui constitue la couche fonctionnelle, et si on reste avec le flux de contrdle, les branchements,
les boucles, etc., ceci n'a plus rien a voir avec le monde fonctionnel, et que les techniques de compilation
deviennent trés asymétriques : un programme impératitestcorrespond au code assembleur exécuté par le
processeur, tandis que le code fonctionnel, la réduction et I'évaluation d’un graphe qui représente une expres-
sion, force sdranslation en code linéaire, impératif.

Cependant le progrés récent dans le domaine de compilation et I'arrivée de nouveaux compilateurs est
partiellement le résultat du progrés dans la compilafmetionnellequi est beaucoup plus statique, mathéma-
tiguement précise, et facile a comprendre.

Nous avons déja mentionné le fait qu’une fonction paresseuse peut réaliser une structure de contréle, un module
de code qui pilote localement I'évaluation d’'une ou plusieurs sous-expressions, et ainsi permet de prendre des
décisions sélectives (on n’évalue pas la clagisesi la conditionif était vraie et la clausthen reste la seule

en vigueur ; pour la structuiaseune seule branche peut et doit étre évaluée).

Or, la sérialisation du code, la notion de séquence, possede sa forme fonctionnelle aussi, et s’appelle la
tinuation. Brievement, la continuation d’'une expression (rappelons que dans le monde fonctionnel I'espression
c’est leseulobjet intéressant) est le «futur» du calcul, ou I'opération qui sera exécutée immédiatement apres.
dans I'expressiorf (g(z), h(y, x)) qui enHaskell sera écrite comme

B.4 Continuations: du fonctionnel a I'impératif 163

f@x (hyx

La continuation de I'expressiog(x) est I'évaluation dei(y, z) (si I'évaluation des arguments procéde de
gauche vers la droite ; ébcheme cet ordre n'est pas spécifi€) car il faut évaluer le second argumédntate
finalement la continuation deestf. Ainsi le code sera linéarisé.

La réalisation concreéte et détaillée des continuations par le compilateur sera discutée ultérieurement. Ici il
suffit de préciser qu’une telle opération peut étregsgtautomatique, et suggérer I'approche suivanteute
fonction est modifiée, gbrend un parametre supplémentaireCe parameétre est justement la continuation,
une fonction d’'un argument. Si la fonction originale retournait simplement une valeur, la fonction «continuée»
passe cette valeur a sa continuation. Plus concrétement, au lieu de discuter I'évaluéitiap denous allons
transmutef en une «fonction continuédx»cont , telle, que

f_cont x cnt = cnt (f x)

ou la fonctioncnt représente la continuation, le futur d’évaluation(flex) . On peut abstraire «la continua-
tion d’'une fonction normale» en définissant :

f cont = cliftl f

cliftl f x cnt = cnt (f x)
Nous affirmons que

e le processus de construction de fonctions «continuées» : transformation ditece@RBuation passing
style peut étre automatisé dans la plupart de cas, et

e le code résultant ressemble plutbt a I'assembleur qu’'a I'arborescence représentant une expression com-
posite, hiérarchique.

e Son optimisation est beaucoup plus facile.

e Grace aux continuations on pourra de maniére fonctionretliglors simple, lisible et statiquedéfinir
les branchements, structures itératives, voire méme des structures de contréle non-déterministes.

Prenons comme exemple I'évaluation de I'expressjar? + 32. Une définition fonctionnelle classique d’une
fonction qui effectue ce calcul serait

fn x y = sgrt (x*x + y*y)

Rien a ajouter, méme si nous pouvons manuellement convertir ce code en postfixe. Supposons néanmoins que
la fonctionsqgrt a été transmutée paliftl ~ en sa forme continuéesgc = cliftl sqrt , et que nous
avons défini les opérateurs binaires continués également :

clift2 op x y cnt = cnt (op X y)
add = clift2 (+)
mul clift2 (*)

La fonction continuéénc peut étre définie comme

fnc x y cnt =
mul x x (\a ->
muly y (\o ->
add a b (\c ->
sqc ¢ cnt)))

La continuation de la premiere multiplication est le calculytie . Cette opération n’a pas besoin du résultat
a de la multiplication précédente, mais on le garde pour I'avenir. Il sera utilisé&qsir On doit noter une
ressemblance entre 'exemple ci-dessus et les instructions impératives :

a = x*X
b = y*y
c = atb

resultat = sqrt ¢

164 Introduction a la programmation en Haskell (11)

En fait, les continuations permettent d’'établir un pont entre la programmation fonctionnelle et une machine
a registres. Gréace a elles on peut établir I'ordre d’exécution des opérations (évaluations) dans le programme,
sans imposer cet ordre au niveau du méta-langageus définissons un langage de maniére dénotationnelle,
précisons sa syntaxe et sa sémantigiaiqguementsans jamais aborder le probléme du «temps». Mais la
construction des relations «X est la continuation de Y» permet d’enchainer I'exécution des instructions, et ainsi
nous pouvons créer (partiellement) un langage impératif sans quitter le style fonctionnel.

Les continuations peuvent naturellement étre utilisées dans un programme quelconque. Tout enchainement
d’applications fonctionnelles dans un module peut exploiter cette stratégie. Mais attention : si une expression
normale se transforme en «continuée», c'est-a-dire en fonction qui attend un argument — la continuation, et
si cette continuation est une fonction continuée conmm, le résultat est encore une fois une expression
continuée, un objet fonctionnel. Quand est'ce que le réditi@tsera enfin récupéré?

Laréponse est: alafin du programme (module ou son fragment) ainsi sérialisé. Il faudra appliq@erune
tinuation terminale, par exemple la fonctior , définie parid x = x , qui récupeére le résultat. Naturelle-
ment cet appel de la fonctiod posséde aussi une continuation, mais cette continuadionle programmeur
est implicite : elle peut appartenir a la boucle principale de l'interpréte (le dialogue avec I'utilisateur), ou le
résultat est affiché. Ou bien, ceci peut étre la fin logique du programme qui s’arréte, et sa continuation est une
des procédures du systeme d’exploitation, par exempbdd qui fait avec le résultat ce qu'il veut. En tout
cas la chaine de continuations explicites doit étre «cassée» pour voir le résultat (p. ex. numériqusyisinon
les objets crées sont des fonctions.

Ceci n’est pas notre derniére rencontre avec les continuations (sauf si le lecteur lit cet annexe aprés avoir
assimilé le reste de ces notes).

B.5 Les tableaux

Tout langage sérieux doit permettre la construction de structures composites adressables rapidement : les
vecteurs, méme si souvent les listes sont plus commodes pour coder les algorithmes récursifs. Pour pouvoir
utiliser les tableaux eHugs il faut préfixer le fichier contenant le programme paport Array

Les tableaux eilaskell sont un peu plus abstraits que dans d’autres langages, et leur usage demande une
certaine expérience. On ne peut pas facilement modifier un élément d’un tableau, et ceci souvent décourage
les débutantsHaskell définit un type génériquArray a b oua est le type des indices, bt— le type des
valeurs stockées dans le tableau. Les indices peuvent étre des entiers, caracteres, un type énuméré, etc., — tout
type qui appartient a la clasbe (qui ne sera pas discutée icljnportant : les pairegn, m) sont des indices
légaux, sin etm sont des indices. Ainsi on peut construir des tableaux multi-dimensionnels.

Un tableau normalement est construit d’un coup, a partir d'une liste d’associations par la fancipn

(a,a -> [(a,b)] -> Array a b ., par exemple

v = array (1,100) ((1,1) : [(i, i * al(i-1)) | i <- [2..100]])

ce qui montre l'usage des compréhensions et de la paresse pour construire des tableaux da fagcon incrémentale.
Bien s(r, a droite, dans la liste des association chaque indice doit apparaitre une et une seule fois. On voit aussi
qgue l'opérateur(!) est utilisé pour indéxer les éléments. La fonctimtArray demande uniquement
l'intervalle des indices et une liste des éléments, et construit les associations elle-méme.

L'absence d’'une «instruction» de ger]:=A[k]+1 etc. devient moins génente si on apprend quelques
astuces du métier, p. ex. 'usage des tableaux cumulatifs. Un tablegdasiell est stocké avec son paramé-
trage, en utilisant les fonctions commeunds , indices , elems ouassocs on peut récupérer l'intervale
desindices, ou les listes : des indices, des éléments, ou des associations, et de reconstruire avec ces informations
un autre tableau.

L'opérateur infixe(//) :: Array a b -> [(a,b)] -> Array a b prend un tableau et une liste
des associations, et construit un autre tableau, avec les éléments modifiés selon le second argument.

Comme il a été mentionné ci-dessus, la liste des associations qui définit les éléments du tableau ne doit pas
avoir des indices répétés. Mais on peut relaxer cette contrainte. Il faudra donc répondre a la question : qu’est-
ce que I'on met dans I'élément concerné, dont I'indice figure plusieurs fois? La réponse asimlineces
éléments en utilisant f@nction d’accumulation

LafonctionaccumArray :: (b->c->b) -> b -> (a,a) -> [(a,c)] -> Array a b com-
bine (p. ex. ajoute) toutes les contributions venant des indices répétés, en utilisant I'opérateur — le premier

B.6 Exercices 165

argument deaccumArray . Le second argument est la valeur initiale utilisée dans la combinaison. Cette
fonction utilise un opérateur plus simgecum qui est une sorte deld pour les tableaux. EHaskell nous
avons aussi des fonctionnellemp etixmap applicables aux tableaux, mais les détails doivent étre cherchés
dans la documentation.

B.6 Exercices

QL.

R1.

Q2.

R2.
Q3.

R3.

Q4.

Quelle est la différence entre ces deux définitions :

cube x = X*X*X
cub = \x -> x*x*x

cub a été défini sans paramétres, comme un objet lambda. La restriction monomorphidaskeil
précise quecub est une fonction du typlnteger->Integer . Le type decube a été discuté en
détails : Num a => a -> a. Mais si on demande le type de->x*x*x on obtient de nouveau
Num a => a -> a. Pourquoi?

Quelle est la réponse du systeme si aprés avoir chargé la définition de laRiagse et de ses in-
stances, on demantg 67 .

Vérifiez, et analysez la réponse.

Définir une «file abstraite», une entité qui se comporte comme une file, avec les procédures typiques :
ajouter un élément, enlever un élément (en retournant I'élément et la file restante), et la vérification si la
file est vide. La file doit étre générique (ses éléments sont de type quelconque), et la définition se trouve
dans un module qui cache son implantation, p. ex. par une paire de listes, comme discuté dans la section
(4.4).

Ceci apparemment n’a rien de particulierement intéressant, mais regardez la définition de I'Efjalité.
est mauvaise Si pour implanter les files on utilise une liste double, la p§aeb,c],[d,e]) est
équivalente &[a,b],[d,e,c]) ,eta([],[d,e,c,b,a]) etc.

module Queuedef(Queue, gadd, ginit, qvide, qdel)
where

data Queue a = Q [a] [a] deriving (Eq, Show)

qinit) = Q [[I
quide (Q [] [I) = True
gvide _ = False

gadd x (Q ab) = Q (xa) b

gdel (Q a (x:b)) = (x,Q a b)
qdel (Q [) = error "File vide"
qgdel (Q I) = qdel (Q [] (reverse I))

La construction de la vraie opération d’'égalité est un joli sujet d’examen.

La gestion des arbres est bien adapté au codage fonctionnel, les algorithmes typiques sont récursifs.
Malheureusement parfois il faut parcourir plusieurs fois la méme structure, ce qui n’est jamais tres effi-
cace. Un exemple de ceci est le suivant. Comrmentourant un arbre binaire une seule faenstruire

un autre arbre binaire dont la structure est identique, mais ou les valeurs stockées sur les feuilles sont
replacées toutes par le minimum des valeurs présentes dans I'arbre original

Apparemment ceci estimpossible. Il faut parcourir I'arbre une fois pour récupérer le minimum, et ensuite
lancer lemap généralisé pour reconstruir la réponse structurellement.

(Cet exercice est plutét une devinette, car les chances que les lecteurs triseudsta réponse, sont
plutdt dérisoires, méme si I'auteur de ces notes réve qu’'unyjaw@tudiant aura la volonté de lire la
littérature consacrée aux techniques fonctionnelles. . .)

166 Introduction a la programmation en Haskell (11)

R4. La réponse existe grace a la programmation paresseuse, qui permet de créer des programmes «circu-
laires», avec des références réciproques (croisées) des données. Les références croisées des fonctions
n'ont rien d’inhabituel, il s’agit de la récursivité indirecte. Mais si une dondéa besoin deB et
vice-versa, la situation semble inextricable. Pourtant, la solution ci-dessous marche :

data Arb a = Feuille a | Noeud (Arb a) (Arb a)

arbmin arbre = res where
(res,x) = abm arbre x -- dépendance circulaire. Qu'est’ce que le "x"?
abm (Feuille y) x = (Feuille x,y)
abm (Noeud ga dr) x = (Noeud tg td, min xg xd) where
(tg,xg) = abm ga x
(td,xd) = abm dr x

La fonction auxiliaireabmsimultanément calcule le minimum (le second membre du tuple qui deviendra
le «x»), et construit I'arbre, en propageanjusqu’au niveau des feuilles. Ensuitexest inseré. Mais
dans la programmation paresseuse I'arbre n’est pas vraiment construit physiquement, leressultat
contient le générateur de cet arbre,tbonkqui contient la référenced Quand nouslemandonsla
valeur deres (p. ex. son affichage), c’est a ce moment-la quialmkest exécuté, et I'arbre est formé,
avecx correct.

Cet algorithme, publié par Richard Bird, est un exemple canonique de 'usage de la programmation pa-
resseuse pour éviter de traverser plusieurs fois la méme structure. Mais il ne faut pas avoir des illusions :
en termes d’'usage de mémoire cet algorithme est trés onéreux (prolifératittudks; ceci introduit
également une visible surcharge temporelle).

Q5. Une fonction produit une liste trés longue de nombres apparemment aléatoires entre 0 et 1. Ecrire un
programme qui calcule I'histogramme de cette liste : un tablede 100 éléments dont chaque élément
alk contient le nombre d’occurrences des nombrappartenant a I'intervalle entkg’100 et (k+1),/100

R5. Par exemple :
x0=0.17
f x = 4.0%x*(1.0-x)
Ist = take 20000 (iterate f xO)

a = accumArray (+) 0 (0,99) [(k,1)|k<-[floor(100.0*x)|x<-Ist]]

Annexe C

Intermezzo monadique

C.1 Introduction

Cette section est une digression de nature un peu plus générale, qui touche quelques problemes universels de
la sémantique des langages de programmation. Son but immédiat est d’expliquer encore une fois I'opérateur
(>>=) , et d’établir un pont entre lui, les continuations, et le non-déterminisme, mais ebbeastoup plus

générale et plus importante. Peut-étre cette section est la plus importante de tout le cours, pour la cul-
ture générale d'un futur informaticien, indépendamment de la compilation elle méme. (c’est pourquoi nous
I'avons mis dans les annexes). Elle référence la section consacrée aux parseurs combinatoires ; en particulier
I'opérateurbind (>>=) est considéré déja un peu famillier.

Les stratégies de composition fonctionnelle a I'aide de I'opérdtetr) sont des exemples desnades
Leur discussion sera tres superficielle, mais ce concept est une petite révolution paradigmatique dans le monde
de programmation fonctionnelle, et il a influencée énormément le domaine de la programmation logique, et les
stratégies de compilation. Selon 'opinion personnelle de I'auteur de ces notes, les personnes qui ignorent les
monades n’ont pas le droit d’affirmer qu’elles connaissent (ou qu’elles enseignent) la progranfiomextiiom-
nelle.

Superficiellement la programmation fonctionnelle est tres proche des mathématiques : on a quelques objets
formels (les valeurs appartenant a des types spécifiques), et on en construit d’autres, en appliquant des fonc-
tions. Mais un ordinateur est une créature moins mathématigiaét. duelque chose, et nous voulons a présent
formaliser ce «travail».

Introduisons donc un concept trés général, celuiaeiVité ou — si on le veut — dprogrammeabstrait. En
anglais on emploie le motbmputatiofi dans ce contexte, et nous pouvons essayer d’utiliser le mot «calcul».
Unemonadeest un constructeur de types de données, qui transformealee quelconque en calculLe cas
le plus simple des monades est la Monade Identiténguait rienavec la valeur, qui la retourne telle quelle.
Unedonnée quelconqueu plutdt untype (c’est a dire un ensemble de données) quelconque appartient a ce
monde monadique trivial.

Si le lecteur ne sait toujours pas du tout ce que c’est une monade (dans le contexte trivial), il voudra lire le
Bourgeois gentilhommae Moliére, et en particulier la discussion du conceppise

Oui, la programmation fonctionnelle est prosaique... Un programme fonctionnel est une fonction qui
s’applique a une valeur (elle peut étre multiple), et qui est formée par la composition, ou I'enchainement des
fonctions plus simples. Les fonctions s’enchainent comme d’habitude,f (z) — g(f(z)) = (f.9)(z) —

.... IIn'y a rien d'autre. Méme les structures de contrdle, tyfpnen-elseconceptuellement sont des fonc-
tions!, mais paresseuses, comme il a été déja dit :

ifThenElse True oui _ = oui
ifThenElse False _ non = non

Pour finaliser la partie triviale de I'exposé du monde monadique :

e Un calcul est une valeur. Une valeur est un calcul.

lenClean if est implémenté comme une fonctioa qui implique que I'usage des «gardes» est plus efficace !

167

168 Intermezzo monadique

e Donc, la création d'un calcul a partir d'une valeur, est une fonction «normale», qui transforme valeurs
en valeurs. Le seul «travail» esapplication fonctionnelle Donc —

e Le manipulateur qui permet d’enchainer les calculs est cette I'application fonctionnelle («normale»), et
les compositions des fonctions permettent de présenter 'enchainement des applications de maniére un

peu plus abstraite f(g(z)) — (f.g)(z).

C.1.1 Etles monades moins triviales?
En voici une liste qui est loin d’épuiser le sujet :

1. Un calcul peut déclencher des exceptions (ou erreurs), par exemple on peut diviser par zéro. Qu’est-ce
passe-t-il alors? En tout cas, si le «résultat» d’'un tel calcul est I'argument d’'une autre fonction arithmé-
tique, celle-ci ne peut faire rien de raisonnable, elle peut éventuellement propager I'erreur.

On peut dire : cette fonction ne sera jamais appelée, car «le systeme» quand il découvre une erreur il
abandonne I'expression arithmétique, et branche sur un chemin de récupération. Mais comment? Pour un
constructeur de compilateurs il n'ya pas da magie, w@wsngouvoir gérér un tel contexte nous mémes.

Un calcul sera ici une expression «conditionnelle», soit «normale», soit «anormale», exceptionnelle (ne
pas confondre avec la conditionnelle standard !).

2. Nous voulons tracer I'exécution, forcer le compilateur a ajouter a une expression un message diagnos-
tique qui contient le nom de fonction appelée, les arguments et le résultat. Le calcul doit combiner les
valeurs et les messages.

3. Nous voulons faire leenchmarkinglu programme. Pour chaque opérateur appelé, un compteur global
est incréménté, et a la fin nous pouvons savoir combien d’opérations ont eu lieu. Le calcul est la valeur
combinée avetopération de changement d’état (incrémentation d’'un compteur).

Cette monade — la transformation d’'état — est trés importante et aborde plusieurs questions d'interfacage.
Les fenétres, buffers, etc., tout ceci a besoin de la notion d’état qui n’existe pas en mathématiques pures.

4. Nous voulons implanter et exploiter la stratégie/style CPS. Un calcul n'est pas une valeur, mais une
«valeur continuée», un objet fonctionnel dont I'argument est la fonction — continuation qui récupére la
valeur en question.

5. Si notre programme lit ou écrit des informations sur les flots extérieurs (fichiers), ces opérations con-
stituent des «effets de bord» dans les langages impératifs. Nous définirons un calcul approprié qui per-
met de parler de 1/0 sans quitter le monde pur de la programmation fonctionnelle. Lamonade 1/O est
prédéfinie, et elle est trés intimement liée avec la monade (générale) de transformateurs des états.

6. Dans la programmation logique une expression peut retourner plusieurs valeurs (plusieurs réponses a
une question). Nous pouvons utiliser les listes paresseuses pour stocker ces réponses. Un calcul ici
— la monade non-déterministe — est un moyen de récupérer ces réponses et de combiner ensemble des
procédures non-déterministes.

C.1.2 Monades arbitraires et combinateurs

Cette section est générique, universelle, indépendante des détails. Nous avons dit qu’une monade est un con-
structeur de types de données, équipé, bien sdr, d’'un certain nombre de fonctions de trailéaientes
fonctions sont trés générales. Les monades ne permettront de résoudre aucun probléme concret, seule-
ment de le structurer. Imaginons donc, que pour les valeurs de tgpié existe un moyen de construire un
nouveau typd a, parametré paa, qui représente lealcul qui peut fournir une valeur de type

La lettre T est ici purement symbolique ; nous aurgissieurs types monadiques différenarametrés
par plusieurs types de base. Il y aura des monades privées, construites par nous méme, comme la monade du
parsing, et les monades-systéme, comme la monade I/O (entrées et sorties).

La fonction générique fondamentale qui «injecte» une valeur dans un calcul, c’est-a-dire qui définit un
calcul susceptible de rendre cette valeur, est la fonegturn . Pour la monade trivialeeturn x = x
oureturn = id . Dans le cas général le type de cette fonction est

C.1 Introduction 169

return @ a -=> T a

Il est utile d’ajouter a 'ensemble d’opérations primitives qui concernent les monades aussi la féamittion
de typefail :; String -> T a qui symbolise I'échec d'un calcul. L'argument-chaine peut servir a
transmettre un message diagnostique.

Le combinateur principal permettant d’enchainer les calculs est I'opétaiteir (>>=) . Son type prin-
cipal est :

>>=) “Ta-=>(@-=>Th >Th
c’est-a-dire, quen >>= f posséde l'interprétation suivante :

e Lecalculmest effectué. Il rend (normalement) une valeur, disan®ans le cas hondéterministe «une»
valeur ici signifieune valeur quelconquiée bind doit les récupérer toutes).

e Lafonctionf estappliquée &, et produit — non pas une valeur, maisautre calcul. les calculs ménent
aux calculs, qui ménent aux calculs, qui... On ne sort pas si facilement du monde monadique quand on
y entre une fois.

(Pour lamonade trivialem >>= f=f m.) En général, si on «plonge» dans le monde des objets et fonctions
monadiques, on y restéut est monadique, et pour sortir de la chaine composédipdril faut faire une
opération spéciale, qui pour chaque monade peut étre tres différente. Pour la monade triviale on ne fait rien ;
pour les parseurs on les applique a un flot. Pour la monade 10 qui décrit le systéeme des entrées/sorties en
Haskell il n'y a pas d'issue ! (sauf quelques extensions sémi-légales, déconseillées aux débutants. Ceci ne
doit pas empécher le lecteur de dormir. La monade I/O représente un «programme principal», et personne n’est
malheureux a cause du fait que I'on ne sort pas du programme principal). Pour la monade non-déterministe la
sortie est ambigué. .. Nousy reviendrons.

Pour un type monadiquE a il sera souvent utile de disposer d’une fonction surchafigég qui applique
une fonction «xnormale» a tous les éléments d’une structure, et reconstruit une structure conforme. Rappelons
quefmap généralise la fonctiomap définie pour les listes, et que la surcharge est spécifiée par la classe
Functor

La forme syntaxique souvent présente dans des programmes monadiques est

m >>= \x -> ... faire qqchose avec x return uneValeur

Parfois on n’a pas besoin de Il existe une version tronquée bind, 'opérateur>>) que nous allons appeler
suite (ou ensuite; en anglais il est parfois appeléhen mais ce nom risque de provoquer des malentendus.
Son type est

(>>) cTa->Thb->Th

c’est-a-dire : prendre deux calculs, un apres l'autre, et les combiner en un seul calcul composite. Le type du
résultat est le type du second argument.

Les monades sont universelles, surchargées, donc elles sont réalisésskel par une classe, la classe
des constructeurshonad. Voici sa déclaration :

class Monad m where
return > a -> m a

>>=) “ma->(@-=>mb)>mb
>>) “ma->mb->mb
fall ;o String -=> m a

-- Minimum a impléménter : (>>=), return. Le reste, par défaut :
p>q =p>=_ >
fail s = error s

A présent nous pouvons construire quelques instances, implénbémdeztc., et définir aussi desnctions
spécifiquegpour chaque type monadique, les «vrais» acteurs dans le programme, ceux qui «font» quelque
chose d'intéressant.

170 Intermezzo monadique

C.2 Exemples de monades non-triviales

Voici encore une fois une collection de monades populaires, qui représentent des «calculs» tres divers. Les
détalls seront élaborés dans des sous-sections.

Il faut d’abord avouer que les monadssnt spécifiquea la programmation fonctionnelle. E++ on
peut les implanter — en principe, mais elles seront redondantes. Q#ai®st un langage «impur», avec une
sémantique qui est plus intuitive que formelle, avec beaucoup de «bricolage» de bas niveau.

Nous avons décidé de présenter ce cours dans le cadre foncipamoelque la programmation fonction-
nelle est simple, bien structurée, et formalisablees programmes sont faciles a analyser (et a déboguer), et
grace aux fonctions d’ordre supérieur et le polymorphisme, ils sont trés compacts. Mais on peut craindre, que
les langages fonctionnelles sont plut6t limités, les concepts comme affectation des variables ou les branche-
ments — tout ce qui appartient & la couche inéluctable de la programmation de bas niveau, et donc doit étre
traité par un cours de compilation — restent en dehors. Ceci est une impression erronée. A I'envers, nous
pouvons dans le cadre fonctionnel découvrir le «sens» logique des concepts comme les branchements, ou les
effets de bord liés aux opérations d’entrée-sortie. Les monades sont ici trés utiles.

Il'y a des monades pour le parallélisme. Nous connaissons déja les monades du parsing et dans une section
ultérieure nous allons décrire le systeme /0O monadiquelaskell. Les variables «mutables» (p. ex. les
tableaux modifiables) s’expriment aussi par les monades. La connaissance de cette partie de la sémantique des
langages de programation est devenue presque incontournable.

Enfin, nous pouvons avoir besoin d’'une fonction d'«aplatissement» des structures monadiques. Si une
fonction construit I'objet monadique de tyde a d’une valeur appartenant au type on peut imaginer son
application a un objet quést déja monadiqueOn obtient quelque chose comrie(T a) pour son type,
et il faut réduire le résultat au type a de nouveau. Ceci sera trés utile dans le cas de listes — la monade
non-déterministe.

C.2.1 Exceptions

Le premier cas non-trivial de monades est la monade — dis®esit-étrequi permet de définir les erreurs, ou
les exceptions. (Présentées de maniére trés simpliste ! Les vraies exceptions sont plus riches.)

La programmation fonctionnelle classique semble triviale si tout va bien, mais si on derméndsu
sqrt(-4.6) (dans le domaine des réels), ou la téte d'une liste vide, etc. — qu’est-ce passe-t-il? On peut
toujours dire : «Ca bombe», mais ceci est une non-réponse. Il est évident, qu’en construisant un compilateur il
faut savoir répondre constructivement a une telle question. Que cela bombe, pourquoi pas, mais c’est a nous de
définir I'explosif, sa portée, et les moyens de désamorcage. Un code qui n'est pas capable de gérer les erreurs
est mortellement dangereux !

Credoreligieux no. 16 : Un programmeur lambda peut croire en démons ou dieux qui se mélent dans ses
affaires et qui prennent les décisions dans des situations inextricables. Un concepteur et réalisateur des compi-
lateurs et/ou des interprétes doit étre 99.9% athée. Pourquoi pas a 100%? Parce que la «<magie» des opérations
primitives, et I'architecture physique du processeur restent toujours la. Mais ces opérations doivent étre vrai-
ment primitives, et sdres.

Notre «calcul» sera défini par le typaybe (prédéfini) :

data Maybe a = Just a | Nothing
deriving (Eq, Ord, Read, Show)

La transformation d’une valeur en calcul a la forme
return x = Just X
N’oublions pas, que cette définition doit avoir lieu dans une instance de la dassea :

instance Monad Maybe where
return = Just

L'enchainement, c’est a dire la généralisation de I'application, est plus élaborée :
Just x >>= k = k x
Nothing >>= k = Nothing
fail s = Nothing

C.2 Exemples de monades non-triviales 171

et il nous reste d'ajouter 'amorceur qui sera déclenché en cas de besoin. On ne permettra jamais que la couche
magique, celle de la machine de plus bas niveau, prenne cette décisiomafi@mpérateur de division doit

vérifier le diviseur avant d’essayer la division primitive.XSety sont des calculs, grimDiv — I'opération

de division primitive (magique), la division sera (par exemple) définie comme

X/y=x>=\a->
y >>= \b >

if b/=0 then return (a/b)
else fail

Bien sdr, on peut imaginer I'élargissement de ce systéme, par exemple l'introduction des paramétres qui
discriminent entre de différents cas de «rien», ce qui permettra d’enrichir les messages diagnostiques, ou
définir plusieurs classes d’exception€e systéme permet également de désamorcer la bombe, d'intercepter
I'exception et de la transformer en une autre valeur. C’est ainsi que les formes syntaxiques de genre

try
{ calcul dangereux }
with
excptl -> secoursl
excpt2 -> secours2

peuvent étre réalisées. (Ceci n’est pas un prograiaskell valide !) Si le calcul se termine bien, la valeur
monadiqugJust v) est retournée, sinamy neutralise la bombe en appelant les secouristes. L'opération
try est capable de briser le cercle enchanté d’enchainement monadique.

Ce qui est le plus important ici est le remplacendmtoute application fonctionnelle normdfex) , sauf
— naturellement — dans le castiy — par(x >>= f) (six est déja un calcul ; au début on laregurn
z pour créer le premier calcul depuis la valeur initia)e

En fait, le typeMaybe est aussi ufrunctor . Voici la définition dans le Prélude :

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

Le bindetfmap sont tres liés, et ceci n’est pas un accident. Cette monade est presque fonctionnelle pure, et la
suite(>>) n’a pas beaucoup de sens.

C.2.2 Monade non-déterministe

Cette fois le calcul correspond a un ensemble¢nné !) de valeurs, qui intuitivement représente le choix

parmi eux. Limplantation réaliste dans des cas sérieux, ou le programme peut générer des millions d’alternatives
(traitées incrémentalement) n’est possible qu’avec un langage paresseux, mais si on le choix entre 10 — 100 pos-
sibilités, un langage strict convient également. La monade en question peut étre définie par

type Calcul a = [a]

L'enchainement des calculs définies de cette maniére nous est déja connu. Chaque valeur alternative élémen-
taire soumise a une nouvelle transformation génére une nouvelle liste de possibilités. Donc, globalement, la
valeur monadique non-déterministe (la liste) est d’abord «mappée» par la fonction de transformation, et ensuite
la liste de listes est aplatie.

fail _ =]

return x = [X] — Une seule possibilité
0 >=f=]

(x:q) >>=f = f x ++ (q >>= f)

ou, plus simplement ((>>=) = concat . map) , et le monde de la programmation non-déterministe
(au niveau des données) est a notre disposition. Cependant ni les monades ni la programmation paresseuse ne
peuvent nous enseignepanser de maniére non-déterminjsde formuler nos problémes calculatoires de cette
facon. N'oubliez pas de lire les exercices de ce chapitre.

Répétons : pour faire un programme qui «fait» quelque chose, il faut programmer cette action, définir des
fonctions spécifiques. Les monades apportent «de la colle» pour assembler des programmes plus grands. Dans

172 Intermezzo monadique

le contexte de nos opérations non-déterministes, la ou un programme peut rendre une réponse parmi deux, nous
allons concaténer les deux résultats.

Exemple.
Le prédicat d'insertion non-déterministe Brolog, qui permet de mettre un objet dans une liste sur n’importe
guelle position, est défini comme

ndins(X,L,[X|L]).
ndins(X,[AIQL[AIR]) :- ndins(X,Q,R).

L'appelndins(a,[b,c,d],R). doit engendrer [R=[a,b,c,d]; R=[b,a,c,d]; R=[b,c,a,d];
R=[b,c,d,a]; . Latraduction «aveugle» et complétement erronéerdéog enHaskell se réduit au change-
ment de syntaxe :

ndins x | = (xl)
ndins x (a:q) = a : ndins x q

Mais les deux clauses ne s’excluent pas, elles sont réellement alternatives coexistantes. On doit donc
concaténer les résultats :

ndins x l@(a:q) = (xiI) ++ (a : ndins x Q)
C’est toujours faux !

e Lavaleur(x:l) estune réponseet non pas un objet monadique (réponse multiple). Il faut la remplacer
parreturn (x:l)

e L'opération(a : arg2) est«normale», et demande que arg2 soit une valeur standard, et non pas un
objet monadique, ce qui est le cas ici, puisque c’est le résultatiohs . Il faut utiliserbind, et ne pas
oublier de «<monadiser» le résultat.

Donc, enfin, on obtient :

ndins x l@(a:q) = return (x:l) ++ ((ndins x q) >>=(\g -> return (a:g)))
ndins x [] = return [X]

ol nous avons complété la définition par la clause manquanteéPritog elle est redondante, car la premiéere
et seulement la premiéere clause produit un résultati&skell le filtrage échoue et provoque une erreur).

Le reste est I'optimisation. On sait q{eg++b = a:b . On sait aussi que leind peut étre formulée par
map:

| >>= f = concat (map f I)

(Exercice :Prouvez-le). Lafonctiononcat aplatilaliste :[[a,b], [c],[d,e,f]] —[a,b,c,d,e,f]
Mais la construction

concat (map (\g -> [(@:9)]) (ndins x q))

d’abord ajoute les crochets internes, pour ensuite les enlever, ce qui est équivalent a
map (\g -> (a:g)) (ndins x q)

Et finalement

ndins x l@(a:q) = (x:I) : map (a:) (ndins x Q)
ndins x [] = [[X]]

ou, si on veut :
ndins x | = (x:I) : case | of

0 >0 _
(a:q) -> map (a:) (ndins x Q)

Avec l'insertion non-déterministe nous pouvons générer la liste de toutes les permutations des éléments d’'une
liste-source. l'algorithme est le suivant : on enléve la téte, on trouve toutes les permutations des éléments
restants, et pour chaque résultat on réinsere la téte sur toutes les positions possiPiefodamous aurions

C.2 Exemples de monades non-triviales 173

perm([,[l). _
perm([X|P],R):-perm(P,L),ndins(X,L,R).

Voici la traduction aveugle, syntaxique :

perm [] =[]
perm (x:;p) = ndins x (perm p)

Et la vérité :

perm I@(a:q) = (perm) >>= ndins a
perm [] = return []

ou il ne faut pas confondig etreturn(] !
Les exercices contiennent d’autres exemples, et il en reste encore beaucoup pour I'examen. . .

C.2.3 Monade du tracing

Nous avons proposé un exercice : ajouter a notre machine virtuelle a pile un débogueur qui ddment affiche les
opérations exécutées. Ceci est une technique assez simple a réaliser dans un programme impératif quelconque.
Aprés chaque instruction on ajoute une commande d’affichage qui peut répertorier les valeurs des variables
locales, arguments, etc. Cette technique est simple et utilisée, méme s'il s’agit du bricolage.
Comment le réaliser dans un programme fonctionnel? Comment ajouter une option de dédegsage
expressiol Les usagers duisp etc. connaissent la réponse : le supparitime ('ensemble des primitifs
de gestion de mémoire et autres ressources pendant I'exécution du programme), peut brancher la magie de
déboguage. Par exemple on exéddigbug funl fun2 fun3) , et l'interpréte change son mode interne
d’évaluation — chaque appelfanl , fun2 ou afun3 est intercepté, et la machine déclenche une activité
accessoire, un effet de bord se produit — le message est affiché. On n’a pas besoin de changer le programme !
Mais alors comment ce dispositif a-t-il été réalisé? Limplantation la plus primitive consigtbééinir les
fonctions tracéesce qui peut étre fait manuellement. Par exempfarsl est une fonction de deux arguments,
nous pouvons écrire éicheme

(define old_funl funl)
(define (funl x vy)
(display "Funl appelée avec arguments ")
(display x) (display " et ") (display y) (newline)
(let ((res (oldfun x y)))
(display "Résultat de Funl : ") (display res)
res)

)

Une telle manipulation peut étre largement automatisée par quelques macros appropriées. Ceci est plus difficile
dans un langage typé, et semble impossible dans un langage fonctionnel pur ou aucune possibilité de mettre
(display ...) n'existe.

Les monades suggérent une solution fonctionnelle et bien structurée. On définit

type Calcul a = (a,String)
return x = (x,"")

Le calcul est donc une paire qui contient la valeur, mais qui y associe une chaine diagnostique. Toute fonction
conforme avec le protocole de I'évaluation tracée, peut ajouter sa contribution a la chaine finale, si elle est
enchainée par

(x,msg) >>= fun = (y,msg ++ Suiv)
where (y,suiv) = fun x

et pour la bonheur totale nous pouvons ajouter une fonction qui transforme une simple chaine diagnostique ou
autre en monade

out x = ((),X)

174 Intermezzo monadique

en injectant une valeur nulle. (Ceci doit rappeler le parpasit qui construisait une valeur artificielle &
partir du flot d’entrée, mais sans le consommer — le parseur récupérait seulement I'information positionnelle).
Et, encore une fois Les monades ne fournissent seules aucun mécanisme de tracalles permettent
a peine a l'utilisateur de structurer son programme de maniére non-triviale, en exploitant la généricité des
fonctions d’ordre supérieur.
Bien s0r, il nous reste de faire le «lifting» des opérations «normales», qui au lieu de produire une simple
valeur, créent les paires monadiques, en ajoutant au résultat le message approprié. Par exemple

out (shows "Japplique la fonction FUN a
>>= return(fun xx)

. show xx)

Ce qui est fort intéressant et méme étonnant, est la possibilité de construire la chaine d’affichage a I'envers, en
concaténansuiv ++ msg a la place de la construction ci-dessus. Essayez de le faire dans un programme
impératif. . .

Une remarque importante : une telle stratégie du tracing convient bien a la programmation paresseuse ;
si le «programme principal» n’est rien d’autre que I'affichage de la chaine tracée, cette chaine sera construite
de maniére incrémentale, et affichée lors du déroulement du programme ; un programme strict aurait d’abord
empilé tout dans une zone interne de stockage, ce qui pourrait déborder la médradragage impératif est
vraiment différent

Que cela a-t-il a voir avec la compilation?La réponse est immédiate : Notre compilateur peut étre parametré
par des options de déboguage, et ces options modifieront les définitions monadiprres)desffectueront le
lifting de quelques fonctions, etc., méasstructure du code compilé restera globalement la méme

D’autre part, ce mécanisme peut étre utilisé aussi pour ajouter le tracage a une machine virtuelle. Une
autre solution monadique du probléme de tracage serait d'imbriquer le programme dans la monade 10 qui sera
dsicutée prochainement.

C.2.4 Etats et transformateurs

Cette monade est d’'une tres grande importance, car elle nous approche de la programmation impérative, clas-
sigue, avec les «effets de bord» et la sérialisation des instructions. Elle est également indispensable pour la
discussion des parseurs, générateurs du code, etc.

Rappelons-nous la définition de la machine virtuelle a pile, et la structure du code interpré@déltem
était un objet, une donnée qui cachait a I'intérieur un objet fonctionnel, qui agissait sur les piles de données
et des retours, et éventuellement sur I'environnement. Nous avons mentionné que la structure de la machine
virtuelle : la gestion des piles etc. resterait la méme si on codait tout en un langage impératif, mais dans ce
cas les piles et le tableau-environnement feraient partie d'urgletiaal du systeme, et ces données globales
auraient été soumises aux modifications par des effets de bord.

Ceci suggeére I'approche suivante a I'émulation de la programmation impérative par un programme fonc-
tionnel. Le calcul est uiransformateur des état®ans un programme impératif I'état est une notion globale,
implicite. Dans un programme fonctionnel il estoipjetexplicit, une donnée.

Attention ! Chacun peut faire ses propres monades et son modeéle d’'état, comme nous I'avons fait avec les
parseurs. Mais sur le plan pratique I'efficacité de quelques monades est basée sur le fait que I'état correspondant
est implémenté comme primitif, et optimisé par le compilateur. C’est le cas de la monade IO (entrées/sorties)

Chaque valeur est combinée avec I'état du systéeme. Chaque fonction appliquée a une valeur fait quelque
chose avec I'état, et retourne la nouvelle valeur-résultat, ainsi que le nouvel état. Erciitul lui-méme fait
guelgue chose avec I'étda valeurde la monade triviale, une simple donnée, se transforme en un objet actif.
Notre «calcul» peut finalement «faire» quelque chose. Le type monadique correspondant peut étre spécifié
comme

type T a = State -> (a,State)

ouState estun type qui symbolise I'état. (Il peut étre trés varié ; les états utiles pour le parsing : flot d’entrée,
éventuellement I'inrmation positionnelle, et les états-compteurs utilisés pdeniehmarking compteurs,

sont tres différents.) Ce type monadique est assez loin de ce que nous considérons comme une «valeur». Méme
en exécutant une opération arithmétique, par exemple I'addition de deux nombres, ceci est une construction
fonctionnelle : deux fonctions produisent une troisieme — le résultatn’est qu’applicant ce résultat a un

état, que I'on récupere la valeur résultante et I'état final !

C.2 Exemples de monades non-triviales 175

La fonctionfail ~dans le cas général n'existe pas, c'est une exception. On peut — selon le cas — prévoir
un état «erreur» spécial, ou déclencher une erreur-systéme, ou, si cette monade est embarquée dans une autre,
comme nos parseurs qui combinent la transformation d’état (consommation du flux) avec le non-déterminisme
(réponses multiples) — on peut propager I'échec vers cette derniére.

La fonctionreturn est évidente, on retourne une valeur et on ne touche pas I'état :

return x = \st -> (x,st)

Le combinateutbind est fort intéressant. Ici I'état peut changer deux fois, d’abord comme le résultat du
premier argument dg=>=) , et ensuite par la fonction qui s’applique au premier résultat. Voici le combinateur
en question :

m >>= f = (\s_in -> let (x,s_int) = m s_in
(y,s_fin) = (f x) s_int
in (y,s_fin)

Le paramétres_in symbolise 'état initial, les autres sont : intermédiaire et final. Le combindiiut
peut étre un peu simplifié, la derniére clause dahs est redondante, nous voulions visualiser explicitement
I'enchainement, en montrant la transmission des valeurs. Ceci doit étre comparé avec le changement du flux
d’entrée par la composition des parseurs.

Pour donner un simple exemple, construisons un programme pbenthmarking L'exécution (appli-
cation) de toute fonction incrémente un compteur spécial de 1. A la fin nous pouvons récupérer le compteur
et évaluer pratiguement la complexité d'un programme en termes du nombre d’opérations. L'état est donc un
entier — la valeur du compteur.

type State = Integer — Le compteur

type Calcul a = State -> (a,State)

return x = \t -> (x,t) — Ne change pas I'état

tick =\t > (),t+1) —"Tick !" sans retour de valeur

ou la derniére fonction devra étre incorporée dans I'ensemble des fonctions de base du systéme. La fonction
tick joue un réle un peu similaire a la fonctiggosit dans le monde des parseurs — elle récupere une
propriété de I'état. Mais ici cette propriété n'est pas transformée en valeur. Pour cela nous pouvons avoir un
autre combinateur :

time = \t -> (t,t)

Les fonctions de base, les opérateurs arithmétiques, manipulateurs des listes, et toute cette panoplie présente
dans un programme typique doit subir un «lifting», taute fonction typique doit maintenant gérer I'état.
L'opérateur(>>=) ne fait pas de miracles, il permet seulement d’enchainer les calculs, et de «cacher» la
gestion du compteur. De méme, I'opératéer=) dans le domaine des parseurs cache la gestion du flux
d’entrée ; la définition du parseur devient plus abstraite et ressemble plus a une production syntaxique, c'est
tout.

Dans I'exemple ci-dessus, si dans le formalisme standard, une fofictigit surx et produity, le lifting
dey = f x est

y = tick >> return(f x)

si a cet instant-la on n’a pas besoin de la valeur du compteur.

C.2.5 Monade CPS

Dans cette section nous allons traiteClentinuation Passing StyléNous avons déja mentionné les continua-

tions — le concept qui permet de répondre a la question : «qu’est-ce qu’on fait apres avoir terminé I'évaluation
en cours». L'affinité et la ressemblance entre les continuations CPS classiques — les relais des fonctions et la
passation des résultats, — et I'enchainement typique pour les compositions monadiques, est trés, trés grande. Ce
probléme est particulierement important, car les continuations nous donnent le moyen de formaliser les struc-
tures de contréle impératives (branchements) et permettent leur compilation sans sortir du cadre fonctionnel.

Mieux encore, dans quelques langages corSofeeme, méme si les continuations restent normalement in-
visibles (implicites), comme dans d’autres langages de programmation, il existe un objet fonctoaiiiet :

176

Intermezzo monadique

(ou call-with-current-continuation), qui permet d'«attrapper» la continuation courante, le futur
contenantoutesles actions qui devraient étre exécutées par la suite (au moment de l'apgl/de), et
donner a l'utilisateur la possibilité de relancer le systéme a partir de ce «xmoment».

Ceci permet d’'implémenter les co-procédures et le processus paralléles, et anssidebacktracking-
un autre visage du non-déterminisme logique : la possibilité de effectuer plusieurs actions alternatives, et non
pas seulement rendre une réponse (valeur) multiple. Mais cette problématique ne sera pas discutée en cours,
elle est trop complexe.

Le rapport entre le CPS et les monades est spécifié par les clauses suivantes.

e Pendant I'exécution du programme tout objet (valeur) généré par une fonction «attend son consomma-

teur». Nous pouvons noter cela comme

return x = \cnt -> (cnt X)

ou la fonction dénotée ici par le paramétrg consomme la valeur, et produit uR&ponse . Ce qui

peut étre un®éponse sera commenté un peu plus tard (ceci peut étre, bien sir, une valeur quelconque.
La continuation finale peut étre le combinat@lrqui sort de la chaine monadique.) Voici donc le type
monadique :

type Calcul a = (a -> Réponse) -> Réponse

Encore une fois : une valeur initiale est injectée dans le programme, et se transforme en Calcul quand on
lui attribue sa continuation. Donc, le ty@alcul est fonctionnel. Ce qui peut paraitre un peu bizarre

est le fait quedansla section monadique du programme on ne récupere jamais une valeur de type injecté
parreturn , cartoutefonction est continuée ! Les valeurs construites par des fonctions continuées
défilent a travers la chaine de continuations, mais on ne récupere quelque chose que quand on sort de
cette chaine.

Si le lecteur se sent mal & l'aise & cause de cela, il doit rester calme. Dans un progra@meedn
conque, la situation est pire, car normalement on ne récipemnrésultat, on peut seulement profiter
de quelques effets de bord liés aux instructions d’affichage (et I'affectation des variables).

Nous pouvons donc attribuer a I'objet final un tyRéponse qui n’est pas réductibleansle pro-
gramme. Ceci peut étre I'affichage final de la réponse, une chaine. Bien sdr, on peut construire un
fragmentd’un programme réel de cette fagon, on n’est pas obligé a suivre cette philosophie jusqu’au but.
La Réponse peut étre un nombre ou une chaine quelconque, ou tout autre objet qui peut étre affiché, ou
traité par des fonctions en dehors de la chaine des continuations.

Mais un compilateur peut appliquer cette stratégie au pied de la lettre dés le début jusqu’au codage de
I'arrét du programme. L&éponse est alors envoyée a I'application appelante, par exemple le systéeme
d’exploitation. cette réponse peut étre alors le code d’arrét, ou une chaine, éventuellement le descripteur
d’un fichier.

Si nous voulons appliquer une fonction, son résultat doit étre également «lifté» aux valeurs continuées,

comme toute fonction qui se trouve & droite de I'opérabénd. Au lieu d'avoiry = f x , nous allons
opérer avec un objet plus compliqué duedisonsg = lift f ,g :: a -> Calcul b ,0u:

(lift) x ecnt = cnt (f x)

et si un objemest déja une «valeur continuée>, un calcug est une fonction déja «liftée», monadique,
alors elle sera appliquée paind de maniére suivante :

m >>= g = \cnt -> m (\r -> g r cnt)

D’abord mest lancé, et appliqué a une continuation intermédiaire, qui récupére la vadieun et lui
applique la fonction monadique Simest primitif (freturn x), etg est le résultat direct du lifting de
la fonction normald , présenté ci-dessus, aldimd se réduit a

C.3 Systéeme 1/O de Haskell 177

(return x) >>= (lift f) =
\‘cnt -> (\c ->c x) (\r =>cnt (fr) =
\‘cnt -> (\c > c x) (ent . f) = \ent -> (ent . f) x =
\cnt -> cnt (f x)

comme il fallait espérer.

Credoreligieux no. 17 : Ceux qui s'intéressent par la sémantique des langages de programmation, et qui
ignorent les monades, sont des dinosaures anté-diluviens. Ceux qui refusent de les enseigner en affirmant
gu’elles sont trop difficiles pour les étudiants, sont des dinosaures post-diluviens.

C.3 Systeme I/O de Haskell

Nous avons placé cette section dans le chapitre monadique, car le systeme des entréesidadied| @ést la
quintessence de I'approche monadique a I'implantation d’un langage de programmation. Les monades IO de
Haskell sont un peu différentes des autresles sont internes, implantées par des primitives systeme, et tres
bien optimisées.

Attention ! Cette section ne dispense pas les lecteurs de la lecture de la documentationHheskell. Nous
ne pouvons pas traiter la totalité du sujet, et les ommissions peuvent devenir génantes un jour (p.ex. le
jour d’examen. ..

Ceux qui veulentomprendrgen non pas seulement utiliser) le systéeme d’entrées/sortigaslell peuvent
imaginer qu'’il existe une structure de données spéciale : le «Monde» (extérieur), qui appartieétag un
comme le flux d’entrée dans la construction des parseurs. Les fonctiondH&s#ell effectuent des opérations

sur cette structure et produisent I'effet combiné : le résultat qui appartient au programme utilisateur, et un
Monde modifié, qui va rester caché. Ce fait, de ne pas permettre au programme d’accéder directement au
Monde n’a rien de spécial — en C on n’accéde pas aux descripteurs de fichiers ni au tampon d’écran (sauf si on
fait de la programmation systeme de bas niveau).

Mais dans un langage fonctionnel ce protocole posséde une spécificité : on peut imaginer que le programme
manipule le Monde comme n’importe quelle autre structure, sans aucun effect destructeur. On prendde Monde
et on rend Mondg une autre structure. Cependant le Monde existe en un seul exemplaire, et physiquement
aucune création du monde n’a lieu, on retourne I'original modifié (fichiers lus, positionnés, ou écrits, écran
rempli d’objets graphiques, etc.) Le protocole monadigugéche que le programme puisse accéder en méme
temps a l'original et au Monde modifiét aucune situation paradoxale ne peut avoir lieu.

La totalité des opérations d’entrée/sortie concerne un type monadique df@écalou a est le type du
résultat (lu ; pour I'écriture souveat=() , I'écriture ne rend aucun résultat utilisable).

Le lecteur doit déja étre préparé a la spécificité des programmes qui effectuent les opérations de lec-
ture/écriture :la totalité du programme est imbriquée dans une chaine monadique 10, car quand on entre
dans cette chaine, on ne peut plus sortir. (Bien sdr, ceci n'est pas vrai si on fait des tests intéractifs sous
Hugs, cette restriction concerne les programmesiaskell compilés, par exemple par le compilateur GHC).

Les opérationseturn et (>>=) sont primitives. Mais, méme si plusieurs autres opérations pour des
raisons d'efficacité sont primitives aussi, I'essentiel de la magie et limité, I'écriture d’une chaine peut étre
réalisé comme I'enchainement des actions sur les caractéres, etc.

C.3.1 Notation «do»

Haskell possede une extension syntaxique qui jusqu’a présent a été bien cachée des lecteurs : le bloc «do» qui
facilite la programmation monadique dans un style qui ressemble le codage impératif. Au lieu d’écrire

putStr "Entrez une chaine : " >> getLine >>= \| ->
return (traitement I)

(ouputStr affiche une chaine, getLine lit une ligne depuis le flot d’entrée standard), on peut se permettre
a formuler ceci comme ;

do putStr "Entrez une chaine :
| <- getLine
return (traitement 1)

178 Intermezzo monadique

En général, la formdo { instructiong contient une séquenceistructionsséparées par le point-virgule, ou
chaque instruction est un appel fonctionnel parfaitement normal, ouléclarationlet (sans la partién

, ou une forme variable <- expression

Voici la traduction du blodo enHaskell plus habituel.

do {e} = e
do {e; reste} = e >> do {reste}
do {p<-e; reste} = let tmpf p = do _{reste} Les point-virgules et les
tmpf _ = fail "..."
in tmpf
do {let declars; reste} = let declars in do {reste}

accolades sont redondants si on exploite correcteméaydeit (indentation), mais ces lexemes sont souvent
conseillés pour la lisibilité du programme.

C.3.2 Flots standard

Les opérations permettant d’écrire quelque chose sur la console standard sont les suivantes :

putChar ;o Char -=> 10 () -- affiche un caractére
putStr 2 String -=> 10 () -- ou une chaine
putStrLn ;o String -=> 10 () -- gjoute la fin de ligne
print > Show a => a -> 10 ()

Voici un programmeHaskell complet :
main = print ([(n, 2*n) | n <- [0..19]])

qui affiche (0,1), (1,2), (2,4), (3,8), etc. Sion travaille sous I'interpkéigs on peut tester intéractivement les
commandes 1/O. Cependdanaskell est un langage compilé, et si on veut utiliser un compilateur comme GHC
ou NHC, il lui faut préparer un «programme principal». Ceci est la varialads qui appartient au typ&D
() . Dans sa définition nous pouvons ouvrir les fichiers, les écrire, etc.

La fonctionprint utilise show pour convertir un objet quelconque en chaine, et ensuite I'imprime.

La lecture du flot standard utilise les fonctions suivantes :

getChar 0 10 Char -- lecture d'un caractere

getLine ;2 10 String --ou d'une ligne

getContents :: 10 String -- la totalité de I'entrée

interact i1 (String->String)->10 ()

readlO > Read a => String->10 a -- lecture d’'une donnée quelconque
readLn > Read a => 10 a

La classeRead spécifie un petit parseur capable de lire les structures de dohtasell, si — bien sdr —
I'utilisateur définit leur forme extérieure dans l'instanceRkad correspondante.

L'opérationinteract est trés intéressante, elle permet une conversation intéractive entre I'utilisateur et
le programme. Elle est trés simple :

interact f = getContents >>= (putStr . f)

Son argument est une fonction qui transforme une chaine en une autre chaine. Ceci peut étre une fonction tres
complexe, par exemple un parseur. Mais comment on peut intéragir si le programme veut d’abord consommer
la totalité du flot d’entrée? L'astuce consiste a exploiter la paresse. La forggi@ontents , comme

il a été dit, consommeout du flot d’entrée. Mais le résultat est une chaine, donc une liste paresseuse. Si
I'utilisateur n'a momentanément besoin que d’un seul caractére, les autres ne seront pas lus (sauf si le systeme

d’exploitation précipite quelques manipulations, en forcant — par exemple — la lecture d’une ligne entiére).
Le programme

main = interact (filter isAscii)
lit tout, mais supprime tous les caractéres non-Ascii. la fong&thine est définie comme suit :

getLine = do ¢ <- getChar
if ¢ == "\n’ then return
else do s <- getLine
return (c:s)

C.4 Exercices 179

C.3.3 Fichiers

La généralisation de la lecture/écriture a d’autres fichiers n’est pas plus complexe que dans d’autres langages
de programmation. Il faut simplement passer aux fonctions correspondantes le nom du fichier (une chaine,
souvent pour la lisibilité transformé en un synonyme, p. Bath), ou — éventuellement — un descripteur
obtenu par I'opération d'ouverture. Les fonctions standard sont

type FilePath = String

writeFile .. FilePath -> String -=> 10 ()
appendFile . FilePath -> String -> 10 ()
readFile . FilePath -> 10 String

Pour lire un fichier et faire quelque chose avec son contenu, on écrira
readFile "mon_fichier.txt" >>= \s -> traitement s ...

il faut néanmoins garder toujours a I'esprit que le traitement ne peut sortir de la chaine monadique. A la fin on
peut éventuellement mettreturn "Au revoir"

Ceci est tout dans ces notes, mais la description compléte est plus longue. Pour des utilisations sérieuses il
faut maitriser au moins

e la gestion d’erreurs ;
e la possibilité d’utiliser les fonctions écrites én;

e les sorties graphiques, les extensions spécifiques a Windows, a Unix, etc.

C.4 Exercices
Q1. Quel est le type principal de la fonctioh :
tt fp=p >>=retun . f

R1. Ayant seulement leeturn et le bind, nous ne pouvons pas savoir dans quelle monade se situe le
probléme, mais il s’agit sans doute d’'une monade qui spécifie le type du pargmeeeat-&tre on voit
un peu plus comme ¢a :

ttfp=p >=\x ->return (f x)

car ici le type du résultat et de I'argument tledeviennent plus lisibles. Saidt le type dex (le type
de base de la Monade), &i— le type de constructeur monadique qui spégifieAlors la réponse est
immédiate :ft :: Monad m => (a->b) -> (m a) -> (m b)

Q2. Construire explicitement une fonction qui joue le réle de la strudiyre.. with pour la mon-
adeMaybe généralisée un peu Nothing sera parametré par une chaine, en accord avéalle
monadique standard.

R2. La programmation fonctionnelle paresseuse estici indispensable. nous construisons latigiwgtton
m secours quilance le calcuinet le fournit au module appelant, mais qui neutralise la «bombe», en
exécutant la fonctiosecours qui prend un parameétre — le message envoyé par I'expression qui a dé-
couvert I'erreur. La fonction doit étre définie & un niveau assez bas, le méme que celui de I'opérateur
(>>=) .

tryWith m secours = case m of
c@(Just x) -> ¢
Nothing s -> secours s

180 Intermezzo monadique
Q3. Construire erHaskell une fonction qui calcule Ipowerset I'ensemble de tous les sous-ensembles,
d'une liste. Lalistda,b,c] doitgénérer[], [a], [b], [c], [a,b], [a,c], [b,c],
[a,b,c] ,autotal2™, oun estlalongueur de la liste. (Ceci est le cardinal de I'ensemble de fonctions :
Bool -> elemDelListe).
R3. La stratégie non-déterministe consiste a parcourir la liste, et pour chaque élément soit le retenir, soit jeter.
EnProlog la solution sera :
pset([l.[)-
pset([X|LLIXIR]) :- pset(L,R).
pset([X|L],R) - pset(L,R).
Les deux derniéres clauses sont évidemment non-conflictuelles, et engendrent la solution multiple. En
Haskell nous pourrons tenter
pset [] = [[l] -- Il ne faut pas se tromper !
pset (x:I) = let r=pset |
in I ++ map (x:) |
ou nous avons simplifié I'expression donnée par la traduction mécanique :
| ++ concat (map (\c->return (x:c)) I)
Q4. Construire une fonction qui génere toutes les combinaisons édiéments d’une liste de longueur
R4. Ceciressemble au problémewerset , mais le choix est restreint. La solutiBnolog : comb(M, Liste,Res)

est légerement plus complexe cueet :

comb(0,_ []:-%.
comb(M,[X|LL,[X|R]):-M1 is M-1,comb(M1,L,R).
comb(M,[_|L],R):-comb(M,L,R).

Les deux derniéres clauses sont naturellement non-exclusives, donc la solution fonctionnelle sera

comb 0 _ = [[]]
comb m p@(x:l) = map (x:) (comb (m-1) I) ++ comb m |

ou les optimisations ont été effectuées presque sans réfléchir. Et d’ailleurs, cette manque de réflexion
génére ici une petite catastrophka définition n'est pas compléte | Essayez de la corriger avant
'examen.

Index

IATEX, 59

accept, 101
accumArray, 165
accumulation, 147
action, 101
actions sémantiques, 100
affectation, 45, 55, 60, 138
affichage, 31, 38
Algol 60, 94
algorithme
de Newton, 140
allocation dynamique, 15
alternative, 79
alternatives, 99
analyse, 59
dirigée par la syntaxe, 90
lexicale, 59, 74, 83
syntaxique, 59
sémantique, 59, 63, 89
appels fonctionnels, 88, 92
application, 139, 167
application stricte, 142
applications partielles, 139
arbre syntaxique, 33, 51, 54, 62, 99
arbres, 81, 160
Array, 164
associations, 35, 38, 41, 66
associativité, 85, 87, 90, 91, 102
atomes, 87
attributs, 74, 89
automate
a pile, 101

backquotes, 91
backspace, 93
backtracing, 96
backtracking, 18, 27, 73, 75, 89, 95
balayage, 118

balisage, 149
benchmarking, 175
bind, 77, 167, 169
Bison, 63

BNF, 94

boucle, 53

boucles, 12, 64, 94
branchement, 12-14, 16

181

conditionnel, 56
bytecodes, 23, 37

calcul, 167
calcul formel, 9, 24
call/cc, 17, 176
case, 146
catégorie
lexicale, 62
catégories
lexicales, 60, 84, 113
syntaxiques, 84
chaines, 161
classe
Functor, 160, 169
Monad, 169
Read, 162
Show, 161
classe de constructeurs, 159, 169
classes, 20, 158
clauses, 147
Clean, 21, 49, 62, 138
co-procédure, 13
co-procédures, 50, 66
code
postfixe, 8, 36, 88, 93
coercition, 157
combinaisons, 28, 180
combinateurs, 29, 54, 86, 151, 154
substitution, 152
commentaires, 9, 68
compactage, 117, 120
composition, 74, 152, 167, 168
fonctionnelle, 167
compréhensions, 30, 144, 148
compteur, 175
computation, 167
concaténation, 78
conditionnelles, 146
constantes, 60, 63, 67, 158
constructeur, 159
constructeurs, 145, 149
contexte
gauche, 89
Continuation passing style, 175

continuations, 16, 26, 37, 46, 54, 162, 175, 176

control backtracking, 176

182

INDEX

conversion, 158

conversion automatique, 144
conversion de types, 110
CPS, 37,175

crible d’Eratosthéne, 30
Curry, 151

dataflow, 22

dead code, 63, 64
delay, 16

deriving, 160, 162
diagrammes, 94
dictionnaires, 67
dinosaures, 177
directives, 137
directives Hugs, 137
déboguage, 174
déclarations, 111
décoration sémantique, 62
définitions locales, 146

effets de bord, 174
enchainement, 169
entiers longs, 38, 137, 144
entrées/sorties, 177

environnement, 14, 34-36, 42, 66, 174

erreur, 175
error, 101
exceptions, 170, 179
exportation, 161
expressions
algébriques, 85
Booléennes, 85
expressions régulieres, 72

factorielle, 42, 48, 53, 57, 146
factorisation, 85, 89, 96
fail, 77
fermeture, 15, 139
fermeture de Kleene, 114
fermeture positive, 79
fichiers, 179
files, 68, 165
abstraites, 165
files fonctionnelles, 69
filtrage, 142, 147
FIRST, 96
flot, 178
flot paresseux, 146
flux, 66, 74
flux de données, 141
FOLLOW, 96
fonction de recherche, 91
fonctionnelles, 32, 140, 147
filter, 30, 32, 148
fmap, 160, 169

fold, 27, 143

foldl, 32

map, 32, 147, 160

types, 150

zipWith, 30, 145
fonctions

paresseuses, 167
fonctions anonymes, 139
fonctions génériques, 46
fonctions virtuelles, 158
formes lambda, 139
formes let, 139
Fortran, 12, 60
fractions, 162
fragmentation, 120
fromDouble, 158
fromint, 158
frominteger, 158

gardes, 147
GHC, 136, 177, 178
GHCi, 136
GNU, 57
GOTO, 101
goto, 12, 46
grammaire
d’'opérateurs, 90
grammaire d’opérateurs, 100
grammaires, 71
grammaires d’opérateurs, 99
graphes, 70

Hindley-Milner, 111
Hugs, 136
héritage, 20, 25

Icon, 14

identificateurs, 60, 67
qualifiés, 162

importation, 161

importation des modules, 38

in-lining, 125

indentation, 138

indices, 38

inlining, 64

insertion non-déterministe, 172

instances, 158

instruction, 24
retour, 37

instructions, 12

interface, 158

interfacage, 22

inégalité, 158

item, 93

itérateurs, 81, 88, 90
a droite, 86

INDEX

183

a gauche, 87, 88
itérations, 12, 52, 140, 146, 148

Java, 7, 14, 21, 24, 40, 116, 158
jetons, 60
Just, 171

lambda-lifting, 70

langages de spécification, 24

layout, 61, 75, 138

lecture paresseuse, 146, 178

lettres, 72

Lex, 63, 72

lexéme, 60

lexéemes, 83

linéarisation du code, 163

Lisp, 7, 15, 20, 21, 33, 140

listes, 27, 29, 71, 72, 75, 81, 83, 141, 142, 144
cycliques, 145
paresseuses, 141

longjump, 57

look-ahead, 96

machine virtuelle, 8, 12, 24, 33
machine a pile, 35, 36
machine a registres, 164
macros, 19
magie, 35, 139
Maple, 24, 26, 61
marquage, 118
marqueur, 91
Matlab, 61
matrice d’incidence, 70
Maybe, 171
Mercury, 9
messages, 21
Metafont, 19
MetaPost, 19, 60, 62
micro-programme, 23
ML

CAML, 9
modules, 161
Monad, 160
monade

10, 177
monade non-déterministe, 171
monades, 160, 167
Monde, 177
mots, 79
méthodes virtuelles, 33

namespaces, 61

newtype, 77

NHC, 178

nombres, 80, 105
non-déterminisme, 16-18, 26, 75

normalisation de Greibach, 87, 88, 94
notation BNF, 73

notation do, 178

Nothing, 171

négation, 73, 85

objet fonctionnel, 156, 164
objets fonctionnels, 139
op, 73
optimisation, 63, 64, 86, 89, 92, 95, 155
options Hugs, 137
opérateur du retour, 42
opérateurs, 47, 48, 52, 60, 73, 90, 100, 143, 157
arithmétiques, 39, 161
associativité, 145
Booléens, 85
concaténation, 136
infixes, 72, 85
précédences, 143
relationnels, 40
opérateurs arithmétiques
numeéraux de Church, 153

parallélisme, 14
parcours en largeur, 69
parenthéses, 108
parseur, 31
parseur atomique, 88
parseurs récursifs, 99
parsing, 71
prédictif, 95
Pascal, 94
pattern matching, 142
Perl, 14
permutations, 19, 26, 172
pile
de données, 37
des données, 91, 92
des opérateurs, 91, 92
pile des retours, 13, 42, 46, 50
pipes, 66, 68, 141
pointeurs sur les fonctions, 45
polymorphisme, 24, 46, 54, 111, 150, 157
position, 93
PostScript, 7, 40, 41, 56, 60, 76
powerset, 180
precedence grammars, 90
PREMIER, 96
processus itératifs, 141
procédures, 12, 139
programmation
fonctionnelle, 14
impérative, 11, 45, 174
logique, 17
non-déterministe, 18, 180
orientée-objet, 158

184 INDEX

par contraintes, 19 table des symboles, 66, 91
par objets, 20, 21 tableaux, 35, 38, 164
parallele, 50 tableaux de pilotage, 96
paresseuse, 15, 179 techniques ascendantes, 90
visuelle, 8, 22 techniques descendantes, 99
programme circulaire, 166 templates, 125
Prolog, 9, 17, 26, 71, 74, 81, 83, 172, 180 termes composites, 88
prologue, 76 terminateurs, 60
précédence, 72, 90 threaded code, 37, 46
prédicat, 140 thunk, 16, 49, 141, 145
préfixe, 95 tokens, 60
optionnel, 86 tracing, 173
Prélude standard, 143, 158, 159, 161 tri
Python, 7,9, 21, 61, 138 arborescent, 150
insertion, 142
ramasse-miettes, 49 quicksort, 29
Read, 83 try-with, 179
records, 20 tuples, 142, 144
reduce, 74, 100, 101 type
registres, 65 Bool, 148
relations, 17 fonctionnel, 144
repeat, 53, 145 Maybe, 160, 170
resume, 13 Réponse, 176
retour conditionnel, 55 Unit, 144
return, 77, 169 type principal, 151
reverse, 147 types, 24, 62, 148
récursivité, 13, 40-42, 51, 140 abstraits, 162, 165
ouverte, 145 déclarations, 142, 144
terminale, 15, 74 inférence automatique, 15, 150
récursivité a gauche, 87 prédéfinis, 144
références cycliques, 117 récursifs, 149
structurés, 149
scanneur, 60, 75, 93 synonymes, 150
Scheme, 7, 15, 21, 62, 138, 173, 176 vide, 38
Scicos, 23 vérification, 28
Scilab, 23
script, 7, 14 unification, 18, 111
sections, 145 unsafePerformlO, 66, 146
seq, 142
shift, 74, 99, 101 valeurs, 167
Show, 82 variable logique, 17
show, 161 variables, 12, 17, 36
Simula, 21 anonymes, 147
Smalltalk, 9, 14, 20, 21, 25, 40, 57 locales, 138
structures de contrble, 141, 167 VRML, 24
style .
fonctionnel, 164 while, 48, 52
suite monadique, 169 Yacc, 63, 101
SUIVANT, 96
surcharge, 24, 25, 46, 157 échec, 18, 175
automatique, 158 éditeur des liens, 59
constantes numériques, 144 égalité, 158
synthése, 59 états, 174
sémantique, 167 étiquettes, 62
séparateurs, 60, 82 évaluation paresseuse, 27, 49, 141, 145

séquences, 78, 80 structure de contrdle, 162

INDEX 185

évaluation stricte, 49, 141
événements, 21

