
Compilateurs

et interprètes

Jerzy Karczmarczuk

Departement d’Informatique, Université de Caen

Caen, Janvier 2002

2

Copyright c© Jerzy Karczmarczuk, 2001/2002

Table des matières

1 Introduction 7
1.1 Objectif du cours : Pourquoi apprendre la compilation? . 7
1.2 Exercices . 8

2 Classification générale des langages : survol de la tour Babel 11
2.1 Catégories classiques . 11
2.2 Programmation impérative . 11

2.2.1 Co-procédures et quasi-parallélisme . 13
2.2.2 Exemples . 14

2.3 Programmation fonctionnelle . 14
2.3.1 Programmation paresseuse . 15
2.3.2 Continuations . 16

2.4 Programmation logique . 17
2.4.1 Exemples des programme en Prolog . 18
2.4.2 Programmation par contraintes . 19

2.5 Programmation par objets . 20
2.5.1 Quelques exemples . 20

2.6 Programmation pilotée par les événements . 21
2.7 Dataflow et langages graphiques/visuels . 22
2.8 Autres schémas de classification et paradigmes de programmation 23

2.8.1 Types . 24
2.9 Notre langage de travail . 25
2.10 Exercices . 25

3 Machines virtuelles et exécution des programmes par l’ordinateur 33
3.1 Entre compilation et interprétation . 33
3.2 Expressions fonctionnelles et évaluation récursive . 33

3.2.1 Interprète descendant enScheme . 33
3.3 Linéarisation du code et machines à pile . 36

3.3.1 Cahier des charges . 36
3.3.2 Codage de la machine . 38
3.3.3 Mécanismes décisionnels . 40

3.4 Gestion explicite de la pile des retours . 42
3.4.1 Omission importante . 45
3.4.2 Conseils pour les irrécupérables . 45

3.5 Variante :Indirect threaded code. 46
3.5.1 Co-procédures . 50

3.6 Le compilateur : première tentative . 51
3.7 Exercices . 52

3

4 TABLE DES MATIÈRES

4 Les tâches et la structure d’un compilateur 59
4.1 Un peu d’anatomie et de physiologie . 59

4.1.1 Le lexique . 60
4.1.2 Syntaxe et Sémantique : introduction . 62
4.1.3 Lex et Yacc – premiers commentaires . 63
4.1.4 Qu’est-ce que l’optimisation . 64

4.2 Intégration d’un compilateur . 65
4.2.1 Intégration procédurale . 65
4.2.2 Transducteurs de flux, ou «pipelining» . 65

4.3 Organisation de la table des symboles . 66
4.3.1 Techniques de hachage . 67

4.4 Exercices . 68

5 Analyse syntaxique I – Techniques fonctionnelles 71
5.1 Grammaires etparsing . 71

5.1.1 Exemple . 71
5.2 Stratégies du parsing . 73

5.2.1 Stratégie descendante . 73
5.2.2 Techniques ascendantes . 74

5.3 Philosophie du parsing fonctionnel . 74
5.3.1 Qu’est-ce qu’un parseur? . 75
5.3.2 Objectifs finaux . 75

5.4 Composition des parseurs fonctionnels . 77
5.4.1 Premiers pas . 77
5.4.2 Séquences, filtres, alternatives, itérations . 78
5.4.3 Sérialisation sans mémoire . 80
5.4.4 Encore un exemple : listes Prolog . 81

5.5 Exercices . 82

6 Analyse syntaxique II – développement et optimisation 85
6.1 Analyse des expressions algébriques . 85

6.1.1 Premier essai, opérations Booléennes . 85
6.1.2 Arithmétique et problèmes avec la récursivité à gauche 87
6.1.3 Quelques optimisations . 89

6.2 Opérateurs de précédence et associativité quelconques . 89
6.3 Exercices . 92

7 Informations complémentaires sur les parseurs descendants 94
7.1 Diagrammes syntaxiques . 94
7.2 Optimisation classique des parseurs descendants . 94

7.2.1 Élimination de la récursivité . 96
7.2.2 Tableaux PREMIER et SUIVANT . 96

7.3 Exercices . 97

8 Stratégie ascendante d’analyse syntaxique 99
8.1 Idée générale . 99
8.2 Grammaires d’opérateurs . 100
8.3 Parseurs LR . 101

8.3.1 Construction des tableaux de parsing . 103
8.4 Exercices . 103

TABLE DES MATIÈRES 5

9 Sémantique 105
9.1 Grammaires attribuées et décorées . 105

9.1.1 Valeurs des nombres . 105
9.1.2 Constance . 106
9.1.3 Temps de vie . 107
9.1.4 Formatage 2-dimensionnelle des formules mathématiques 107

9.2 Exercices . 109

10 Les types 110
10.1 Qu’est-ce qu’un type et quel est son rôle . 110

10.1.1 Inférence automatique des types, système H-M . 111
10.1.2 Structures composites . 111
10.1.3 Quelques généralisations possibles . 111

11 Deux mots sur l’analyse lexicale 113
11.1 Qu’est-ce qu’un lexème . 113

11.1.1 Catégories lexicales . 113
11.2 Expressions régulières . 114

11.2.1 Automates . 114

12 Gestion de mémoire dynamique 116
12.1 Allocation du tas . 116
12.2 Compteurs de références . 117
12.3 Ramasse-miettes «marquage et balayage» . 117

12.3.1 Optimisation de Schorr-Waite . 119
12.3.2 Problèmes avec le compactage de la mémoire . 120

12.4 Ramasse-miettes copieur . 120
12.4.1 Ramasse-miettes générationnel . 121
12.4.2 GC pour les données «binaires» . 121
12.4.3 GC en temps réel : ramassage incrémental . 122
12.4.4 Algorithme de Baker . 123

13 Macros et pre-traitement 124
13.1 Transformations source – source . 124
13.2 Macros et langages-amibes . 126
13.3 Exercices . 126

14 Modèles de code plus sophistiqués 128
14.1 Évaluateur eval-apply . 128
14.2 Machine SECD . 129
14.3 Exercices . 131

15 Omissions 133
15.1 Généralités . 133
15.2 Grammaires et parsing . 133
15.3 Sémantique et génération du code . 134
15.4 Modèles d’exécution . 134
15.5 Run-timeet l’interfaçage . 135
15.6 Varia . 135

A Introduction à la véritableprogrammation fonctionnelle et à Haskell 136
A.1 Pratique de la programmation en Haskell . 136
A.2 L’essentiel . 138

A.2.1 Récursivité et processus itératifs . 140
A.2.2 Évaluation paresseuse . 141
A.2.3 Déstructuration automatique des arguments . 142
A.2.4 Quelques exemples de programmes enHaskell . 142

6 TABLE DES MATIÈRES

A.3 Langage de base . 143
A.3.1 Opérations . 143
A.3.2 Types de données prédéfinis . 144
A.3.3 L’utilisation de l’évaluation paresseuse . 145

A.4 Structures de contrôle . 146
A.4.1 Clauses, gardes et filtrage . 146
A.4.2 Fonctions d’ordre supérieur . 147

A.5 Types définis par l’utilisateur . 148
A.5.1 Types-synonymes . 150
A.5.2 Introduction à l’inférence automatique des types . 150

A.6 Intermezzo : exemples fonctionnels très spécifiques . 151
A.6.1 Combinateurs de Curry . 151
A.6.2 Arithmétique de Peano-Church . 152
A.6.3 Nombres de Peano-Church et combinateurs de Curry 154
A.6.4 L’exponentiation . 154
A.6.5 Soustraction . 155

A.7 Exercices . 155

B Introduction à la programmation en Haskell (II) 157
B.1 Surcharge des types . 157

B.1.1 Surcharge automatique des constantes numériques 158
B.2 Classes de types . 158

B.2.1 Restrictions sur les types . 159
B.2.2 Classes de constructeurs . 159
B.2.3 Fonctions d’affichage . 161

B.3 Modules . 161
B.3.1 Clausederiving . 162

B.4 Continuations: du fonctionnel à l’impératif . 162
B.5 Les tableaux . 164
B.6 Exercices . 165

C Intermezzo monadique 167
C.1 Introduction . 167

C.1.1 Et les monades moins triviales? . 168
C.1.2 Monades arbitraires et combinateurs . 168

C.2 Exemples de monades non-triviales . 170
C.2.1 Exceptions . 170
C.2.2 Monade non-déterministe . 171
C.2.3 Monade du tracing . 173
C.2.4 États et transformateurs . 174
C.2.5 Monade CPS . 175

C.3 Système I/O de Haskell . 177
C.3.1 Notation «do» . 177
C.3.2 Flots standard . 178
C.3.3 Fichiers . 179

C.4 Exercices . 179

Chapitre 1

Introduction

1.1 Objectif du cours : Pourquoi apprendre la compilation?

La plupart des logiciels de haut niveau assure quelques possibilités de dialogue avec l’utilisateur et doit être
capable de comprendre quelques instructions formulées dans un langage formalisé. Nous avons des tableurs ou
des traitements de texte équipés avec des macro-processeurs puissants et capables de comprendre les formules
mathématiques assez complexes ; systèmes graphiques ou gestionnaires de bases de données qui communiquent
avec l’utilisateur dans des véritables langages de programmation de haut niveau (SQL), etc. Des éditeurs de
texte évolués comme Emacs ou Word sont étendus par des interprètes des langages universels :Lisp ouBasic.
Il y a des implantations des langages de programmation, comme par exempleScheme conçuesspécialement
pour étendre les fonctionnalités des paquetages plus spécifiques.Scheme-Elk est utilisé dans un paquetage
d’animation (AL) et dans un modeleur 3D :Sced. Une autre variante deScheme (Guile) était utilisée dans
le logiciel de traitement d’imagesGIMP comme son langage de scriptage. Les applications qui sont pro-
grammables enScheme, doivent incorporer le compilateur et la machine virtuelle (interprète) appropriée. Les
systèmes de mise en page (comme LATEX) sont également des compilateurs – ils transforment le texte source,
symbolique, en instructions de rendu graphique des textes et des images, «exécutées» ensuite par les pilotes
des imprimantes, les pilotesPostScript résidant dans l’ordinateur, ou par des pilotes de sortie vidéo. Lesplug-
in des navigateurs Web commeNetscape sont des interprètes des langages spécifiques, commeTcl/Tk, et le
noyau deNetscape contient la machine virtuelle deJava et l’interprète duJavaScript, etc.

D’autre part il est évident que les systèmes d’interfaçage graphiques comme X-Window System, Microsoft
Windows ou le système MacIntosh ont besoin de «scripts» (programmes exécutés par l’interface utilisateur ou
l’interprète des commandes – le «shell») capables d’automatiser les tâches répétitives et de prendre quelques
décisions dépendantes du contexte de l’intéraction. Comme il a été souligné ci-dessus, tous les éditeurs sérieux,
comme Emacs sont programmables. Il ne s’agit pas d’ajouter simplement des macros au texte, mais de per-
mettre à l’utilisateur de lancer l’exécution d’un autre programme, de récupérer le courrier, d’établir une com-
munication vocale, de trier une petite base de données, etc. On a besoin des scripts pour intégrer plusieurs
applications, par exemple une calculatrice symbolique avec un logiciel de rendu graphique commeGnuplot,
ou pour écrire les programmes CGI (exécutés sur le site serveur par une commande incluse dans une page
HTML et lancée par un client distant). Des langages commePerl, Tcl/Tk ou Python servent principalement
à cela. À présent nous avons de nouveaux langages à objets commeRuby, et aussiPHP. Donc, les inter-
prètes/compilateurs sont vraiment omniprésents. . .

La programmation devient de plus en plus intégrée et visuelle. On a besoin de langages nouveaux pour
décrire les scènes 3D et permettre l’intéraction avec le modèle (VRML, X3D, etc.). Même la description des
textureconstitue un langage de programmation (langage des «shaders»). Le monde XML évolue vite : nous
avons déjà des langages de description de structures chimiques, ou de la phonologie et morphologie de la parole
humaine.

On a souvent besoin de pouvoir décrire unproblème stratégiquedans un langage formalisé afin de préciser les
modalités de sa solution automatique. On développe donc deslangages logiques, des langages où il est plus
facile de coder l’heuristique, l’apprentissage, l’accès aux bases de données déductives, la coopération entre
experts/agents distribués, etc. Les langages «classiques» sont ici beaucoup moins commodes.

7

8 Introduction

Enfin, on a besoin de langages (et de compilateurs spécialisés) pour le parallélisme, simulation, création mu-
sicale, communication multi-médiatique, organisation des hyper-textes, etc. Ajoutons à cela les langages de
description de styles (CSS2 et ultérieurs), un langage de modélisation structurelle (UML), etc. Nous avons
même des langages et les descriptions syntaxiques des systèmes biologiques évolutifs comme les systèmes
de Lindenmayer, utilisés pour la modélisation des plantes. Il existe des langages styledataflowqui ne sont
pas basés sur des phrases linéaires, mais où les programmes ont forme de graphes, et ces langages sont loin
de l’abstraction académique :Khoros, Simulink, UML, ProGraph, Data Explorer, etc. sont des langages
pratiques, voire même industriels.

Donc, notre programme dépasse le sujet contenu dans le titre : «Compilation». Nous allons parler de langages
de programmation en général, de leur sémantique et de leurs styles, de techniques d’implantation desmachines
virtuelleset – si le temps nos permet – de l’interfaçage.Nous allons traiter des modèles concrets !

Credoreligieux no. 1 : On ne peut vraiment apprendre la compilation des langages de programmation, que si
on en connaît quelques uns.

Les besoins des utilisateurs des ordinateurs évoluent, et les langages de programmation aussi. À présent ils sont
plutôt orientés vers une bonne conceptualisation, lisibilité, sécurité, et surtout sur la puissance sémantique qui
détermine notre liberté d’expression, que vers une utilisation extrêmement intense des ressources matérielles,
comme des registres, transferts des octets entre les zones de mémoire, etc. Les assembleurs restent utiles à ceux
qui envisagent le codage du noyau dur d’un système d’exploitation embarqué, où l’économie de mémoire et la
vitesse sont essentielles, voire critiques.

Les techniques de génération du code présentés ici viseront plutôt desmachines virtuelles– interprètes,
que directement le silicium, car ainsi il sera plus facile d’aborder la sémantique et la pragmatique qui permettent
d’évaluer et de comparer les langages. Le code de bas niveauest important, car, finalement, les ordinateurs
marchent grâce aux instructions exécutées directement par le matériel, mais nous n’avons pas le temps de
traiter tout, et surtout le domaine qui n’appartient plus à l’informatique au sens large, mais à l’ingénierie
des architectures d’ordinateurs. Un étudiant en Informatique devra probablement un jour construire un petit
compilateur et/ou interprète, car telles sont les tendances d’aujourd’hui. Par contre, les chances qu’il construise
un compilateur dont le code-cible est l’assembleur de bas niveau, sont très faibles.

Ces notes contiennent de nombreux exemples du code écrit enHaskell – un langage fonctionnel pur.La
connaissance de ce langage est absolument incontournable pour pouvoir suivre ce cours.Le polycopié
contient donc une introduction àHaskell, mais il ne remplacera pas la documentation ! D’autres langages dont
nous aurontvraimentbesoin :

• Scheme (ou Lisp), car ce langage constitue une base «classique» de programmation fonctionnelle, et
grâce à la simplicité sémantique de son modèle : le calcul lambda, il sert souvent à implanter beau-
coup d’autres paradigmes, notamment la programmation à objets, logique, etc., au moins à des buts
pédagogiques.

• PostScript (ou Forth). Ces langages sont adaptés à des machines virtuelles à pile, relativement simples,
programmables en code postfixe. Ceci sera notre machine virtuelle – cible privilégiée.

Un autre avertissement semble utile : les exercices inclus dans ces notes doivent être pris au sérieux. Ils
font partie intégrale du cours, et quelques techniques de programmation ne seront expliqués qu’à travers eux.
Quelques exercices ne seront pas accompagnés de réponses, et ceci peut suggérer que nous avons peut-être
envie de les utiliser comme sujet d’examen. . .

Cette version de notes n’inclut plus la bibliographie ni la «Webographie» consacrée à la compilation, langages,
etc. Notre polling effectué pendant 3 ans a démontré que les étudiants ne s’en servent pasdu tout. Elle pourrait
être utile, bien sûr, par exemple on peut trouver sur l’Internet presque tous les ingrédients du devoir (ou même le
devoir complet), mais laissons cette recherche aux lecteurs. Si quelqu’un veut des références bibliographiques,
prière de s’adresser persennellement à l’auteur.

1.2 Exercices

Q1. Quel est l’avantage de connaître plus de cinq (ou dix?) langages de programmation? Quel est le prix à
payer? (Éviter la réponse triviale – on devient très savant, mais il faut du temps pour apprendre tout. . .)

1.2 Exercices 9

R1. Pas de réponse unique. Trouvez vos réponses individuelles. Voici les nôtres :

• Avantages.Si un problème calculatoire, algorithmique, de représentation, etc.très complexe se
pose, il est plus facile de trouver un style, un langage convenable, qui économise le plus le temps
humain, même si l’implantation du langage est très inefficace. Ici, ce facteur d’économie peut
atteindre plusieurs centaines : des heures plutôt que des semaines, et ceci peut récompenser aussi
la «perte» du temps d’apprentissage. Ensuite, une bonne connaissance de plusieurs styles permet
de choisir et d’inventer quelque chose de propice si le circonstances exigent la construction du
compilateur d’un petit langage intégré à une application très spéciale.

Il y a aussi le plaisir créatif indépendant de la vision strictement instrumentale des langages.

• Handicaps.On s’égare ! C’est un peu comme une tentative de pratiquer tous les sports à la fois.
On risque de ne rien faire vraiment bien. . . Ensuite, on risque de confondre les langages et de
coder des «monstres de Frankenstein» inutilisables. Cependant ce risque n’est pas très grand, si
l’apprentissage est accompagnié par une raisonnable pratique.

Aussi, on tombe facilement dans le piège du perfectionnisme et on commence à élaborerMNLP
– Mon Nouveau Langage de Programmation. Ceci n’est pas mauvaisper se, et peut aboutir à une
thèse et à autres succès personnels, mais ce langage esta priori condamné à être oublié, sauf les
cas extrêmement rares, car la concurrence est trop forte.

Q2. Mentionnez au moins une douzaine de conventions différentes utilisées pour dénoter descommentaires
dans des divers langages de programmation.

R2. Cherche et tu trouveras. Mais n’oubliez pas Fortran ni Cobol.

Q3. Qui est l’auteur et le titre du tableau sur la première page de ces notes?

R3. Oui, vous avez gagné.

Q4. Fermez les yeux et citez au moins une cinquantaine de langages de programmation dont vous avez
entendu parler.

R4. Toute l’idée ici est de ne pas tricher, et de pouvoir dire au moins 20 motsa proposde chacun de ces
langages. Voici quelques suggestions : Basic, Pascal, C, C++, Simula, FORTRAN, Cobol, Lisp, (et
Scheme), Smalltalk, Modula, Perl, Python, Sather, Ruby, Icon, Snobol4, TCL, SML, Haskell, CAML,
Prolog, Mercury, Clean, Miranda, Eiffel, Algol, CLP, Sisal, Matlab, FORTH et PostScript, MetaPost,
TEX, PL/I, Java, JavaScript, Ada, APL, Hope, Id, Self, Occam, SQL, PHP, Erlang, Awk, Life, plus une
autre trentaine d’assembleurs, sans compter les langages graphiques comme UML, WiT, Simulink, Pro-
Graph or Khoros, et sans compter les langages de description/marquage (plutôt que de programmation):
VRML, SVG, X3D, HTML, etc.) Et encore des langages spécialisés, par exemple les langages de Calcul
Formel : Maple, MuPAD, Magma, Axiom, GAP, etc.

Q5. Et maintenant, poses vous-même une question !

R5. OK, voici une proposition :Je n’ai pas beaucoup de temps, mais j’aimerais apprendre quelques lan-
gages de programmation élégants et puissantsqui ne sont pas enseignés ici. Avez-vous une suggestion?

Pourquoi pas?

• O’Caml. C’est un langage fonctionnel moderne, typé, avec une couche orientée-objet très prononcé.
Le compilateur est très efficace. Il a été utilisé à des buts assez compliqués, comme la construction
d’un lanceur de rayons, où il a gagné (en fait, l’équipe d’Inria a gagné) avec d’autres langages au
niveau de vitesse et facilité de programmation. C’est un produit français, ce qui facilitera votre
accès à la documentation.

• Mercury. C’est un langage logique (ou, un peu : logico-fonctionnel), mais typé etbeaucoupplus
rapide queProlog. Recommandé pour des personnes qui s’intéressent à l’intelligence artificielle.

• Python. Orienté-objet, petit et transparent, facile, et vraiment universel comme un langage de
scripting. Il peut remplacer Perl partout.

10 Introduction

Q6. Voici une anecdote historique. Quel est son rapport avec ce cours?

Quand la dynastie des Jagellons, rois de Pologne, s’est éteinte au 17 siècle, les Polonais ont eu une idée
formidable et moderne : organiser une monarchie démocratique, avec les rois élus. Et ils en ont élu
une douzaine, dont le premier, Alexandre d’Anjou, au bout de quelques mois s’est enfuit avec la caisse,
pour rentrer en France et devenir Henry III. Mais les autres n’étaient pas toujours meilleurs. Après
une fructueuse élection l’ambassadeur de Venise écrivit à son souverain, le Doge : «Les Polonais ont
élu un nouveau roi. Un personnage très intelligent et savant. Il parle couramment 7 langues ! Mais,
malheureusement, il n’a rien à dire. . .».

R6. Aucun rapport. Tous les étudiants ont toujours beaucoup de choses à dire, même si cela ne se voit pas.

Chapitre 2

Classification générale des langages :
survol de la tour Babel

2.1 Catégories classiques

Cette section contient une revue de plusieurs langages de programmation, leur comparaison et évaluation (très
superficielle).

Il y a des visions très différentes duprocessus calculatoire. Le comportement de l’ordinateur qui pilote une
navette spatiale n’est pas le même que celui de la machine qui aide un physicien-théoricien à trouver les tores
de Kolmogorov-Arnold-Moser, bien que dans les deux cas on peut chercher le régime dans lequel la solution de
quelques équations différentielles soit stable. Les buts pratiques sont différents. Il faut donner la préférence à :
l’efficacité? la sécurité? l’intéractivité? la facilité du codage pour des non-spécialistes? Les mêmes questions
se posent dans le domaine des langages et leur compilateurs. Un langage «ami de tous» n’existe pas, les
différences sémantiques sont importantes et influencent le style et la syntaxe. Il n’y a pas de solutions-miracle.
La création des nouveaux langages ne se terminera jamais.

Par convention on divise le monde des langages de programmation en quelques catégories non-exclusives. On
parle par exemple deslangages impératifs, logiques ou fonctionnels, mais la couche fonctionnelle existe
dans presque tout langage, sauf les assembleurs les plus primitifs et quelques langages descriptifs (statiques),
car cette couche fonctionnelle n’est rien d’autre que la capacité d’évaluer les expressions en appliquant les
opérateurs. Un vrai langage de programmation possède plusieurs couches. Donc, le «catalogue» ci-dessous
n’est pas du tout une classification des langages ! Au lieu de parler le «langages fonctionnels» nous aurions
dû mentionner descouchessémantiques : impérative, fonctionnelle, logique, etc. Le langage est considéré
fonctionnel si sa couche fonctionnelle prédomine, si elle est bien exposée syntaxiquement, et conditionne le
style global des programmes écrits dans ce langage, ainsi que le modèle d’exécution du programme (le modèle
de la machine virtuelle). Mais – répétons – tout langage impératif est d’habitude un peu fonctionnel, et la
programmation par objets peut se faire en style procédural (impératif, comme enSmalltalk), fonctionnel
(quelques extensions duScheme , ouHaskell), ou même logique (extensions objet duProlog).

Si on veut réellement en deux mots préciser les différences fondamentales entre ces catégories de langages
on pourra formuler ceci de manière comme ci-dessous. Cependant, la couche fonctionnelle de la programma-
tion sera couverte de manièrebeaucoupplus complète plus tard, car tout notre cours est basé sur des techniques
fonctionnelles.

2.2 Programmation impérative

Un langage impératif est un langage decommandes(ou instructions, ou directives, ou actions, etc.) On modifie
les variables (ou registres), on construit des itérateurs (boucles) ou autres structures de contrôle qui se réduisent
aux branchements. Les valeurs des variables contituent l’étatdu système, et les instructions modifient cet état.
Un registre particulier, le «compteur du programme» adresse l’instruction qui sera exécutée, et si le programme
modifie explicitement la valeur de ce registre, ceci constitue lebranchement. Sans branchements, le compteur
du programme est auto-incrémenté.

11

12 Classification générale des langages : survol de la tour Babel

C’est la catégorie «classique» des langages ; le code compilé est de bas niveau, adapté aux architectures
des processeurs (architecture de von Neumann), et il doit être rapide. Exemples : C, Pascal, Ada, Fortran.

Dans le modèle de von Neumann le programme stocké dans la mémoire est une liste linéaire d’instructions.
La machine exécute une boucle : après la modification du compteur du programme on continue. Il y a toujours
une instruction à exécuter.La machine ne s’arrête jamais. Le branchement inconditionnel ou conditionnel :
selon la valeur Booléenne d’un des registres, on effectue ou pas unbranchement, le goto, une instruction dont
l’argument est l’adresse d’une autre instruction est la structure de contrôle fondamentale.

Si l’adresse passée àgoto précède l’adresse actuelle, on peut fermer une boucle classique. Mais un pro-
grammeur typique, intéressé par les résultats finaux ne doit pas traiter ce programme enC

while(x>2)
{faire(x,g(x)); x=h(x);}

comme l’abréviation de

boucle: z=x-2;
if(z<=0) goto bfin;
faire(x,g(x));
x=h(x);
bfin: ...

car psychologiquement c’est totalement inutile. Il faut, bien sûr, comprendre la sémantique de la boucle, et non
pas sa forme décortiquée de bas niveau.

Cependant les concepteurs et réalisateurs de compilateurs ne sont pas des programmeurs typiques. Ils
doivent savoir traduire les constructions de haut niveau en concepts appartenant au modèle d’exécution. Ceci
est vital, indépendamment des différences syntaxiques entre langages.

Alors, un petit récapitulatif. La machine virtuelle de plus bas niveau, un interprète impératif «plat» doit
permettre

• L’adressage des zones mémoire contenant les instructions.

• Auto-incrémentation (exécution séquentielle des instructions) et modification dynamique du compteur
des instructions, le branchement (goto).

• Au moins un mécanisme décisionnel (if→goto).

• L’adressage des emplacements des données (registres, variables).

• Récupération des données, leur transfert.

• Modification des données (primitives) par le processeur (p. ex. l’arithmétique).

Ceci n’épuise pas les notions appartenant au modèle impératif. Il faut ajouter au moins la possibilité de con-
struire des procédures, c’est à dire d’automatiser legoto avec retour. Il faut donc pouvoirstocker quelque part
l’adresse d’une instruction, de la traiter comme donnée.

EnFortran antédiluvien les procédures (subroutines) n’étaient pas récursives, et chaque procédure prévoy-
ait un emplacement statique dans son segment de données pour y stocker l’adresse de retour de ce procédure
au module appelant. Le code de l’instructioncall f parg se compilait comme

• Récupérer l’adresse de la procédure appeléeg.

• Récupérer l’emplacement du segment de données deg correspondant à l’adresse de retour, disons, le
registreRET.

• Stocker dans ce registre la valeur du compteur-programme (l’instruction suivante à exécuter, appartenant
à la procéduref).

• Exécutergoto g.

tandis que le retour de la procédure se réduisait à

• Récupérer la valeur stockée dansRET, et effectuer legoto.

2.2 Programmation impérative 13

Dans ce modèle toutes les données étaient statiques, et chaque procédure travaillait dans son «monde privé»,
ou, éventuellement dans une zone accessible globalement.

La possibilité d’opérer avec des procédures récursives implique laprotection de l’adresse de retour. Le pro-
tocole standard, utilisé par pratiquement toutes les implantations des langages admettant la récursivité est basé
sur lapile des retours. Au lieu de stocker l’adresse de retour dans une zone statique appartenant au module
appelé, chaque appel réserve un segment du tableau géré par le système et structuré comme une pile. L’adresse
de retour est stockée sur ce segment. Chaque retour détruit le dernier segment alloué.

Bien sur, les langages traditionnels, disposant des procédures parametrées prévoient également l’allocation
d’un segment de données où on stocke les arguments et les données locales. Cette zone de mémoire est aussi
structurée comme une pile. Conceptuellement ce segment est indépendant du flot de contrôle, même si la pile
des retours et la pile des données souvent fonctionnent en synchronie. Nous verrons toutefois, qu’il est plus
facile de construire des machines virtuelles si on garde l’indépendance des deux objets.

2.2.1 Co-procédures et quasi-parallélisme

Notons que les branchements et les boucles ajoutées aux appels procéduraux n’épuisent pas toutes les structures
de contrôle disponibles dans quelques langages. Un mécanisme particulièrement intéressant pour la simulation
de systèmes dynamiques est laco-procédurequi permet la réalisation de collaborationsymétriqueentre deux
modules : comme dans un jeu avec deux partenaires qui jouent leur coups en alternance. Avec l’appel standard
si moduleA appelle moduleB, il empile l’adresse de retour et continue l’exécution après le retour. SiB appelle
de nouveauA, un nouveau empilement a lieu. Comment alors organiser un jeu binaire, où les deux modules
représentent les joueurs : chacun joue à son tour, change l’état global du système (l’échiquier par exemple, où
la trajectoire de la balle), et passe la main à l’adversaire. Comparez les deux dessins sur la Fig. (2.1).

Fig. 2.1: Procédures et co-procédures

La co-procéduralisation consiste à respecter les règles suivantes :

• Si le moduleA n’a jamais été appelé, son lancement (appel) se déroule (pratiquement) de manière stan-
dard, comme s’il était une procédure normale.

• Si maintenantA veut passer le contrôle àB, il exécute le branchement, mais avantstocke l’adresse de
retour dans sa proprezone de données, où dans une structure globale, spéciale, balisée et identifiable
comme appartenant àA.

• QuandB veut «retourner» àA, il fait la même chose – branche àA après avoir stocké l’adresse de retour.

• Le re-lancement du module partenaire (l’exécution de l’instructionresume) est un branchement indirect,
le code qui récupère le contrôle vérifie d’abord si une adresse de retour co-procédural n’a pas été stockée
au préalable, et si c’est le cas, un branchement secondaire a lieu.

14 Classification générale des langages : survol de la tour Babel

La technique de co-procéduralisation est très importante dans la simulation, et constitue une alternative aux flux
(pipes) permettant d’établir une collaboration symétrique entre les modules du compilateur. Les co-procédures
constituent aussi une variante de réalisation du parallélisme, et donc son implantation est importante pour la
compilation des langages parallèles (et pour comprendre le fonctionnement des systèmes d’exploitation).

Ce qui sera intéressant pour nous est le fait que les co-procédures et même le branchementgoto possèdent
des modèles fonctionnelles (même si ces modèles ne sont pas toujours pratiquement efficaces). En fait,les
langages fonctionnels sont suffisamment puissants pour pouvoir modéliser les constructions impératives. Mais
ceci est loin d’être facile !

2.2.2 Exemples

La majorité des langages sur le marché est impérative :C, C++, Java, Ada, Oberon (une évolution de
Modula), etc. Le modèle impératif se combine avec la programmation par objet de plusieurs façons différentes :
C++, Eiffel etSmalltalk sont tous des langages impératifs à objets, mais assez différents. (Smalltalk est même
trèsdifférent).

La popularité des langages impératifs est le résultat du fait que les assembleurs sont impératifs, et d’une
illusion (justifiée historiquement) qu’un langage impératif est toujours plus efficace qu’un langage fonctionnel
ou logique.

Ainsi, souvent les langages interprétés où l’efficacité brute du code est un facteur secondaire, comme les
langages de programmation scientifique :Matlab, IDL, etc., ou les langages de calcul formel :Maple, Axiom,
Magma, etc., sont des langages impératifs, dont la syntaxe ressemble à la famillePascal, même si plusieurs
parmi eux sont basés sur des machines virtuelles fonctionnelles, notamment sur l’interprèteLisp, ou pareil. La
psychologie conservatrice a gagné sur la logique. . .

Les langages interprétés conçus pour écrire des scripts (et partiellement remplacer les langages de comman-
des du système d’exploitation) commePerl sont aussi impératifs. L’auteur avoue ne pas comprendre pourquoi
Perl est devenu si populaire. Sa structure syntaxique est laide, et son déboguage pénible. Mais sa gestion des
chaînes de caractères et expressions régulières est très riche, et la coopération avec le système d’exploitation
(gestion des fichiers et des processus) est mise au point. En tout cas, d’autres langages (par exemplePython)
possèdent déjà presque toutes les fonctionnalités duPerl, et le langagePHP remplace actuellement les scripts
CGI classiques.

Un de nos langages préférés :Icon qui a un goût fonctionnel très prononcé, et est un de très rares langages
avec des structures de contrôle non-déterministes (ce qui l’approche aux langages logiques), a été bâti comme
langage impératif qui ressemble àC, car son auteur, Ralph Griswold, un excellent pédagogue, croyait que ceci
était mieux adapté à la psychologie humaine.

Une autre raison de cette popularité est la tradition académique, toujours présente ici ou là : on enseigne trop
souvent la compilation comme un processus qui doit obligatoirement après toutes les optimisations générer un
code linéaire impératif, style assembleur, exécuté par la machine «matérielle». Pas besoin de dire que dans
de tels établissements les chances de créer un nouveau langage de programmation et de son compilateur sont
plutôt minces. . .

Credoreligieux no. 2 : Ceux qui enseignent la compilation et passent 90% de leur temps à discuter la syntaxe
des langages de la famillePascal, et pour qui le seul code-cible est l’assembleur, iront tous en enfer. (Ou,
peut-être, ils sont déjà là, sans le savoir. . .)

2.3 Programmation fonctionnelle

La machine qui exécute un programme fonctionnel «focalise son attention» sur le concept d’expression: objet
qui engendre unevaleur. Nous avons donc les constantes littérales : nombres, chaînes de caractères (consid-
érées comme atomiques ou comme des listes de caractères), etc. Les fonctions seront elles aussi des valeurs,
desobjets fonctionnels. Il existe également des variables qui donnent desnomsaux valeurs, et leur usage im-
plique l’existence del’environnement permettant d’établir le rapport entre un nom et la valeur correspondante.
Cet environnement replace partiellement la notion d’état impératif.

Dans un langagepurement fonctionnel on n’a pas le droit de changer les valeurs des variables, une variable
est synonymique avec sa valeur, un peu comme en mathématiques. La récursivité terminale (itérative) est le

2.3 Programmation fonctionnelle 15

seul moyen d’implanter les boucles, et lors de la nouvelle instance de cette «boucle», unenouvellevariable
remplace l’ancienne1. On construit des fonctions dont les arguments (et les résultats) sont aussi des fonctions,
ce qui permet la construction de structures de contrôle très compactes et beaucoup plus riches (continuations,
monades, filtres) que celles dans des langages impératifs. Fonctions peuvent être composées, et – ce qui est
essentiel pour tout programmeur – dans un langage fonctionnel on peut formerfermetures(ang.closures) : ob-
jets fonctionels qui «attrappent» l’environnement dans lequel ils sont définis, pouvant ainsi stocker des données
arbitraires. On verra plusieurs exemples de ces constructions.

On utilise fréquemment l’allocation dynamique de mémoire, et ces langages sont gourmands en mé-
moire. Exemples : Haskell, ML (variantes SML ou CAML), Hope, Erlang, et parties «pures» duLisp
ou Scheme. Cependant ce fait n’a rien à voir avec le fait que le langage soit fonctionnel.Java utilise
l’allocation/déallocation dynamique de mémoire également.

Les nouveaux langages fonctionnels sontstatiquement typés, commeC, Java ouPascal, contrairement au
Lisp, mais la discipline formelle sur laquelle repose les définitions duHaskell etc., permetl’inférence automa-
tique de types! On n’a pas besoin de déclarations (sauf dans quelques cas ambigus, et pour la documentation).

Le fait que les objets fonctionnels soient des données comme les autres implique l’existence de fonctions
anonymes. EnScheme ces deux définitions sont équivalentes :

(define (f x y) (sqrt (+ (* x x) (* y y))))

(define f
(lambda (x y) (sqrt (+ (* x x) (* y y))))

)

On peut dire «la fonctionf », maisf n’est qu’une variable dont la valeur est une fonction. Ceci est très différent
de la situation enC où la procédure est attachée à son nom de manière irrévocable.

La nécessité d’opérer uniquement avec des données immuables et applications fonctionnelles n’empêche
pas l’usage des variables locales, par exemple la construction

(let ((x (sin (/ pi 4)))
(y (sqrt 2.0)))

(* x (exp (+ x y)))
)

peut être reformulée comme

((lambda (x y) (* x (exp (+ x y))))
(sin (/ pi 4))
(sqrt 2.0)

)

La constructionletrec (ou let en Haskell) est plus délicate, et sera discutée ultérieurement. Rappelons que
letrec permet de définir des objets récursifs, et ceci implique que la variable définieainsi que sa définition
appartient aumêmeenvironnement, ce qui empêche la translation enlambda comme ci-dessus.

En général, la suite de cette section recommandée au lecteur est l’annexe consacré auHaskell. Ici nous
mentionnerons encore quelques généralités, et passons aux autres choses.

2.3.1 Programmation paresseuse

Scheme, comme la totalité des langages impératifs appartient à la catégorie des langagesstricts, dont la
définition informelle est la suivante : si la fonctionf s’applique à ses arguments, p. ex.,f(x, y, z), l’ordre
d’évaluation est le suivant : d’abord on évaluex, y, et z, et ensuite on appliquef aux valeurs des arguments.
Ces valeurs peuvent être des nombres, des références (pointeurs, etc.) des objets composites, etc., mais elles
sont statiques. Si l’évaluation de, disons,y échoue à cause d’une erreur arithmétique ou autre, l’application de
f n’aura jamais lieu. Tout appel récursif force l’évaluation de l’argument qui contient l’appel de la fonction
récursive, donc on estobligé de stocker les valeurs intermédiaires et les adresses de retour sur une pile, sauf
dans le cas de récursivité terminale.

1même si cette variable dénote un tableau de 1000000 éléments. La recopie intégrale d’une telle structure de données quand on change
un seul élément serait extrêmement pénalisant. Il existe donc quelques astuces d’optimisation discutées plus tard

16 Classification générale des langages : survol de la tour Babel

Mais Haskell (commeClean, ou une version deHope) est un langageparesseux(ou non-strict), où
l’évaluation des arguments d’une fonction a lieu si, et seulement si, etquand la fonction a besoin de cet
argument, quand il est effectivement utilisé. Avant cela l’expression-argument est compilée, transformée en un
fragment de code appelé souvent lethunk, et ce code est passé à la fonction appelante. Quand la fonction a
besoin de l’argument, elle déclenche automatiquement l’exécution du thunk. D’habitude la valeur retournée
par le thunk, le remplace, donc toute évaluation ultérieure n’a plus besoin d exécuter l’expression différée.

Si un langage est réellement fonctionnel, c’est-à-dire s’il permet la création des objets fonctionnels quel-
conques, la paresse peut être aisément implémentée. Par exemple enScheme il existe unemacro-instruction
delay expr , qui transforme l’expresssion en thunk. La procédureforce force l’évaluation du thunk. Re-
gardez le programme suivant :

(define (integs n)
(cons n (delay (integs (+ n 1)))))

(define ints (integs 0))

(define (tail l) (force (cdr l)))
(define (take m l)

(if (= m 0) ()
(cons (car l) (take (- m 1) (tail l)))))

La fonction integs est récursivesans clause terminale– elle représente une liste infinie de nombres à partir
den. Mais aucun débordément n’a lieu, la formedelay «protège»(integs (+ n 1)) de déclencher une
fuite en avant, qui doit forcément se terminer par le débordement de la pile. On construit ici unobjet différé, un
thunk qui rend sa valeur quand il est forcé. À ce moment-là ce thunk génère un nouveau chaînon dans la liste,
et il cache derrière sa nouvelle instance, avec l’argumentn + 2.

La réalisation dudelay enScheme est relativement simple : on transforme une forme quelconqueexpr
en (lambda () expr) . Le thunk n’est rien d’autre qu’une fonction anonyme sans paramètres, dont
l’évaluation produit le résultat souhaité. La véritécomplèteest, bien sûr, plus élaborée, le thunk est une struc-
ture auto-modifiable : la forme lambda après l’évaluation «écrase soi-même», et remplace son corps par le
résultat.

Il doit être évident, que la présence de fonctions différées, qui peuvent être lancées dans un contexte quel-
conque, à n’importe quel moment, demande que les fonctions soit relativement pures, sans effets de bord, sinon
le déboguage peur être impossible. Pour cette raison la programmation paresseuse est restreinte au monde de
la programmation fonctionnelle.

En Haskell touteexpression est différée, on n’a pas besoin de la formedelay, ni du forcing. Dans quelles
circonstances ce protocole peut êtreutilisédans la compilation?

1. D’abord, les fonctions paresseuses peuvent représenter lesstructures de contrôle. Une forme genre
(if condition alors_instr sinon_instr) vérifie la condition toujours quandif est exé-
cuté, mais ensuite on évalue une et une seule de deux expressions qui suivent. Leur représentation par
thunks est assez naturelle.

2. Les listes ou autres structures paresseuses dans des programmes fonctionnelsremplacent les boucles,
ou autres processus itératifs: au lieu de faire quelque chose dans une boucle, on génère des instances
nouvelles de manière paresseuse. Ceci est souvent plus facile à déboguer qu’un programme dynamique.

2.3.2 Continuations

Le concept de continuations est très important, et constitue un pont entre la programmation fonctionnelle et
impérative. La continuation est le «futur» d’un calcul, c’est la réponse à la question «qu’est-ce qu’on fait à
présent», après avoir évalué une expression. Les continuations peuvent modéliser les branchements, et aident
à gérer le non-déterminisme.

Nous verrons des réalisations concrètes de continuations enHaskell, mentionnons ici deux contextes dans
lesquels on voit les continuations dans la pratique de la programmation.

2.4 Programmation logique 17

1. Le style CPS (Continuation Passing Style). Si dans un style applicatif classique l’expressionf(x) signi-
fie : appliquer la fonctionf à la valeur dex, l’expression CPS équivalente aura la formef(x, c), oùc est
une autre fonction,la continuation def , qui récupère la valeur du résultat, et en fait quelque chose. Une
continuation peut à la fin appeler une autre, ensuite une autre, etc., jusqu’à la fin du programme, quand
on récupère la réponse finale.

L’enchaînement des continuations dans un programme fonctionnel remplace l’enchaînement (sérialisa-
tion, séquentialisation) des instructions dans un programme impératif ! Les continuations réellement
constituent le modèle fonctionnel du branchementgoto.

Une fonction peut constituer une partie de sa propre continuation, et ceci correspond aux appels récursifs.
En général, si le style CPS est poussé à l’extrême,touterécursion devient terminale ! Ceci ne signifie pas
que l’on peutoptimisertout appel récursif, en évitant l’usage de la pile, la pile (ou autre structure équiva-
lente, comme une liste stockée sur le tas) servira toujours pour la sauvegarde des structures intermédiaires
en cas de besoin, mais son usage devient plus explicite.

Les continuations et le CPS sont des outils de construction de compilateurs assez populaires. Andrew
Appel a écrit un livre entier consacré à la construction des compilateurs à l’aide des continuations.

2. Continuations «de 1-ère classe», oucall-with-current-continuation (ou call/cc) enScheme. Ce con-
cept est une structure de contrôle très puissante, presque la plus puissante qui existe dans le monde de
programmation. Elle est malheureusement très rarement enseignéici. Le call/cc peut «attraper» la con-
tinuationcourante, le futur du calcul qui se déroule au moment de son appel, et de l’«emballer» dans un
objet fonctionnel, une donnée qui peut être réactivée plus tard.

Ainsi, on peut stocker la continuation couranteavantde déclencher un calcul très long et profond, et
quand à l’intérieur de ce calcul on découvre qu’il n’a plus de sens, on relance cette continuation, ce qui
fait abandonner tout et monter jusqu’à la surface du programme, à l’endroit qui a appelécall/cc.

On peut aussi appelercall/ccà l’intérieur d’un calcul, exporter le résultat (la continuation) et faire d’autre
chose. Plus tard on réactive ce calcul en relançant la continuation sauvegardée.

Ce mécanisme est une version de haut niveau, structurée, et sémantiquement propre d’un mécanisme
d’échappement enC connu sous le nom desetjmp / longjmp.

Les exercices qui suivent ce chapitre demandent la réalisation de quelques problèmes enHaskell, le lecteur
doit donc – si tels sont ses besoins – lire l’annexe.

2.4 Programmation logique

Les langages logiques, commeProlog ou Mercury se rapprochent un peu des langages fonctionnels, mais ici
le concept fondamental est unerelation entre deux objets, p. ex. entre un symbole et une valeur numérique ou
structurale : ceci peut être considéré comme une affectation, mais logiquement c’est une équivalence.

Ces langages sont souvent non-déterministes, et offrent la possibilité de lancer la recherche d’une solution
alternative d’un problème stratégique. On a pensé (la 5-ème Génération au Japon) que ces langages deviendront
très populaires, car leur force d’expression est très grande. Malheureusement ce rêve a échoué, partiellement
à cause de l’inefficacité des implantations. La situation évolue toutefois, et quelques implantations deProlog,
ouMercury, qui sont des variantes des langages logiquestypésgagnent du terrain. C’est la catégorie propice à
la construction et gestion des bases de données, ou à la programmation par contraintes.

De plus en plus souvent on parle des langages hybrides (surtout logico/fonctionnels) avec la couche logique
très importante :Life, Oz, Leda ou Opal. Le Prolog reste néanmoins le langage logique numéro 1. (En plus,
il existe en plusieurs dialectes.)

Voici les traits caractéristiques de cette catégorie. Nous n’allons pas parler de structures syntaxiques, seule-
ment souligner ce qui peut être intéressant de point de vue de la compilation.

• Le langage est statique, comme les langages fonctionnels. On n’a pas le droit de modifier une variable,
elle se confond sémantiquement avec sa valeur. Toutefois enProlog il existe le concept devariable
logiquenon-instanciée : une variable qui n’a pas de valeur, mais qui occupe de la place, et qui peut être
équivalencée à une autre variable.

18 Classification générale des langages : survol de la tour Babel

• Les boucles classiques sont réalisées par des appels récursifs terminaux, mais il existe une autre caté-
gorie de bouclesnon-déterministesqui utilise lebacktracking: On récupère une solution, on la rejette
(après l’avoir – éventuellement – sauvegardé de manière persistante), et on demande au système une ou
plusieurs solutions alternatives (dont le nombre peut être infini).

• Le mécanisme décisionnel fondamental est l’unification (=) des termes simples et composites qui au-
tomatise la construction et l’analyse (décomposition) des données, par exemple l’unification combinée
Z=..[F,X,a] , Z=g(p(A,Y),Y) instancie automatiquement les variables suivantes :

F=g
Y=a
X=p(A,a).

ce qui rend la programmation enProlog très compacte. L’unification est une sorte d’équivalence.
p(A)=p(B) ssiA=B. L’unification f(x)=g(A) échoue. La notion d’échec enProlog est fondamental
pour la construction de structures de contrôle. Quand l’échec se produit, le programme «retourne sur ses
pas» au point, où il avait une décision non-déterministe à prendre. Il marque les chemins parcourus, et en
choisit un autre. Cette technique est connue au moins depuis les temps de Thésée, Minotaure, et Ariane.

• La dépendance fonctionnelle entre données (y = f(x)) s’est généralisée enrelation plus universelle,
et la représentation linguistique d’une relation est unprédicat qui a la forme d’un terme, par exem-
ple r(x, y, [2, x]). Un prédicat qui réalise une relation peut représenter une fonction, par exemple
plus(A,B,C) qui modélise l’énoncé :C=A+B, ou peut dénoter une contrainte ou un attribut (pro-
priété) : negative(X) , etc. Dans unProlog interprété les prédicats sont souvent représentés par des
termes (spécialement optimisés).

En fait, on a besoin de techniques un peu spéciales pour compiler le non-déterminisme et l’unification complète
de manièreefficace. Trop souvent les cours universitaires classiques de compilation ignorent ce domaine. Nous
n’avons pas le temps de le traiter non plus, il faut cependant remarquer qu’un progrès formidable a été fait –
grâce auxcontinuationset à la construction d’une machine virtuelle très simple, mais puissante : WAM – la
machine abstraite de Warren, les implantations deProlog jadis rares, sont devenues des exercices standard pour
les étudiants. En particulier, la construction d’une machine non-déterministe à l’aide d’un langage fonctionnel
paresseux, est un vrai plaisir intellectuel, et il existe au moins trois implantations deProlog réalisés enHaskell.

2.4.1 Exemples des programme en Prolog

Le seul but de cette section est de permettre voir comment réaliser quelques structures sémantiques nondéter-
ministes. Plus tard nous allons les coder enhaskell. Construisons un programme enProlog qui génèretoutes
les permutations des éléments d’une liste, par exemple[a,b,c] donne les3! = 6 permutationsabc, acb, bac,
bca, cab et cba. L’algorithme seraprésenté de manière non-déterministeet cet exercice doit obligatoirement
être bien assimilé par le lecteur. La compréhension du non-déterminisme est fondamentale pour la construction
des analyseurs syntaxiques, car leparsingtrès souvent est non-déterministe.

Le raisonnement non-déterministe (logique) signifie simplement qu’on pose des questions, qui admettent
plusieurs réponses. Le programme doit (éventuellement) trouver toutes. Laprogrammation(ou lestyle) non-
déterministe est basée sur le principe suivant : on analyseunesolution,quelconque, arbitraire, inconnue, et à
partir de cette solution (partielle) on génère une, ou plusieurs autres. Une vision un peu Science-fiction peut
être utile : imaginez que l’ordinateur posé devant un problème non-déterministe qui possède deux solutions,
déclenche le clonage du monde entier en deux exemplaires. Dans l’un de deux la machine fournit la réponse
numéro 1, dans l’autre – la numéro deux. Si ces réponses provoquent autres clonages, on obtient une ar-
borescence de taille arbitraire. Le processus est supervisé par un «démiurge» extérieur, capable de récupérer
toutesles solutions et de les projeter dans le «monde réel». Répétons : le non-déterminisme ici est unstyle de
programmation. La réalisation effective de ce «clonage» utilise lebacktracking.

Construisons d’abord un prédicatd’insertion non-déterministe(rien à voir avec l’insertion discriminée,
utilisée dans le tri par insertion). Cette insertion met un nouveau élément dans une listen’importe où, par
exemple à la tête, ou à l’intérieur. Appelons le prédicat correspondantins(X,Lst,Res) .

nondetins(X,Lst,[X|Lst]).
nondetins(X,[Y|Q],[Y|R]) :-nondetins(X,Q,R).

2.4 Programmation logique 19

La forme [A|B] est le même que(A:B) en Haskell. La première ligne (la première clause) du prédicat
ins signifie que le résultatpeutêtre obtenu par la mise deX à la tête de la liste. Si on rejette cette solution,
c’est-à-dire si on en cherche une autre, l’argumentX doit se trouver à l’intérieur de la nouvelle liste; alors la
tête originale doit rester sur place. On la sépare, l’appel récursif insèreX quelque part dans la queue (on obtient
unesolution quelconque), et il suffit de réinsérer la têteY.

Le prédicat qui génère les permutations est encore plus simple. La permutation de la liste vide est toujours
vide. Sinon, séparons la tête, trouvonsune permutation quelconquede la queue, et réinsérons la tête, mais
n’importe oùdans le résultat. Voici le code :

permut([],[]).
permut([X|Q],R) :- permut(Q,R1),nondetins(X,R1,R).

Dans la pratique la machine non-déterministe opère de façon suivante : un résultat est généré, et éventuellement
affiché, ce qui constitue une sauvegarde permanente – une valeur affichée ne peut ples être «oubliée». Ensuite
la machine «oublie» tout son état interne, effectue lebacktracking, efface les piles, remonte le graphe (arbre)
décisionnel, et suit une autre branche.

L’analyse syntaxique possède le côté non-déterministe, et nous aurons besoin de coder de telles opérations.
Mais nous ne voulons pas de «magie» trop évidente, il serait utile de pouvoir réaliser le non-déterminisme de
manière classique. Bien sûr, on peut mettre toutes les solutions dans une liste.

2.4.2 Programmation par contraintes

Ce sous-domaine a évolué partiellement à partir des langages logiques, et s’est partiellement inspiré par des
applications numériques. Il s’agit de rendre symétrique une relation, par exempleplus(A,B,C) . On peut
imaginer que si la sémantique d’une telle clause représente l’assignationC=A+B, mais si les variablesA et C
sont connues, etB – inconnue, la machine «comprendra» qu’il s’agit de l’instructionB=C-A.

Les langages à contraintes (CLP, Bertrand, Eclipse) et plusieurs autres sont capables de résoudreautoma-
tiquementles équations numériques ou logiques (dans des domaines finis). L’importance de cette catégorie
ne cesse pas d’augmenter. Les sous-systèmes de programmation par contraintes commeGarnet (ou ses suc-
cesseurs) sont devenus incontournables dans la construction des interfaces utilisateur. (Et servent – par exemple
– à placer automatiquement ou presque, les composantes : boutons, menus, zones texte etc. dans la fenêtre ap-
plication, en respectant des contraintes géométriques). Les modéliseurs 3D exploitent aussi très intensément
ce style. (MaisGarnet n’est pas un langage : c’est une puissante librairie d’interfaçage enCommon Lisp. Il
est actuellement obsolète, mais son successeur :Amulet existe, et il est utilisée dans le mondeC++).

La vraie compilation (avec optimisation et linéarisation) de ces langages est en générale si difficile, que la
plupart du travail est effectué lors de l’exécution du programme. L’interprète des contraintes doit être assez
intelligent et disposer de plusieurs «solveurs» des équations, des paquetages numériques, des modules de par-
cours des graphes, etc. Cette catégorie de langages comme peu d’autres démontre que la zone de démarcation
entre les compilateurs et les interprètes est vraiment floue. . .

Notre langage favori qui appartient à ce domaine, et qui a été exploité pour programmer quelques graphes
inclus dans ces notes estMetaPost. Ce langage, construit par John Hobby, est une distillation du langage
Metafont de Donald Knuth.Metafont a été conçu pour générer des familles entières de polices de caractères.
Le créateur précisait quelques attributs géométriques de la police, parfois sous forme d’équations : «ces deux
lignes doivent être parallèles», etc., et le paquetage construisait le jeu de caractères complet. Malheureusement,
Metafont est resté inconnu, car combien de créateurs de polices y a-t-il dans le monde?

Cependant lelangageest vraiment universel et facile.MetaPost est un macro-processeur permettant à
l’utilisateur l’usage des structures lexico-syntaxiques comme3x ce qui signifie3*x dans des langages plus
classiques, et où la bouclefor i=1 upto 9 n’est pas une construction primitive, mais une macro où on a
défini

def upto = step 1 until enddef;

Un tel massacre syntaxique n’est pas possible dans les langages structurés classiques.

La compilation des contraintes, leur transformation encode exécutablenécessite une analyse profonde des
relations syntaxiques. La formeA+B+C=D*En’est plus une arborescence qui permet au générateur du code
de «ramasser» les sous-expressions et de construire le résultat final, car on ne sait pasa priori quelles sont
les sous-expressions connues. Cette classe de langages est un terrain formidable pour l’analyse sémantique
profonde et pour les exercices en parcours des graphes.

20 Classification générale des langages : survol de la tour Babel

2.5 Programmation par objets

La programmation OO, les objets, les messages et méthodes – tout ceci est devenu malheureusement un super-
domaine rempli de slogans et défini de façon incongrue. Le lecteur connaîtC++ et nous n’avons pas besoin
de définir les concepts de base. Il faut rappeler que la technique est née avec le langageSimula, et a été
développée de manière exhaustive dans le cadre du langageSmalltalk. (Simula 67 était d’ailleurs le premier
langage populaire avec des co-procédures, très commodes pour l’implantation de la simulation de systèmes
dynamiques.)

L’idée de bas niveau est simple : si nous avons la possibilité de construire lesrecords, les données com-
posites, nous pouvons prévoir qu’un ou plusieurs champs de nos données soient desfonctionsqui «savent»
comment traiter ces données (les autres champs) de manière spécifique, appropriée. La donnée s’appelle désor-
maisobjet. L’appel de la fonction qui est attachée à notre objet-donnée s’exprime commel’envoi du message
à l’objet. Ce message déclenche l’exécution d’uneméthode. On voit qu’un bon langage fonctionnel permet
aisément la construction de systèmes à objets. En effet, le nombre de paquetages OO enLisp dépasse une
centaine, leur construction est devenu un exercice pédagogique classique.

La vraie puissance des langages OO est la généricité – la possibilité de grouper des objets dans desclassesqui
partagent les mêmes fonctionnalités, et l’héritage : un mécanisme permettant de construire des sous-classes,
de spécifier des objets un peu différents des autres, avec des méthodes particulières, mais qui peuvent automa-
tiquement «hériter» le comportement de leurs «ancêtres» – d’autres objets, définis au préalable.

Les méthodes d’implantation de l’héritage sont nombreuses. Supposons que les objetsx et y appartient
aux classesX et Y , et ces deux classes définissent la méthodef . (Une de ces classes peut être la sous-classe
de l’autre). L’appel «interne» (défini dans la classe du «récepteur»)f(. . .) d’une méthode peut être réalisé de
manière suivante :

• Le compilateur génère le codef(self , . . .), oùselfest le récepteurx ouy du «message»f .

• S’il n’y a pas d’ambiguïté, le compilateur, sachant quelle est la classe du récepteur, connaît la procédure
attachée au nomf . L’appel est compilé normalement.

• Si le recepteur peut appartenir àX ou àY , et on ne peut résoudre ce dilemme statiquement, l’appel ne
peut être compilé directement. La méthodef devient «virtuelle». Ceci implique les surcharges spatiales
et temporelles suivantes :

– Chaque objet (structure de données) appartenant à une classe qui dispose de méthodes virtuelles
possède un champ de plus – la référence vers undictionnaire de méthodes virtuelles, un tableau
associatif stocké dans la classe de l’objet. (En fait, la classe en tant qu’objet «physique»est le
dictionnaire des méthodes virtuelles).

– La compilation de l’appel développé :f(self , . . .) contient un code indirect : on récupère le dictio-
nnaire accessible parself, on décode l’objet procédural attaché àf , et on l’appelle.

La compilation des langages OO peut être donc assez facile, si toute décision est laissé à la machine virtuelle,
mais elle peut contenir des optimisations extrêmement importantes, et partiellement à cause de cela les compi-
lateurs deC++ sont très grands. . .

2.5.1 Quelques exemples

Les langages à objets sont si nombreux, qu’une litanie de noms ne servira à rien. Le langage dominant pour
les grands programmes estC++ qui doit sa popularité principalement au fait que son ancêtre : le langageC
est si populaire. C’est un langage riche et difficile à maîtriser. Pour construire un compilateur deC++ réaliste
il faut une équipe de personnes très compétentes (cependant ledesignoriginal est l’œuvre d’une personne :
Bjarne Stroustrup. Ce même Stroustrup avoue publiquement qu’il est loin de maîtriser toutes les intrications
du langage. . .).

Actuellement une bonne partie du «marché»C++ diverge dans la direction deJava, qui est (d’habitude)
interprété, alors plus lent, et un peu plus pauvre au niveau de syntaxe (pas de surcharge des opérateurs, pas
d’héritage multiple, etc.), mais qui est bien adapté à la construction des programmes sécurisés. Il faut noter que
Microsoft s’est engagé récemment dans la construction d’une «plate-forme virtuelle».net , la définition d’un
noyau intermédiaire entre le hardware et des langages évolués, qui pourra faciliter la compilation de tous les

2.6 Programmation pilotée par les événements 21

langages imaginables. Mais les spécialistes affirment, que ce noyau semble être vraiment bien adapté àJava,
beaucoup moins aux langages fonctionnels (par exemple).

Comme il a été dit, les langages fonctionnels constituent une bonne plate-forme pour implanter les langages
à objets. Parmi eux, la position privilégié par le nombre d’utilisateurs est occupée parCLOS (Common Lisp
Object System). La syntaxe reste presque la même qu’enLisp, ce qui n’est pas très clair, maisCLOS a ses
inconditionnels.Lisp, Scheme, et autres langages de cette famille ont donné naissance à des langages à objets
innombrables.

Les langages fonctionnels modernes reconstruisent ses systèmes de typage hiérarchique (qui réalise le poly-
morphisme restreint et l’héritage) de manière différente. Les langages commeObjective CAML, Haskell ou
Clean méritent aussi d’appartenir un peu à la famille OO.

Depuis quelques années un autre langage à objets :Python fait une belle carrière. Le langage est simple
et joli, et très transparent. On peut l’apprendre en quelques jours, et écrire des applications graphiques très
performantes. Il remplace de plus en plus souvent le langagePerl. Python, grâce à sa transparence est utilisé
dans quelques établissements comme le langage-modèle sur lequel les étudiants apprennentl’implantationdes
langages à objets.

Il faut mentionner ici le langageEiffel, qui a ses partisans déclarés. Ce langage a été conçu par Bertrand
Meyer, un Français (comme le nom du langage le suggère). MaisEiffel est développé surtout aux États Unis.

Un autre langage pragmatique, sans trop d’ambitions théoriques est apparu récemment :Ruby, développé
surtout au Japon. Encore plus facile que Python, mais – selon l’auteur de ces notes – moins intéressant. C’est
un langage de genre «quick-and-dirty», programmation facile et rapide pour les gens qui ne veulent apprendre
rien qui dépasse leurs objectifs immédiats.

Notons que l’ancêtre des langages OO –Smalltalk vit actuellement une visible renaissance. Il existe au moins
3 implantations commerciales sérieuses (comme Visual Works, disponible aussi gratuitement), et deux implan-
tations sérieuses gratuites : GNU Smalltalk, qui permet de faire beaucoup d’expériences de programmation, et
Squeak – une vraie merveille, avec une couche graphique étonnante, multi-plate-forme, et qui possède déjà
plusieurs milliers de supporters. L’intérêt pour la compilation de ce langage (et ses implantations) est qu’une
bonne partie de la machine virtuelle sous-jacente et du compilateur ont été écrites enSmalltalk, ce qui permet
leur analyse et expérimentation.

Par contre, lepremierlangage qui mérite être appelé un langage à objets :Simula 67 a été complètement
oublié. Ceci est dommage, carSimula était également le premier langage relativement populaire, qui permettait
la programmation dans lestyle co-procédural, très intéressant et important pour la simulation des systèmes
quasi-parallèles. Actuellement aucun langage populaire ne gère des co-procédures de manière si instructive et
transparente.

2.6 Programmation pilotée par les événements

Ce modèle est vraiment différent de la «programmation classique», et jusqu’aujourd’hui il estrarementen-
seigné. Même si dans le cadre de la programmation OO on parle d’envoi de messages d’un objet à l’autre, il
s’agit toujours d’un appel de type procédural, synchrone, avec l’empilement de l’adresse du module envoyant.
Si l’objet X envoie le message à l’objet Y, cela veut dire qu’une fonction (méthode) dans la classe de l’objet Y
est appelée par une fonction appartenant au contexte X, et c’est tout.

Par contre, la programmation par événements constitue réellement l’envoi des messages au sens intuitif,
proche du modèle co-procédural. Quand vous envoyez un message, vous continuez votre travail là où vous
l’avez suspendu. Au lieu de déclencher explicitement une activité de la part du module appelé, l’appelant place
dans unefile globale d’événementsle message (descripteur d’une activité future) destiné à un ou plusieurs
récepteurs, et poursuit l’exécution de son code.

La machine virtuelle d’un tel système dispose d’un «dispatcher» global qui lit la file des événements,
décode ses éléments et appelle les procédures concernées. Tout ceci se déroule endehors de contrôlede la part
du programme utilisateur. Les événements peuvent être «artificiels», des messages de nature quelconque que
remplacent les appels procéduraux, mais également «naturels», émis, par exemple, par la procédure système
qui contrôle la souris et le clavier.

La programmation événementielle est devenu incontournable pour la création des interfaces graphiques et pour
la simulation. Dans d’autres contextes, par exemple dans l’intelligence artificielle, on exploite des principes

22 Classification générale des langages : survol de la tour Babel

analogues : la technique du «tableau-noir» (blackboard), où les modules-experts envoient indépendamment
leurs propositions de solution d’un problème global vers une zone de ressources partagées.

Les langages spécifiquement orientés-événement sont rares. On peut mentionner ici leLingo, le langage
descriptingdu paquetage multi-médiatiqueDirector (aucun progrès récent. . .).

Cependant un nouvel élan a été donné à la programmation événementielle par les techniques de program-
mation graphique. Un de meilleurs systèmes de programmation scientifique –Matlab est équipé à présent avec
un sous-système qui s’appelleStateflow, et qui permet d’organiser graphiquement, dans un style très intuitif
et élégant la totalité de transitions entre les éléments d’un système complexe.Stateflow est une évolution du
Simulink, un langage graphique typedataflow, appartenant à la famille mentionnée ci-dessous.

2.7 Dataflow et langages graphiques/visuels

La programmation classique impérative est basée sur le paradigme decontrôle, le programme détermine la
suite des événements et distribue les tâches aux modules subordonnés. La vision fonctionnelle ou logique n’est
pastrès différente de celle-là, bien que ciblée plus sur les relations entre données. Même la programmation
par objets, qui semble se concentrer sur les données est orientée réellement vers l’exécution des procédures-
méthodes ; seulement ces méthodes sont attachées aux données. Mais, justement, la vision orienté données
semble être mieux adaptée à l’organisation de plusieurs logiciels qui soit modélisent le monde «réel», soit
enchaînent des opérations complexes sur des structures complexes, par exemple effectuent la segmentation
d’images.

La programmationdataflow est une autre approche. Chaque module (fonction, procédure, prédicat –
choisissez le terme le plus convenable, dépendant du modèle d’implantation), peut être visualisé comme un
«boîtier» avec un certain nombre d’entrées et de sorties.

Les entrées correspondent aux arguments d’entrée, et les sorties – aux arguments calculés par la procédure,
ou à la valeur (éventuellement multiple) retournée par la fonction. Les boîtiers sont liés par des lignes comme
dans un circuit électronique, et ainsi un système plus complexe est construit à partir de boîtiers plus primitifs.
Tout paquetage de ce genre prévoit un nombre important de boîtiers primitifs : le module d’affichage du résultat
(textuel ou graphique), le multiplexeur qui transforme plusieurs lignes élémentaires en une vectorielle (ou vice-
versa), et les «prises» d’entrée et de sortie qui permettent la construction d’une librairie de boîtiers. Prenons un
exemple, un bloc de simulation montré sur la Fig. (2.2). Les diagrammes peuvent être rédigés et parametrés.

Fig. 2.2: Un diagramme Simulink

L’exécution d’un programme est pilotée par les données. Quand un bloc termine son travail, les données sont
«pipelinées», injectées dans un autre bloc, qui à ce moment-là commence son exécution.

2.8 Autres schémas de classification et paradigmes de programmation 23

Le compilateurd’un langagedataflowest très particulier. Il s’agit de générer le code dont l’exécution
est déclenchée par la présence des données, et ce code est naturellement quasi-parallèle, alors adapté aux
architectures multi-processeurs, ce qui demande un système de simulation sur les architectures classiques. La
tâche principale de la machinedataflowest d’établir la synchronisation entre les boîtiers, donc le code généré
par le compilateur est assez particulier.

Le succès grandissant de cette famille de langages (jadis considérée comme une invention académique de
quelques informaticiens imaginatifs, mais pas très pratiques), montre d’une part que la programmationvisuelle,
basée sur les techniques d’interfaçage modernes est très importante.

D’autre part – et ceci est très intéressant pour nous – la composition visuelle des modules logiciels com-
plexes peut nous inspirer à modéliser ainsi un compilateur !

Simulink est un produit commercial, disponible (avecMatlab) sur presque toutes les plates-formes populaires.
L’institut INRIA a produit un paquetage gratuit qui ressemble beaucoup àMatlab – SciLab. Ce système

possède également un langagedataflow– SciCos, un peu moins complet queSimulink, mais aussi très riche.
Il existent au moins trois grands paquetages de traitement de signaux et images basés surdataflowqui sont

facilement accessibles :SciCos, Khoros qui est commercialisé, mais dont la version pédagogique est gratuite
(pour les étudiants, à titre individuel), etIBM Data Explorer distribué selon les règles duOpen Source.

Ce catalogue aurait pu être beaucoup plus long et détaillé. Son but est de convaincre le lecteur d’une simple
chose : la compilation n’est pas et ne sera jamais un domaine fini. Puisque les nouveaux langages, styles, proto-
coles, sémantiques et techniques de gestion de mémoire apparaissent tous les ans, les techniques de compilation
doivent suivre ce développement.

2.8 Autres schémas de classification et paradigmes de programmation

Une autre classification est basée sur la vieille et mal comprise dichotomie : langage compilé – langage in-
terprété.C++ est compilé,Perl ou Python sont interprétés.Lisp a été longtemps interprété, maintenant on
trouve des compilateurs (pourJava etPerl aussi). Cette classification en principe est étrangère à notre philoso-
phie. Dans les livres on trouve souvent un slogan douteux : «Un interprète exécute directement un programme
instruction par instructionsans le traduire en code-machine, tandis qu’un compilateur effectue d’abord cette
translation».

Tout langage est compiléet interprété. Compilé, car il faut traduire le texte-source d’un programme en code
interne. Il faut reconnaître les lexèmes et les transformer en atomes, il faut bâtir les arborescences syntaxiques,
appliquer les règles sémantiques spécifiques à chaque opérateur, optimiser le code, etc. On peut préciser que si
la compilation va jusqu’au bout et produit un code exécuté directement par le processeurmatériel, le langage
est compilé, et s’il s’agit du code intermédiaire : «bytecodes», liste des pointeurs ou autres structures de
données, alors le langage est interprété par une machine virtuelle de plus haut niveau. Mais il n’y a pas de ligne
de démarcation distincte entre les deux mondes. Un programmeJava peut intégrerbytecodeset procédures
écrites enC. Dans un programme «interprété» l’instruction : lebytecodeou un pointeur après son décodage
lance l’exécution d’une suite d’instructions en code machine. Dans un langage «compilé», mais orienté-objet,
l’exécution d’une méthode virtuelle fait exactement la même chose. Parfois même enC ou Fortran il est
avantageux pour le déboguage d’organiser l’architecture globale du programme comme une liste ou un tableau
d’adresses de procédures primitives. Quelques librairies graphiques, par exemple OpenGL, codées enC et
compilées, constituent les automates (state machines), qui sont des véritables interprètes.

En plus, l’exécution d’une instruction du code assembleur n’est rien d’autre que l’exécution d’un micro-
programme cablé dans le silicium. Une micro-instruction se traduit par un «programme» style dataflow, mais
où les données qui circulent sont des électrons, et les sommets du graphe représentant l’automate – des transis-
tors. Toute machine virtuelle a un certain nombre d’instructions primitives qui sont exécutées «par magie», et
cette magie est un programme de la machine en dessous, de plus bas niveau. Finalement on arrive au niveau des
transitions quantiques, et cette magie n’a aujourd’hui aucune explication.Le mot «magie» sera donc utilisé as-
sez souvent lors de ce cours, et il possède une signification technique et rationnelle : instructions etc. magiques
appartiennent à la couche plus basse que celle qui est actuellement discutée.

24 Classification générale des langages : survol de la tour Babel

Donc la dichotomie compilé-interprété est une question de niveau de réalisation de la machine virtuelle.
Bref,

Credo religieux no. 3 : on ne peut pas apprendre à construire les compilateurs, si on ne maîtrise pas la
sémantique de la machineconceptuelle– ou le modèle qui exécute le programme.

La compilation contient une partie passive, analytique ; le compilateur doitcomprendrele texte-source,
attribuer une signification à tous les éléments du programme. Donc, la personne qui définit un langage, et qui
construit l’analyseur, doit savoir ce qu’elle fait, et ceci constitue l’essence ducredono. 1. Le résultat de cette
compréhension par le compilateur est la synthèse du code-cible par le module actif – le générateur du code, et
cette synthèse estl’explicationde ce qui a été compris. Mais on ne peut expliquer le programme à une machine
ou à un humain, que si on connaîtson langage.

Si on enseigne la génération du code assembleur sans préciser les détails de la sémantique, de la signifi-
cation des instructions en assembleur, on n’enseigne qu’un rituel religieux. Si, comme nous le voulons – on
se concentre plutôt sur le code-cible interprété par des machines virtuelles de niveau intermédiaire, assurant
la portabilité et l’efficacité, commeJava ou PostScript, il faut alors obligatoirement savoir comment ces ma-
chines marchent, et la meilleure façon de l’apprendre est d’en construire quelques unes. Voici le sens ducredo
no. 3.

D’autres critères de classification des langages existent également. Parfois on distingue les langages universels
et les langages dédiés, spécifiques à un domaine, comme les langages de requêtes de bases de données, ou
quelques langages de calcul formel, riches en mathématiques et pauvres en organisations des données uni-
verselles et structures de contrôle. Mais une telle classification est toujours incomplète. Tout langage réputé
universel sera trop pauvre pour quelqu’un, par contre, il y aura toujours des optimistes incurables, qui pensent
qu’un langage de calcul formel commeMaple soit bon pour les lycéens (voir l’exercice). . .

Finalement, récemment une prolifération très importante deslangages de spécificationa eu lieu. La com-
plexité syntaxique duVRML ou SGML et ses variantes (par exempleMathML – langage de spécification des
structures mathématiques), est sérieuse, mais ce ne sont pas des véritables langages de programmation, car le
«code» est statique : la notion d’étaty est absente, et aucunflux de donnéesn’est généré. Le compilateur se
réduit à un parseur, et à la construction d’une structure de données de haut niveau.

Les concepts vraiment universels dans ce domaine sont peu nombreux. Chacun doit comprendre intuitive-
ment ce qui est une constante numérique, un caractère, ou une fonction. Mais le concept d’adressen’est pas si
universel, car appartient à la description de bas niveau, comme le pointeur. L’instructionest aussi un concept
du monde impératif, absent dans les langages fonctionnels.

2.8.1 Types

Mais le concept detype même si pas tellement universel (le code assembleur peut voir toutes les données
comme séquences de bits) est si universel, que nous allons consacrer beaucoup d’attention autypage. Ceci
constitue une des bases de la sémantique des langages de programmation en général et facilite la compréhension
de la compilation des langages orientés-objet. On divise donc les langages en typés dynamiquement :Scheme,
Icon, Prolog, Perl, et typés staiquement (chaque variable se voit attribuer un type lors de la compilation) :C ,
Java, Haskell, etc. Les langages typés statiquement sont d’habitude plus efficaces (rapides), car on peut éviter
beaucoup de tests durant l’exécution du programme.

On parle souvent dupolymorphisme– la possibilité d’appliquer une fonction donnée à des arguments
hétérogènes, mais il ne faut pas confondre les deux catégories suivantes :

• La surcharge des opérateurs, la possibilité de pouvoir écrirex+y pour x etc. entiers ou réels, chaînes
alphanumériques, ou nombres complexes. Ici «+» est le nom commun à des opérationsdifférentesqui
peuvent ne rien avoir en commun.

• Le vrai polymorphisme sémantique, par exemple l’extraction du second élément d’une liste :

(define (second l) (car (cdr l)))

enScheme, et

second (_ : x : _) = x

2.9 Notre langage de travail 25

enHaskell. La valeur retournée peut être de type absolument quelconque, car la fonction ne l’utilise pas,
elle la transmet à son consommateur.

La surcharge (overloading) est un exercice relativement facile, c’est une question de renommage. L’implantation
du vrai polymorphisme est plus délicate, car une fonction polymorphe doit se compiler et s’exécuter correcte-
ment sans savoir quel est le type de données, ou sa représentation dans la mémoire. Il faut souligner : la fonction
ne vérifie pas le type dynamiquement, comme les fonctions arithmétiques enLisp, mais l’ignore jusqu’à la fin.
La représentation des données peut et doit cacher les détails.

2.9 Notre langage de travail

Nos critères de choix du langage proposé pour la présentation des algorithmes de compilation :Haskell, et la
réalisation des machines virtuelles sont les suivants :

1. Syntaxe compacte et lisible ; pas trop des redondances, de surcharge syntaxique (c’est-à-dire : pas beau-
coup de mots-clé et d’autres verbosités), mais relativement intuitive.

2. Outils de construction dedonnéesraisonnables, car les données plutôt que les procédures déterminent si
un langage est approprié pour la construction des compilateurs ou des interprètes.

3. Accessible à tous, facile à apprendre, et suffisamment puissant pour démontrer quelques programmes
non-triviaux sans avoir besoin de bibliothèques chargées séparemment, ou des fichiers-entêtes énormes.
L’implantation du langage doit évidemment être gratuite et disponible sur toutes les plates-formes popu-
laires.

4. Universel, capable de permettre la discussion (et l’implantation) de structures pertinentes à d’autres lan-
gages.

5. Universel dans un autre sens, sans spécificités difficilement traduisibles dans d’autres langages. On sait
que les techniques duparsingnon-déterministe s’expliquent et se réalisent aisément enProlog qui est
un langage non-déterministe. Mais ainsi nous n’apprendrons rien sur laréalisationde bas niveau de ce
concept, et la traduction de notre parseur enC serait difficile.

Également, si pour construire la couche objet (les méthodes, l’héritage. . .) du langage compilé on utilise
les objets et les concepts du langage d’implantation, la technique peut être élégante et efficace (une
bonne partie du compilateur-interprète deSmalltalk est écrite enSmalltalk), mais on sera «coincé» dans
ce langage2.

2.10 Exercices

Q1. Est-ce que le langageC++ est polymorphe? Justifier la réponse, éventuellement donner les exemples si
elle est positive.

R1. Analyser les pointeurs, peut-être ici. Ailleurs on n’a pas beaucoup de chances pour trouver le vrai
polymorphisme enC++. Mais analyser aussi les instructions d’entrée/sortie formatée. En tout cas, le
vrai but de cette question est de forcer les lecteurs à se poser la question sur la vraie signification du mot
polymorphisme, qui parfois a d’autres signification (comme dans le jargon desdesign Patterns. . .).

Q2. Pourquoi Maple (ou un autre langage de calcul formel) n’est forcément pas adapté à l’initiation à la
programmation, p. ex. au Lycée?

R2. Bien sûr, nous n’attendont vraiment aucune réponse de la part des lecteurs, sauf si quelqu’un a déjà eu
l’expérience avec un tel enseignement. Cet «exercice» est un peu anecdotique. . .

Le danger est le suivant : les élèves confondent très vite unevariable au sens classique dans la pro-
grammation, et une valeur «non-déterminée», un symbole, disonsx qui représente une valeur algébrique

2Cette propriété ne sera pas respectée entièrement :Haskell est un langageparesseux, et les structures paresseuses sont difficilement
traduisibles enC ; ceci a déjà été commenté, et sera encore discuté plus tard.

26 Classification générale des langages : survol de la tour Babel

manipulée par des moyens formels. La distinction devient floue, et ceci constitue un obstacle dans
l’apprentissage des langages de programmation «normaux». À cause de celaMaple malgré ses avan-
tages (convivialité, bon support graphique) ne doit pas être enseigné comme lepremier langage ! Les
jeunes qui débarquent en DEUG avec un tel bagage, ont la nécessité de «dé-apprendre»Maple, d’oublier
une partie de leur initiation à l’informatique, sinon ils font des sottises pendant plusieurs semaines. . .

Q3. Essayer d’optimiser, de linéariser le code de la fonction factorielle à l’aide de continuations. (Bien sûr,
on aura besoin de la connaissance duHaskell ici).

R3. La définition standard de factorielle :

fac 0 = 1
fac n | n>0 = n*fac (n-1)

subira la transmutation par continuations classique. Définissons

faccnt 0 cnt = cnt 1
faccnt n cnt | n>0 = faccnt (n-1) (\r -> cnt(r*n))

On voit que le futur de l’appel récursif de la fonctionfac est la multiplication du résultat parn, et cette
manipulation a été incorporée dans la continuation.

Ici la multiplication n’a pas été continuée, la modification est superficielle, et son objectif est de rendre
la factorielle récursive terminale. Ceci est une optimisation différente de celle connue – l’ajout d’une
variable-tampon. Tampon ici serait plus économique, mais dans de très nombreux cas la connaissance
de continuations peut sauver beaucoup de temps.

Q4. Comment réaliser le programme qui calcule les permutations enHaskell? Ce langage est déterministe,
alors le non-déterminisme sera simulé par le retour d’uneliste de solutions individuelles. La liste vide
symbolise l’échec : pas de solutions.

R4. La convention est donc la suivante. Si une fonction «classique» renvoie un objetx , les fonctions dans ce
style (que nous pouvons appelermonadiquepour des raisons qui seront expliquées plus tard) retournent
[x] : le résultat stocké dans une liste. (On peut utiliser d’autres structures de données, par exemple des
arbres, mais les listes sont suffisamment universelles).

Commençons par la transformation du prédicatProlog d’insertion non-déterministe. Rappelons que la
réponse non-déterministe était : mettre le nouvel élémentx à la tête,ou séparer la tête existantey , insérer
x quelque part dans le reste, et restaurer la vieille têtey . Cette dernière opération n’est pas triviale, car
l’appel récursif (en italique ci-dessus) génère une liste de listes, un résultat non-déterministe.

Alors la première question importante se pose : comment appliquer une fonction (normale) à un objet
non-déterministe? Il faut l’appliquerà tous les élémentsde la liste. Nous utiliserons donc la fonctionnelle
map, dont la définition doit être connue :

map fun [] = []
map fun(x:q) = (fun x) : map fun q

Voici donc la fonction d’insertion non-déterministe. le lecteur voudra la comparer avec la variante en
Prolog :

ndins x l
| l==[] = [[x]]
| otherwise = let (y:q)=l in

(x:l) : map (y :) (ndins x q)

Passons aux permutations. La liste vide possède une permutation triviale. Sinon, on peut enlever la
tête, trouver une permutation du reste, et réinsérer la tête n’importe où. Il faut donc répondre à la sec-
onde question : comment appliquer une fonctionnon-déterministeà un argument déjà non-déterministe?
D’abord on appliquemap de cette fonction à tous les éléments de la liste, mais ainsi le résultat est une
liste, dont les éléments sont des listes de listes. Il faut enlever le «parenthésage interne» redondant, aplâtir
la liste en concaténant les listes internes. Il existe l’équivalent de la fonctionLisp append enHaskell,
l’opérateur de concaténation(++) . Nous aurons

2.10 Exercices 27

permut [] = [[]]
permut (x:q) =

flat (map (ins x) (permut q))

où flat peut être définie parflat l = foldr (++) [] l , et le réducteur choisi ici pour varier
n’est plusfoldl , maisfoldr , récursif à droite, défini comme :

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

(Cette définion sera encore discutée.)

Observation très importante.Nous avons vu deux réducteurs d’opérateurs binaires sur des listes :
foldl et foldr . On peut avoir – à juste titre – l’impression quefoldl est plus efficace, car c’est une
fonction récursive terminale.foldl applique l’opérateur entre la tête et une valeur initiale, et boucle
sur la queue de la liste, tandis quefoldr s’applique à la queue de la liste avant d’appliquer l’opérateur
binaire à la tête et la réduction de la queue. Les deux réductions ci-dessous

l=[1,3,2,7,2,4,1,2,5,8,2]

a = foldr (+) 0 l
b = foldl (+) 0 l

donnent 37, maisfoldl utilise la mémoire de manière plus économique.

Cependant la réalité n’est pas toujours si simple, car il ne faut pas oublier queHaskell est un langage
paresseux, alors le deuxième argument def dansf x (foldr f z xs) sera évalué seulement si
f en a besoin. Ceci n’est pas toujours le cas. Voici la définition de la concaténation de deux listes par
foldr :

l1 ++ l2 = foldr (:) l2 l1

qui est correcte même si la listel2 est infinie. Le programme suivant est parfaitement correct, et donne
[5, 7, 1, 1, 1] quand on demande la valeur deres .

uns = (1:uns)

a = foldr (:) uns [5,7]
res = take 5 a

Mais n’essayez pas d’affichera ou uns , car l’affichage ne se termine jamais. La fonctiontake n l
prend les premiersn éléments de la liste.

Si on utilise les listes pour implanter le backtracking, parfois on a besoin de toutes les solutions, et dans
ce contexte la sémantique paresseuse etfoldr ne sont pas utiles. Mais parfois on cherchela première
solution convenable parmi de très nombreuses, peut-être parmi un nombre infini de solutions possibles.
La liste de solutions sera alors consommée de manière incrémentale, paresseuse, et évidemmentfoldr
reste la seule variante qui ne fait pas exploser la mémoire.

Q5. Construire la fonctionpowerset l qui prend un ensemble (réalisé comme une liste), et qui renvoie
l’ensemble de tous les sous-ensemblesde son argument, en commençant par l’ensemble vide, et terminant
avec l’argument lui-même.

R5. La stratégie est la suivante : on parcourt la listel et on en construit par le choix non-déterministeune
sous-liste quelconque. Ce choix consiste à : soit prendre un élément, soit le rejeter. Voici la solution en
Prolog. Le prédicatsousens(L,R) construitRcomme un sous-ensemble deL.

sousens([],[]). % Pas d’autre possibilité
sousens([X|Q],R):-

sousens(Q,L), % et ensuite:
(R=L; % X rejeté. ";" est l’alternative

R=[X|L]). % X accepté

28 Classification générale des langages : survol de la tour Babel

En Prolog quand l’utilisateur charge le fichier avec ce prédicat, et l’exécute en demandant l’évaluation
de sousens([a,b,c,d],R). , le système répondR=[] , et il attend la réaction du programmeur
qui peut l’accepter, ou taper le point-virgule qui redémarre la machine non-déterministe, et affiche[a] .
Ainsi nous pouvons récupérer les réponses une par une, mais il est possible de les ramasser ensemble en
tapant

bagof(Z,(sousens([a,b,c,d],Z)),L). %% Ceci donne:

Z=_x2235, %% n’importe quoi, nom interne
L=[[],[a],[b],[a,b],[c],[a,c],[b,c],[a,b,c],[d],[a,d],

[b,d],[a,b,d],[c,d],[a,c,d],[b,c,d],[a,b,c,d]]

En Haskell la stratégie sera exactement la même. On construit la solution partielle sans la tête, et ceci
nous donne la moitié de la solution finale – tous les sous-ensembles qui ne contiennent pas la tête. Pour
construire les sous-ensembles qui la contiennent il suffit de l’ajouter, et de concaténer les deux parties

sousens [] = [[]]
sousens (x:l) = let part=sousens l in

part ++ map (x :) part

Question accessoire, obligatoire à tous ceux qui ont un minimumε d’ambition : Prouver que la cardinalité
du (sousens l) est égale à2n, oùn est la longueur del .

Q6. Construire la fonctiontake

R6. Ah, non, essayez vraiment vous-même. Si vous n’avez pas le courage, regardez leStandard Preludede
Haskell. Cette fonction est prédéfinie.

Q7. Est-ce que l’expressionfoldl (:) l1 l2 est légale? Non? Pourquoi? Comment y remédier?

R7. L’erreur est déclenchée par le vérificateur des types. L’opérateur(:) n’est pas symétrique, son premier
argument est un objet, et le second – une liste des objets du même type. L’expression incriminée applique
cet opérateur dans mauvais sens. Par contre, ceci est légal :foldl (flip (:)) l1 l2 . Qu’est-ce
que cela donne?

Q8. Quel est letypede la fonctionins ?

R8. Haskell nous dit :

ins :: Eq a => a -> [a] -> [[a]]

alors : deux arguments, le premier d’un type inconnua, et le second – une liste composée des éléments
du même type. Le résultat est une liste de listes. Le préfixeEq a => ... signifie queHaskell a bien
reconnuins comme une fonction polymorphe, mais il a automatiquement restreint le typea à la classe
de types qui admet la relation d’égalité. Pourquoi? Est-il possible d’enlever cette contrainte?

Q9. Construire une fonction enHaskell (comb k l) qui génère toutes lescombinaisonsdek objets parmi
tousn éléments de la listel . (Leur nombre est égal au coefficient binomial de Newton :

(
n
k

)
.

R9. L’algorithme repose sur un choix itératif : il faut parcourir tout l’ensemble den objets et soit choisir
(accepter) un objet, ou le refuser, comme avecpowerset. Le nombre de choix positifs doit être égal àk.
Si on rejette la tête, il faut choisirk éléments parmi les restants. Si on l’accepte, il faut encore en choisir
k − 1, et réinsérer la tête. le programme est d’une simplicité exemplaire :

comb k l =
let cmb k n l

| k<0 = []
| k==0 = [[]]
| k==n = [l]
| otherwise = let (x:q)=l in

cmb k (n-1) q ++ map (x :) (cmb (k-1) (n-1) q)
in cmb k (length l) l

2.10 Exercices 29

Le résultat concatène les deux solutions partielles. Cette stratégie prouve accessoirement la validité du
théorème (

n

k

)
=

(
n− 1
k − 1

)
+

(
n− 1

k

)
(2.1)

Et, pour comparer, voici la solution enProlog :

comb(K,L,R) :- length(L,N),cmb(K,N,L).
cmb(K,_,_,[]) :- K<0.
cmb(K,_,_,[[]]) :- K=0.
cmb(K,N,[X|L],R) :- N1 is N-1,

(cmb(K,N1,L,R) ; K1 is K-1, cmb(K1,N1,L,R1), R=[X|R1]).

où l’opérateur point-virgule dénote une alternative non-déterministe, ce qui est plus compact que l’écriture
de deux clauses séparées. Nous rappelons qu’enProlog on génèreunesolution «quelconque» et on a
pas besoin de concaténer quoi que ce soit. L’opérateuris force l’évaluation arithmétique, l’opérateur
= est l’unification qui peut attribuer la structure à droite à la variable à gauche, mais ne déclenche pas
l’évaluation numérique.

Q10. Construire les combinateursdupl etcomp (le compositeur :(.) avecsubs etconst .

R10. Le duplicateur :

f x x = f x (id x) = subs f id x

==> dupl f = subs f id
= flip subs id f

et doncdupl = flip subs id . La définition deid est déjà connue. Et leflip ? Rien de plus
simple :

flip f x y = f y x
= subs f (const x) y

==> flip f = (subs f) . const

Le compositeur est un peu plus tordu :

f (g x) = (const f x) (g x) = subs (const f) g x

==> comp f = subs (const f)

et l’élimination complète def , afin d’obtenir une définition combinatoire semble être difficile. La
dernière forme se réduit à. . . :

comp f = subs (const f) = (comp subs const) f

oucomp = comp subs const , ce qui mène nulle part. . .

Q11. Écrire une procédure de tri des listes enHaskell

R11. Construisons le tri rapide des listes (quicksort). Rappelons le principe de cet algorithme :

• On choisit un élément quelconque de la collection, le «pivot». Pour des listes il est naturel de
prendre la tête, car elle est directement accessible.

• On partitionne la liste en deux sous-listes : le éléments petits, et éléments grands par rapport au
pivot.

• On effectue (récursivement) le tri des deux sous-listes.

• On concatène les résultats, en mettant le pivot au milieu.

30 Classification générale des langages : survol de la tour Babel

Voici le code qui utilise les compréhensions :

qsort [] = []
qsort [x] = [x]
qsort (x:l) =

qsort [p | p<-l,p<=x] ++ [x] ++ qsort [g | g<-l,g>x]

Il n’est pas optimal. La liste-argument est parcourue et filtrée deux fois pour construire les sous-listes
contenant les éléments grands et petits. On peut faire mieux, voici le code optimisé :

qsort1 [] = []
qsort1 (x:q) = qs q [] [] where

qs (a:aq) p g | a<=x = qs aq (a:p) g
|otherwise = qs aq p (a:g)

qs [] p g = qsort1 p ++ (x : qsort1 g)

Cherchez d’autres optimisations, par exemple l’élimination de la concaténation par l’introduction d’un
argument-tampon.

Q12. Construire l’algorithme qui génèretousles nombres premiers par la technique du crible d’Eratosthène.

R12. Le crible prend une séquence de nombres entiers, met à part le premier élément, et élimine (filtre) tous
les multiples de cet élément du reste de la séquence. Ceci constitue une étape du filtrage. Si on répète la
même opération sur la queue, et si on continue, à la fin seulement les nombres premiers auront le droit
de rester dans la liste. Voici la procédure complète :

prims = sieve [2 ..] where
sieve (x:q) = x :

filter (\m -> m ’mod’ x /=0) (sieve q)

La liste[2 ..] est une listeparesseuseinfinie : 2, 3, 4, . . . qui est une abréviation deintsFrom
2 :

intsFrom n = n : intsFrom (n+1)

Essayez d’optimiser cette solution.

Q13. Le «Prélude Standard» deHaskell contient une fonction qui combine ensemble deux listes, élément par
élément avec un opérateur binaire :

zipWith oper (x:xq) (y:yq) = oper x y : zipWith oper xq yq

Quel est le contenu de la liste paresseusemystere définie ci-dessous

mystere = 0 : q where
q = zipWith (+) uns mystere
uns = 1 : uns

Pourquoi?

R13. Pas de réponse ici. Veuillez tester ce programme. Il a déjà été donné une fois comme sujet d’examen.

Q14. Regardez la définition de la fonctionfilter . On note que l’appel récursiffilter p xq est effec-
tué indépendamment de la conditionp x . Est-ce possible alors d’optimiser cette fonction de manière
suivante :

filter p [] = []
filter p (x:xq) = let rst = filter p xq

in if p x then p:rst else rst

2.10 Exercices 31

R14. Oui c’est possible, mais il faut faire attention. La première solution est incrémentale, elle marche même
avec les listes infinies, tandis que la solution «optimisée» dans ces circonstances déborde la pile. Elle est
récursive non-terminale, etstricte : la queue est évaluée inconditionnellement. Donc ceci peut être une
optimisation réelle si la liste est courte et si on sait que la totalité de la liste-source sera parcourue, et que
la totalité du résultat doit être construite, et disponible en même temps.

Q15. Une technique d’approximation de la fonction sinus exploite la récursivité et la formule de triplication
de l’angle :

sin(3x) = 3 sin(x)− 4 (sin(x))3 . (2.2)

Implanter cet algorithme enHaskell (Supposons que l’on doit implanter une librairie numérique standard
pourHaskell. . .). Ensuiteoptimizer la solution de façon très profonde : la fonction doit êtreitérative.
Pour simplicité (pour ne pas être obligé de réduire l’argument en utilisant les propriétés des fonctions
trigonométriques) on suppose que l’argument se trouve entre 0 etπ.

R15. Voici la solution triviale, qui arrête la récursion quand l’argument est très petit :

epsilon = 0.000001
monsin x | x<epsilon = x

| otherwise = let z = monsin (x/3.0)
in z*(3.0 - 4.0*z*z)

L’optimisation consiste à observer qu’il suffit de réduire d’abord l’argument jusqu’à la valeur souhaitée
en comptant le nombre de réductions :m, et ensuite d’appliquer la formulez*(3... m fois.

msin x = ms x 0 where
ms x m | x>=epsilon = ms (x/3.0) (m+1)

| otherwise = mq x m
mq z 0 = z
mq z m = mq (z*(3.0 - 4.0*z*z)) (m-1)

Q16. Les listes contenant des chiffres, p. ex.[1,2,0,8,7,2,6] représentent dans cet exercice des entiers,
ici : 128726. Écrire une fonction qui prend une liste de ce genre, et qui la transforme en un entier
numérique «normal». Écrire aussi une fonction qui effectue la transformation inverse, qui transforme un
entier en liste.

R16. Cette exercice constitue notre première construction d’unparseur. Voici une construction sérieuse. Pour
la lecture :

nombre l = nb l 0 where
nb 0 tmp = tmp
nb (x:xq) tmp = nb xq (10*tmp + x)

Pour l’écritue on utilisera la fonction prédéfinie enHugs : divMod qui renvoie le résultat de la division
Euclidéenne et le reste de cette division de ces arguments dans une paire.

affiche n = aff n [] where
aff 0 buf = buf
aff n buf = let (d,r) = divMod n 10

in aff d (r:buf)

Q17. Et à présent construire une fonction capable d’ajouter deux nombres dans cette représentation «ex-
plosée». Ceci, bien évidemment, n’est pas la somme élément par élément, car il faut surveiller la retenue,
et en général les listes peuvent avoir des longueurs différentes.

R17. La solution est un peu pénible car la retenue se propage de droite vers la gauche, il faut donc renverser
la liste pour avoir l’accès direct à son dernier élément. La fonction auxiliaireaddigit ajoute un seul
chiffre à une liste.

32 Classification générale des langages : survol de la tour Babel

dbase = 10

addigit c [] = [c]
addigit c (x:xq) =

let m = c+x
in if m<dbase then m:xq else (m-dbase) : addigit 1 xq

addlist l1 l2 = reverse (addl 0 (reverse l1) (reverse l2)) where
addl c [] l = addigit c l
addl c l [] = addigit c l
addl c (x:xq) (y:yq) =

let (d,r)=divMod (c+x+y) dbase
in r : addl d xq yq

Q18. Est-il possible d’écrire l’algorithme d’additionsans renverser les listes? On suppose que les deux ont la
même longueur (sinon on peut compléter la plus courte par des zéros), et on exploite de manière assez
agressive l’évaluation paresseuse.

R18. Cherche et tu trouveras. C’est une solution courte, mais un peu bizarre : il faut «emprunter» la retenue
des chiffres qui n’ont pas encore été traités.

Q19. Essayez d’exprimer les fonctionnellesmapet foldl parfoldr .

R19. Ceci est relativement simple, mais si on ne connaît pas les «trucs du métier», la solution est difficile à
trouver. Voir le Prélude standard.

map f l = foldr (\a b -> f a : b) [] l

foldl f z l = foldr (\b g a -> g (f a b)) id l z

La construction dumapest immédiate : l’élément initial est la liste vide, et le «pliage» consiste à ajouter
à cet élément les applications def à la liste initiale. D’ailleurs, on peut représenter cette fonction de
manière plus compacte, en exploitant les combinateurs :

\a b -> f a : b ≡ \a b -> (:) (f a) b ≡
\a -> (:) (f a) ≡ \a -> ((:) . f) a ≡
((:) . f)

Cool, non?

Le foldl est un peu surprenant, car cette fonctionnelle doit être récursive terminale (itérative), tandis
quefoldr empile les résultats intermédiaires. Analysez cette solution pour voir dans quel ordre cette
fonctionnelle réduit la liste : de droite ou de gauche.

Q20. Et comment implanter à traversfoldr la fonction de filtrage :

filter _ [] = []
filter p (x:xq) | p x = x : filter p xq

| otherwise = filter p xq

R20. filter p = foldr (\a b -> if p a then a:b else b) []

Q21. Trouver le type principal dufoldl .

R21. Au travail, au travail !

Chapitre 3

Machines virtuelles et exécution des
programmes par l’ordinateur

3.1 Entre compilation et interprétation

Dans l’archive des messages envoyés aunewsgroupUsenet consacré à la compilation, une série de questions
se répète assez souvent : on enseigne la construction de compilateurs. Quellangage-ciblechoisir? Ceci doit
être un langage de bas niveau pour que l’exécution du programme soit rapide. Assembleur? Alors lequel? Un
assembleur théorique, abstrait? Alors comment vérifier le code? Concret? Mais est-ce raisonnable de coincer
les étudiants dans une architecture spécifique qui peut provoquer une perte de temps non-négligeable?

De plus, – comme nous avons déjà souligné – le développement de langages de programmation va dans un
autre sens,Java, Python, Prolog, etc. utilisent des instructionsprimitivesqui réalisent soit l’aiguillage indirect
caractéristique des langages à objets (avec des méthodes virtuelles), soit le non-déterminisme logique qui ne
peut être réalisé au niveau assembleur, car demande la possibilité de fournir plusieurs réponses à une question.
La solution est de construire despetitsinterprètes de bas niveaux – des machines virtuelles intermédiaires entre
le «matériel» (c’est à dire : les microprogrammes qui exécutent les instructions assembleur), et un langage
évolué. (En tout cas il ne faut pas essayer de chercher trop d’affinités entre les significations du mot «virtuel»
dansmachines virtuellesetméthodes virtuelles. . .

En utilisant le code intermédiaire nous montrerons qu’il n’y a pas beaucoup de différences conceptuelles
entre un interprète et un compilateur. En fait, le compilateurestun interprète qui «exécute» (ou évalue) le
programme, toutefois le résultat n’est pas une séquence finale de valeurs numériques ou graphiques, maisle
code de plus bas niveauqui produira cette séquence de valeurs à l’aide d’un autre interprète.

3.2 Expressions fonctionnelles et évaluation récursive

3.2.1 Interprète descendant enScheme

Construisons un interprète capable d’évaluer une expression arithmétique, par exemple

1.0− 2.0
(

2.0x +
3.0
y

)
− 2.0z (3.1)

Considérons cette expression comme une structure de données arborescente, obtenue par un analyseur syn-
taxique, ou codée explicitement par le programmeur enLisp. L’arbre syntaxique de l’expression (3.1) aura la
forme présentée sur la Fig. (3.1).
La première chose à établir est la classe de données primitives gérées par notre machine. Nous aurons les
constantes réelles et quelques variables symboliques, considérées ici pour simplicité comme des abréviations
des objets globaux. Ensuite il faut préciser la panoplie des opérateurs disponibles. Ici nous avons seulement les
opérateurs arithmétiquesbinairessymbolisés par les caractères spéciaux standard. Si nous construisions notre
interprète enScheme ou autre dialecte deLisp, nous pourrions traiter les feuilles et les nœuds internes comme
des atomes, et écrire un évaluateur de listes imbriquées de genre

33

34 Machines virtuelles et exécution des programmes par l’ordinateur

-

- *

*

*

+

/

1 2

2

2 3

z

x y

Fig. 3.1: Arborescence syntaxique

(- (- 1 (* 2 (+ (* 2 x) (/ 3 y)))) (* 2 z))

La stratégie est évidente: si l’expression est une feuille, alors évaluons sa valeur, soit directement si c’est une
constante, soit en cherchant son association (nom – valeur) dans l’environnement courant. Si l’expression est
une liste (un nœud interne), évaluons récursivement les deux branches, et appliquons l’opérateur «par magie»
(en fait par l’aiguillage : si l’opérateur est l’atome «+» appliquons la procédure d’addition, etc. – tout défini
dans le langage d’implantation, qui correspond à la machine de plus bas niveau. Pour que cet exercice soit
vraiment utile, il faut tenir compte de quelques généralisations possibles et quelques problèmes d’implantation :

1. Il serait utile d’avoir des opérateurs d’arité quelconque, notamment les fonctions unaires commesin ,
exp , etc. Ceci est trivial, il suffit de récupérer tous les arguments et évaluer récursivement toutes les
branches avant d’appliquer l’opérateur. Mais il faudra les stocker quelque part.

2. Pour un langage de programmation sérieux il est indispensable de pouvoir exploiter les fonctions définies
par l’utilisateur. Nous allons traiter cette question en détail plus tard, mais le modèle adapté à notre
machine descendante est simple, il n’est rien d’autre qu’un modèle du calcul lambda implanté déjà dans
lespremières réalisations duLisp. Supposons avoir défini

(cube x) ≡ (* x (* x x)

Quand l’interprète trouve la branche... (cube 1.5) ... sur l’arbre en train d’évaluation, il peut
vérifier quecube ne correspond à aucun opérateur magique, il doit alors être défini par une construction
de genre

(define cube (lambda (x) (* x (* x x)))) ou en Haskell :
cube = \x -> x * x * x

L’interprète doit trouver dans l’environnement l’affectation de l’opérateurcube , comme de toute autre
variable. Le protocole à suivre est alors le suivant :

• On récupère les paramètres de l’opérateur (ici :x).

• L’argument (ou les arguments) de l’opérateur sont évalués comme dans le cas de l’opérateur prim-
itif.

• Les valeurs – résultats de cette évaluation sont associées avec les paramètres dans l’environnement
actuel, qui doit donc être dynamique, modifiable.

• La formeλ est évaluée comme toute autre expression. Les paramètres sont associés avec leurs
valeurs, et la procédure est effective.

• Le résultat est récupéré, et les associations des paramètres sont détruites.

3.2 Expressions fonctionnelles et évaluation récursive 35

3. L’interprète conceptuel est «trop intelligent» et il sera lent, partiellement à cause de résolution dynamique
des types de données.Haskell partage avecC le typage statique.

Le type de données – feuilles – utilisé ici est l’union(au sens connu enC) de nombres flottants et de symboles.
Pour simplicité les symboles seront des chaînes, et enHaskell ces chaînes sont deslistesde caractères.

type String = [Char] Cette définition est standard
data Value = F Double | S String

où les constructeursS etF sont des balises (tags) identifiant les variantes de cette alternative. Un opérateur est
également un symbole. L’expression est une arborescence, dont le nœud interne contient letag, l’opérateur, et
deux branches. (Si nous voulions généraliser à des opérateurs d’arité arbitraire, il faudrait remplacer les deux
branches par une liste de branches. Le typeString enHaskell est prédéfini.)

type Opsymb = String
data Expr = L Value | A Opsymb Expr Expr

La recherche des valeurs symboliques dans l’environnement peut être réalisée à l’aide d’un tableau associatif

envir = [("x",2.5),("y",-1.0),("z",0.5)]

etc., avec la fonction de recherche correspondanteassoc :: String -> Double dont la construction
est laissée au lecteur. Plus tard il nous faudra construire des tables de symboles plus réalistes. La magie des
opérateurs primitifs peut être réalisée par la fonction d’aiguillage (adaptée aux opérateurs binaires)

evalpr :: String -> Double -> Double -> Double
evalpr op x y =

case op of
"+" -> x+y
"*" -> x*y
"/" -> x/y
"-" -> x-y

qui traite des valeurs déjà décodées. Voici la fonction qui traite des valeurs générales, cherchées éventuellement
dans l’environnement global :

decodval :: Value -> Double
decodval (F x) = x
decodval (S c) = assoc c envir

(Ici les déclaration de type sont redondantes, mais peuvent pendant le développement du programme guider
l’œil du programmeur, et éviter quelques fautes.) L’évaluateur récursif est très simple :

eval :: Expr -> Double
eval (L val) = decodval val
eval (A op v1 v2) = evalpr op (eval v1) (eval v2)

Passons à une machine plus efficace, et transformons le schéma ci-dessus encompilateurqui génère un code
linéaire, destiné à une machine à pile, presque «professionnelle». Si le lecteur est intéressé par la vraie forme
de notre expression exemplaire enHaskell, la voici :

A "-" (A "-" (L(F 1.0)) (A "*" (L(F 2.0))
(A "+" (A "*" (L(F 2.0)) (L(S "x")))

(A "/" (L(F 3.0)) (L(S "y"))))))
(A "*" (L(F 2.0)) (L(S "z")))

donc, la lisibilité deHaskell par rapport àScheme est une propriété relative, elle s’applique aux programmes
et non pas aux données balisées. . .

Voici la définition de la fonction de rechercheassoc , la plus primitive possible, linéaire. Nous suggérons au
lecteurformellementde construire une version arborescente, dichotomique, sachant que les chaînes peuvent
être ordonnées. Bien sûr, on peut stocker sur un tel environnement aussi des opérateurs !

assoc :: String -> [(String,Double)] -> Double

assoc _ [] = error "Pas d’association !"
assoc ch ((sy,v):q) | ch==sy = v

| otherwise = assoc ch q

36 Machines virtuelles et exécution des programmes par l’ordinateur

Les machines récursives, arborescentes sont plus simples que les machines linéaires de bas niveau, présentées
ci-dessous. Elles sont parfois utilisées, car on peut les implanter en quelques lignes de code et insérer dans une
application quelconque, à condition que les expressions évaluées soient courtes (et que le noyau de l’application
sache gérer les listes et les arbres, donc, s’il dispose des procédures d’allocation et dé-allocation de mémoire,
et si la récursivité est bien implantée).

3.3 Linéarisation du code et machines à pile

La surcharge de l’interprète ci-dessus est évidente, la structure arborescente des expressions exige son allo-
cation dans le tas, avec les pointeurs (ou «handles» : poignées), et en plus, l’évaluation récursive encombre la
pile système: la pile qui appartient à la couche d’implantation. Les deux inefficacités disparaîtront maintenant.
Nous allons transformer l’expression arborescente en code linéaire postfixe, où l’opérateur suit ses opérandes.
Point besoin de parenthèses, notre expression exemplaire devient

1 2 2 x * 3 y / + * - 2 z * -

La transformation de l’arbre en code postfixe est assez banale, il suffit de modifier très légèrement la fonction
eval . Sa structure reste essentiellement la même, seulement au lieu d’évaluer le nœud, la fonction génère le
code pour les branches (alors elle s’appelle récursivement quand même, mais nous allons optimiser cette récur-
sivité), ensuite elle concatène les deux codes, et à la fin elle stocke l’opérateur derrière le code correspondant
aux branches. Les feuilles sontpresquedirectement insérées dans le code. Mais ce «presque» est important :
un nombre n’est pas une instruction.

L’évaluation de ce code a besoin d’une autre machine virtuelle, de plus bas niveau, qui n’aura même pas
besoin d’être récursive. L’interprète parcourt le code «de gauche à droite». Si l’instruction courante contient
une donnée, sa valeur sera empilée sur une pile (privée) ; si c’est un opérateur, les deux (pour les opérateurs
binaires ;n pour les opérateursn-aires) dernières valeurs sur la pile seront dépilées, l’opérateur appliqué, et le
résultat empilé de nouveau. Ici la suite d’instructions sera : empiler 1, 2,x, multiplier 2 × x, empiler 3 ety,
exécuter la division, etc.

Le reste est le codage. Mais le code postfixe symbolisé ci-dessus esthéterogène, il contient en vrac les
données et les opérateurs, et ceci n’est presque jamais une bonne idée, car demande de la part de la machine
virtuelle un peut trop – elle doit discernerdynamiquemententre ces classes d’objets avant interpréter chaque
item du code, et ceci ralentit considérablement l’exécution. Ceci dit, les langages typés dynamiquement oc-
cupent une niche stable dans le monde de la programmation, et personne n’envisage l’abandon duScheme à
cause de cela. Une machine virtuelle postfixe, à pile, avec le typage dynamique existe en millions d’exemplaires
dans le monde : il s’agit de l’interprète du langagePostScript qui pilote les imprimantes laser. EnPostScript
on mélange les données et les opérateurs, et la machine prend dynamiquement la décision d’empiler la donnée
si elle figure «nue» dans le programme.

Nous allons faire quelques exercices basés sur ce modèle, mais pour la compilation générale la différence
entre les données et les commandes est trop importante pour la traiter avec désinvolture.

Profitons de ce changement de chevaux, et introduisons quelques généralisations et quelques contraintes
dans la machinerie.

3.3.1 Cahier des charges

1. Le système doit gérer les opérateurs primitifs d’arité quelconque, et leur liste doit être extensible.

2. Il est possible d’utiliser des fonctions non-primitives, dont le corps a le même statut que l’expression
principale (code utilisateur), et il n’est plus exécuté par magie.

3. Le code est homogène, nous éviterons de mélanger les données et les commandes, même si ceci en
principe est faisable. Nous voulons ainsi accélerer l’exécution, en évitant trop de décisions dynamiques
de décodage.

4. Le code est stocké dans une liste chaînée. Une allocation plus statique, dans un tableau serait plus
efficace, mais plus rigide, moins propice à l’apprentissage des idées générales. Cette optimisation sera
discutée plus tard, elle est assez simple.

3.3 Linéarisation du code et machines à pile 37

5. Les variables n’ont plus de noms symboliques (chaînes) à décoder, mais sont identifiés auxindices,
ou références, adressant une table des symboles (l’environnement), ou – éventuellement – la pile des
données locales. Ici également on peut utiliser une liste, un arbre ou un tableau de hachage pour accélerer
l’insertion et le parcours.

6. Toutes les données circulent par lapile de données, structurée également comme une liste. La pile est
conceptuellement hétérogène, on y stockera des nombres, mais aussi des objets procéduraux, exécuta-
bles. Ceci seraessentielpour pouvoir gérer les structures de contrôle. Bien sûr, la pile syntaxiquement
esthomogène, tous les objets sont des données, mais définies avec variantes (balises).

7. La règle précédente suggère effectivement la solution du problème d’arité :tout opérateur prend en
argument la pile, et retourne la pile modifié. S’il a besoin de dépiler 134 arguments, il s’en charge. Il
peut aussi renvoyer au module appelant une valeur multiple, empilée. Ce problème est plus délicat avec
une machine à registres fixes, car il faut les sauvegarder lors des appels.

8. Un objet exécutable de haut niveau est tout simplement une liste représentant son code. (Mais il faut que
le consommateur d’un tel objetsachequ’il s’agisse d’un code ; ceci peut demander la présence d’une
balise identifiante).

9. Pour éviter la nécessité de distinguer les listes-code vides des autres (et vérifier cela avant de décoder
l’instruction suivante, ce qui décélère l’exécution),aucuneliste ne sera vide. Tout code contiendra au
moins une instruction spéciale, leretour , et cette instruction devra terminer tout programme (module).
L’avantage est qu’une telle instruction peut se trouver au milieu d’un code, et précipiter sa terminaison :
ceci permettra de concaténer plusieurs fonctions et blocs conditionnels ensemble.

Donc, les items du programme peuvent être des opérateurs primitifs, ou des opérateurs composites – objets
exécutables de haut niveau qui remplacent les constructionsλ du modèle précédent. Toutes les constantes et
variables – les données présentes explicitement dans le code doivent se transmuter en opérations. En effet, elles
seront remplacées par lesinstructions d’empilementde ces données.

Regardez la définition de la fonctionevalpr ci-dessus. C’est unswitch qui décode les opérateurs primitifs.
Une question se pose : et si nous voulions ajouter d’autres opérateurs? Il nous faudrait recompiler cette partie
de la machine virtuelle. Quand le nombre d’opérateurs est variable ou dépasse quelques dizaines, une telle
stratégie est mauvaise. Nous pouvons naturellement construire un tableau associatif entre les noms et les
exécutables, et utiliser une variante de la fonctionassoc , mais ceci n’est pas une idée brillante, car l’exécution
sera ralentie.Mais la machine virtuellen’a pas besoin de nomsdes opérateurs (sauf pour le déboguage). La
vitesse d’exécution augmente d’un facteur important (de plusieurs dizaines s’il fallait décoder les chaînes) si le
code interprété ne contient plus des noms, mais directement lesréférences aux procédures exécutables. Les
noms des opérateurs sont décodés (transformés en indices) par le compilateur et non pas par l’interprète.

Très souvent les interprètes utilisent une stratégie intermédiaire : lesbytecodes. Pas de noms symboliques,
mais tout opérateur est représenté par quelques bits – un nombre entier, ou un symbole appartenant à un type
énuméré, qui sert d’indice à un tableau d’aiguillage. Pas de recherche, pas de fonctionassoc , mais l’indexage,
précédé éventuellement par la séparation du bytecode du reste de l’instruction. Nous allons cependant exploiter
encore une autre approche, utilisé dansFORTH, quelques variantes du langageSnobol4, Python, partielle-
ment incluse dans le compilateur de GlasgowHaskell, et plusieurs autres langages, et pourtant rarement en-
seigné – le code «enfilé» (threaded code). Il n’y aura pas de bytecodes, mais le stockage direct des références
aux objets exécutables, ou des références aux «boîtes» qui contiennent les références aux exécutables (indirect
threaded code). Sonseuldésavantage est que la longueur du code augmente, car les bytecodes sont plus courts
que les références (pointeurs).

Le nom «threaded code» est souvent utilisé dans un contexte plus spécifique : c’est un code qui n’a pas
besoin d’une machine virtuelle globale (boucle centrale), puisque chaque opérateur connaît son successeur (ou
successeurs dans le cas des conditionnelles). Nous allons adopter cette terminologie, et nous allons présenter
les deux modèles d’interprétation : l’un où le flot de contrôle est piloté par une boucle centrale, et l’autre –
threaded code, sans boucle,qui réalise une variante particulière de la philosophie CPS : ces paramètres
supplémentaires sont des continuations.

Credoreligieux no. 4 : Une machine virtuelle trop intelligente est une calamité désastreuse, comme un soldat
qui pense trop. Les deux doivent exécuter des ordres simples sans réfléchir, sinon on gaspille le temps, et c’est
la concurrence qui gagne la guerre.

38 Machines virtuelles et exécution des programmes par l’ordinateur

Credoreligieux no. 5 : Une machine virtuelle stupide est bonne pendant la guerre. Mais quand la paix arrive
et il faut développer la société, les soldats sans cervelles ne servent pas à grande chose.

3.3.2 Codage de la machine

Commençons par la spécification des données. Avant, les variables étaient stockées dans une liste,x était
associé avec 2.5, etc. Les variables locales auront toujours besoin d’une structure dynamique (pile) pour stocker
les valeurs, mais ici,à titre pédagogiqueimaginons que les variables sont globales et statiques. Un tableau
envir peut remplacer la liste associative, et les noms ne sont plus que des indices. Le tableau enHaskell peut
être construit par la fonctionarray qui prend deux arguments – une paire spécifiant la dimension (l’intervalle
des indices), et une liste des associations : (indice,valeur).

import Array

envir = array (0,20) [(0,2.5), (3,-1.0), (4,0.5), ...]

(Les fonctions sur des tableaux enHugs sont importées optionnellement, d’où le mot-cléimport .) Ces
fonctions résident dans une librairie standard, mais qui pour des raisons d’efficacité n’est pas chargée automa-
tiquement dans la mémoire.

Répétons que la transformation des noms de variables en indices n’est pas une tâche de la machine virtuelle,
mais du compilateur, et ceci n’est pas actuellement notre problème.

Une donnée appartient au typeValue :

type Indx = Int
data Value = F Double | I Integer | Ch Char | S String

| U | V Indx | Co Code

où nous avons enrichi la collection par les entiers, les chaînes, etc. La différence entreInteger et Int est
secondaire,Haskell reconnaît les entiers très longs, de précision illimité, mais les indices des variables (V)
seront des entiers normaux, de 4 octets appartenant au typeInt . (Au cas où quelqu’un décide de modifier le
protocole d’accès, nous avons introduit un synonyme des entiers standard :Indx .) Le typeCode représente
les fonctions utilisateur.

Ajoutons à cette collection encore un type «bidon»Uqui représente une valeur «vide» (EnHaskell il existe
un type prédéfini pour cela :() , son usage est moins ambigu qu’unsymbolenil ou la liste vide renvoyée par
des procéduresLisp qui n’ont pas besoin de générer une valeur concrète).

Rappelons que l’affichage des objets complexes demande un peu d’attention de la part de l’utilisateur. Si
nous voulons pouvoir afficher une valeur quelconque, il faut prévoir un ensemble de fonctions de conversion,
par exemple :

instance Show Value where
showsPrec p vl =

case vl of F x -> showString "Float: " . shows x
I x -> showString "Integer: " . shows x
Ch x -> shows x
S x -> shows x
U -> showString "<rien!>"
V x -> showString "Variable: " . shows x
Co x -> showString "[<code>]"

Passons au code qui est une liste d’items, et à la pile qui est une liste de valeurs. Les items du code peuvent
être : RET, une opération sans arguments (mais extra arguments existent, la pile esttoujoursprésente) ou une
opération avec un argument supplémentaire, par exemple un code à exécuter, ou une valeur à empiler. La
commande RET est introduite ici uniquement pour la présentation, pour varier un peule thème, nous allons
l’abandonner vite.

type Code = [CodeItem]
type Stack = [Value]

type Op0 = Stack -> Stack -- op. sans arg

3.3 Linéarisation du code et machines à pile 39

type Op1 = Value -> Stack -> Stack -- 1 arg supp.

data CodeItem = RET | C0 Op0 | C1 Op1 Value

Il faut définir quelques opérations arithmétiques primitives, pour simplicité on définit seulement nos vieux
opérateurs binaires. Définissons également une fonction qui empile une valeur, constante ou variable. Dans
ce dernier cas il faut décoder la variable, utiliser l’environnement. La constructiontbl!indx correspond à
tbl[indx] dans d’autres langages.

type Opbin = Double -> Double -> Double

binop :: Opbin -> Stack -> Stack
binop op ((F x):(F y):q) = F (op y x):q
add = binop (+) :: Op0
mul = binop (*)
sub = binop (-)
dvd = binop (/)

load v stack = case v of
F x -> v:stack
V i -> (F (envir!i)):stack

Le code postfixe de notre expression exemplaire reste assez illisible :

cod = [C1 load (F 1.0), C1 load (F 2.0), C1 load (F 2.0),
C1 load (V 0), C0 mul, C1 load (F 3.0), C1 load (V 3),
C0 dvd, C0 add, C0 mul, C0 sub, C1 load (F 2.0),
C1 load (V 4), C0 mul, C0 sub, RET]

mais la machine virtuelle devient très simple :

aeval (instr:rst) stack = case instr of
RET -> stack
C0 op -> aeval rst (op stack)
C1 op val -> aeval rst (op val stack)

et pour obtenir le résultat (qui est égal à -4.0) on construit, et on demande la valeur de

interp cod = xx where (xx:_) = aeval cod []

Nous avons promis de gérer les fonctions utilisateur, par exemple la fonction qui calcule le cube d’un nombre.
Le contexte d’appel est simple, l’argument est empiléavantde lancer la fonction. Elle n’a donc besoin que de
la pile. Mais il faut dupliquer la valeur deux fois pour pouvoir itérer deux fois la multiplication. Construisons
donc quelques opérations primitives qui administrent la pile, et la fonctionexec qui exécute un code utilisateur.
Cette dernière est assez triviale : elle relance récursivement l’évaluateur.

dup p@(x:_) = x:p -- duplique le sommet
exch (x:y:q) = (y:x:q) -- échange deux dernières valeurs
pop (_:q) = q -- détruit le sommet
exec (Co cod) stack = aeval cod stack -- The Executioner

-- Le code du cube :
cube = Co [C0 dup, C0 dup, C0 mul, C0 mul, RET]

-- et le résultat :
res2 = interp [C1 load (F 5.0), C1 exec cube, RET]

est 125.0. Nous n’avonsrien modifié dans la définition de la machine. L’usage de la pile pour passer les
paramètres nous a libéré de la nécessité de stocker dynamiquement dans l’environnement les associations en-
tre les paramètres et les arguments actuels. Mais si la construction du code correspondant àcube n’est plus
manuelle, mais automatique, à partir d’une procédure avec paramètres, ce problème va resurgir, et le compila-
teur doit établir ces associationsavantde construir le code final.

40 Machines virtuelles et exécution des programmes par l’ordinateur

3.3.3 Mécanismes décisionnels

Notre machine est handicapée pour quatre raisons.

1. Le code exécuté est obligatoirement linéaire et déterminé statiquementa priori, la machine ne peut pren-
dre aucunedécision. Dans un modèle sérieux il faut augmenter la puissance sémantique de la machine
par – au moins – l’équivalent de la constructionif-then-else.

2. L’interprète reste trop complexe. Il est récursif, alors il utilise la pilesystème, présente dans l’application
grâce au compilateur du langage d’implantation (Haskell, ouC. . .). Ceci n’est pas une bonne idée. La
pile système n’étant pas contrôlée par le programme, le déboguage devient impossible, inefficace, ou
tordu.

3. En principe toutes les structures de contrôle itératives (boucles) peuvent être réalisées par la récursivité
terminale, mais nous sommes encore loin d’une telle optimisation. Toute tentative d’écrire une fonction
récursive, terminale ou pas, est interprété de la même façon – appelrécursif de l’évaluateur. Les boucles
suffisamment longues se terminent toujours par le débordement de la pile système.

4. Le quatrième point est simple mais gênant : pour définir les fonctions récursives il faut pouvoir leur
donner des noms. Il faut alors élargir le concept de variables – pas seulement numériques, mais aussi
fonctionnels. (Et, bien sûr, d’autres objets – tableaux, listes, etc. aussi, mais cela viendra plus tard.)

Ajouterons ces modifications en douceur. Les procédures constituent des valeurs et peuvent être empilées.
Construisons alors deux fonctions :iff de classeC0 qui trouve sur la pile la condition et une procédure, qui
sera exécuté si la condition est différente de zéro. La fonctionifelse (de la même classeC0, sans arguments
extra) trouve sur la piledeuxprocédures – une si la condition est remplie, et l’autre en cas d’échec.

Faut-il introduire les Booléens? En principe oui,Haskell les utilise et ils n’alourdissent pas la structure de
la machine. Mais nous pouvons aussi adopter le style duC, où le zéro est faux, et 1 (ou autre nombre différent
de zéro) – vrai. Il faudra alors construire quelques opérateurs relationnels.

ifelse (pelse:pthen:(I cnd):q) =
if cnd/=0 then exec pthen q else exec pelse q

iff (pthen:(I cnd):q) =
if cnd/=0 then exec pthen q else q

biconvrt True = I 1 -- Convertisseurs
biconvrt False = I 0

boolop op ((F x):(F y):q) = biconvrt (op y x) : q

gt = boolop (>)
lt = boolop (<)
eq = boolop (==)
ne = boolop (/=)

La fonctionmsign qui calcule le signe d’un nombre entier : 1, 0 ou -1 aura la forme

msign = Co [C0 dup, C1 load (F 0.0), C0 gt,
C1 load (Co [C0 pop, C1 load (F 1.0), RET]),
C1 load (Co [C1 load (F 0.0), C0 eq,

C1 load (Co [C1 load (F 0.0), RET]),
C1 load (Co [C1 load (F (-1.0)),RET]),
C0 ifelse, RET]),

C0 ifelse, RET]

Un tel code, plein de balises et de constantes procéduralisées par l’empilement n’est pas écrit d’habitude par
les humains. Le modèle, comme il a été dit, correspond auPostScript ou autres langages qui utilisent les
machines à pile, commeJava, Smalltalk, quelques implantations duPascal, etc. Mais le code est généré par
le compilateur, et même enPostScript qui est une machine à pile «nue», programmée dans la notation postixe,
demande seulement que l’utilisateur écrive

3.3 Linéarisation du code et machines à pile 41

{dup 0 gt {pop 1}
{0 eq {0} {-1} ifelse} ifelse}

L’ajout des tags, du RET, et desload est trivial, la seule vraie différence est le typage des nombres –
PostScript reconnaît les nombres entiers et flottants dynamiquement. EnC ou enPascal la conversion est
automatique. EnHaskell elle est semi-automatique. Pour l’instant notre machine les considère comme des
types complètement distincts. Laissons au lecteur la construction des opérateurs arithmétiquesiadd , imul ,
etc., des relations arithmétiquesigt , ieq , et éventuellement quelques autres «clones» entiers des opérations
flottantes. En tout cas, grâce au balisage, la différence entre les nombres de types différents est explicite,
visible, et on peut soit compiler l’opération adéquate, ou laisser la décision à la machine virtuelle.

Passons à la construction des fonctions récursives. D’abord, il faut rendre l’environnement plus souple.
Définissons aussi un opérateur un peu plus général queOp1, et dont le premier argument est l’environnement.
Ceci nous oblige à introduire une nouvelle classe d’opérateurs :

type Env = Array Int Value
type Op2 = Env -> Value -> Stack -> Stack

data CodeItem = RET | C0 Op0 | C1 Op1 Value | C2 Op2 Env Value

Ensuite il faut modifier un peu la fonction qui empile une valeur. La fonctionload sera généralisée, mais
simplifiée. Elle accepte un nouveau paramètre :symtab , le dictionnaire des symboles qui est notre tableau
associatif. Si le second argument est une variable, la valeur correspondante est empilée, sinon la fonction
empile l’objet même.

envir = array (0,3) [(0,F 2.5), (1,F (-1.0)), (2, F 0.5),(3, I 0)]
...
loadv symtab (V i) stack = (symtab!i) : stack
loadv _ v stack = v : stack

...
envirn = envir // [(3,fac)]
loadn = loadv envirn

L’opérateur(//) accepte un tableau et une liste d’associations, et renvoie le tableau modifié par les associa-
tions. Ici l’environnement a été enrichi par un objet qui s’appellefac , et qui – comme le lecteur soupçonne
– est la référence de la fonction factorielle. Pour définir la fonctionfac nous aurons besoin d’un exécuteur
primitif modifié – de la fonctionexecv qui accepte aussi l’environnement.

execv env (V i) = exec (env!i)

fac = Co [C0 dup, C1 loadn (I 0), C0 ieq,
C1 loadn (Co [C0 pop, C1 loadn (I 1), RET]),
C1 loadn (Co [C0 dup, C1 loadn (I 1), C0 isub,

C2 execv envirn fact, C0 imul, RET]),
C0 ifelse, RET]

fact = V 3

La dernière ligne boucle la liaison entre la définition du code et l’environnement. La listefac n’est pas auto-
référentielle, elle s’adresse par l’intermédiaire de l’élément 3 du tableauenvirn . Le résultat de l’exécution
de

interp [C1 loadn (I 6),C2 execv envirn fact, RET]

donne 720. La solution proposée n’est pas idéale. Les définitions des fonctions commeloadn doivent être
locales, la constructionC2 est redondante, on peut définir localement des applications partielles(execv
envirn) et éliminer la présence explicite de l’environnement dans la liste-code, mais ce sont des opérations
cosmétiques.

En fait, il faut avouer que l’introduction de plusieurs classes d’opérations, notamment deC1 qui contient
un paramètre extra, ne constitue aucune nécessité. Nous l’avons fait uniquement pour pouvoir lier de manière
«classique» une fonction et une donnée extra dont la fonction a besoin. Pour les programmeurs fonctionnels
affranchis il suffirait de définir une fermeture appropriée, mais nous soulignons – encore une fois – que nous
ne voulons pas exagérer avec les spécificités de la programmation fonctionnelle.

Rappelons encore qu’un programmeur enPostScript écrira

42 Machines virtuelles et exécution des programmes par l’ordinateur

/fac {dup 0 eq {pop 1} {dup 1 sub fac mul} ifelse} def

pour définir la factorielle.

3.4 Gestion explicite de la pile des retours

Passons à l’élimination de la récursivité de l’évaluateur, ce qui mérite une section séparée. Nous pouvons
laisser sans remords les appels récursifs terminaux de la boucle principale. Ce qui nous gêne est la fonction
exec et ses variantes.

Nous avons besoin de la récursivité (empilement des adresses de retour), car quandaeval trouve un code
interprété interne, il doit revenir au contexte précédent après le retour de la fonctionexec . Mais nous pouvons
gérer la pile des retours par la machine elle même. L’interprète aura un paramètre supplémentaire, une liste
dont les éléments sont les codes à exécuter. Au début n’a qu’un seul code, l’«expression principale», ou le
programme principal.

On peut accepter un protocole d’exécution «système», où la machine virtuelle ne s’arrête jamais, et ne
rend aucune valeur. Elle joue alors le rôle d’un «dispatcher» (aiguilleur), d’un système d’exploitation qui
envoie les tâches a ses processus-esclaves, mais qui ne fait rien d’autre. Si l’utilisateur veut dialoguer avec
son programme, lire les résultats partiels, etc., tout doit être prévu par son code particulier (et les fonctions
prédéfinies). Une telle convention n’est pas fonctionnelle, mais impérative par excellence. Elle est utilisée
dans la pratique. Nous suivrons néanmoins une stratégie différente, la machine s’arrête et retourne le résultat
d’évaluation du programme principal quand elle exécute l’instructionstop . Nous pouvons insérer ce code
par défaut sur la pile des retours, mais l’essentiel est d’assurer que la machine aittoujoursune instruction à
exécuter. On sait très bien que la processeur matériel une fois mis en marche fait toujours quelque chose, il ne
s’arrête jamais, même si le programme constitue une boucle morte. L’avion qui s’arrête en plein vol n’est plus
un avion. . .

Comme précédemment, la mise à jour de notre machine nous permettra de réfléchir et d’enrichir sa séman-
tique, en simplifiant en même temps sa structure. Les stratagèmes principaux exploités ici sont les suivants.

• Il n’y aura plus d’opérateur reconnu spécialement par sa syntaxe : RET. Il est devenu un opérateur
normal, comme les autres, et comme l’opérateurstop . Son rôle est de reprendre le calcul à partir de la
pile des retours.

• Toutopérateur prend maintenant l’environnement et une valeur supplémentaire comme arguments, mais
ces arguments peuvent ne pas être utilisés du tout. (Dans un langage paresseux ceci ne force pas leur
évaluation, et ne coûte presque rien.) Ceci simplifie les classes des opérateurs.

• L’environnement est passé à la machine comme une variable globale, et toutCodeItem contient une
donnée supplémentaire (U). On pourra optimiser cela aisément plus tard, mais ainsi la structure du code
est plus régulière.

• Tout opérateur prend la pile des données, le reste du code actuel (la queue de la liste dont la tête est
l’instruction exécutée) et la pile des retours comme arguments.

• Le résultat retourné est toujours un triplet : le code (instruction suivante) à exécuter, la nouvelle pile
des retours, et la nouvelle pile des données. (Et on voit déjà que la généralisation suivante doit perme-
ttre également retourner un nouvel environnement dynamique, si la sémantique du langage permet p.
exemple la réaffctation des variables globales).

• La machine «extérieure» est une boucle qui s’arrête quand le code à exécuter est vide. Cette liste vide
est renvoyée par l’opérateurstop . On peut – bien sûr – optimiser ceci, comme il a déjà été signalé, et
cet exercice est laissé au lecteur.

• L’opérateurret ignore le code restant, et reprend le nouveau code de la pile des retours.

• L’opérateurexec empile le code restant sur la pile des retours, et assigne le nouveau code depuis la
procédure de haut niveau qui sera exécutée.

Nous introduirons accessoirement quelques simplifications de notation, des opérateurscnst et var qui em-
pilent une constante ou une variable. Le nouveau programme sera copié dans son intégralité pour faciliter la
lecture.

3.4 Gestion explicite de la pile des retours 43

import Array

type Indx = Int
data Value = F Double | I Integer | Ch Char | S String

| U | V Indx | Co Code

type Code = [CodeItem]
type Stack = [Value]
type Env = Array Int Value
type Rstack = [Code]

type Op =
Env -> Value -> Code -> Rstack -> Stack -> (Code, Rstack, Stack)

data CodeItem = O Op Value

Notez la simplicité du code et l’introduction duRstack . Voici l’interprète principal complet et quelques
opérateurs primitifs.

interp env (instr:code) = machine instr (code:[[stop]]) []
where
machine :: CodeItem -> Rstack -> Stack -> Stack
machine (O op val) (rest:later) pile =

let (ncode, nlater, npile) = op env val rest later pile in
case ncode of

[] -> npile -- "stop" a été exécuté
(ninstr:nrest) -> machine ninstr (nrest : nlater) npile

stop = C (_ _ _ rt pile -> ([], rt, pile)) U
ret = C (_ _ _ (rt:demain) pile -> (rt, demain, pile)) U

-- Constante générique
cnst a x = O (_ z rst later pile ->

(rst, later, (z:pile))) (a x)

-- et ses variantes: flottante et entière.
dblc x = cnst F x
intc x = cnst I x

-- Empilement d’une variable (décodée)
var v = O (\e z rst later pile ->

(rst, later, ((e!v):pile))) (V v)

La première partie de l’exercice demande seulement la construction des opérateurs binaires (dans l’arithmétique
flottante)

binop op =
O (_ _ rst later (F x:F y:q) -> (rst,later,(F (op y x):q))) U

add = binop (+)
mul = binop (*)
sub = binop (-)
dvd = binop (/)

envir = array (0,3) [(0,F 2.5), (1,F (-1.0)), (2, F 0.5),(3, I 0)]
cod = [dblc 1.0, dblc 2.0, dblc 2.0, var 0, mul, dblc 3.0,

var 1, dvd, add, mul, sub, dblc 2.0, var 2, mul, sub, ret]

res1=interp envir cod

Passons aux procédures utilisateur et aux mécanismes décisionnels (Ifelse). Voici la définition ducube
plus quelques fonctions accessoires.

dup = O (_ _ rst later p@(x:q) -> (rst,later,x:p)) U

44 Machines virtuelles et exécution des programmes par l’ordinateur

pop = O (_ _ rst later (_:q) -> (rst,later,q)) U
exch = O (_ _ rst later (x:y:q) -> (rst,later,y:x:q)) U

exec cod = O (_ (Co pr) rst later pile ->
(pr,rst:later,pile)) (Co cod)

cube = exec [dup, dup, mul, mul, ret]
res2=interp envir [dblc 5.0, cube, ret] -- oui, cela donne 125

Notre code comme[dblc 5.0, cube, ret] contient seulement les structures de données (CodeItem),
on ne voit ni fonctions, ni la pile des données ni la pile des retours. Mais le code est strictement fonctionnel,
et en plus très facilement traduisible en code impératif. Avecifelse il y a un petit problème ! Il serait
commode – comme dans la version précédente – d’utiliserexec aiguillé par le conditionnel de plus bas niveau
(if-then-else) deHaskell. Mais à présent les primitifs prennent en plus de la pile aussi le reste du code et la
pile des retours. Comment les passer à l’autre primitive, sachant qu’exec n’est pas une fonctionopérant sur la
pile, mais un générateur de structures de données? Nous avons choisi une solution banale, mais les exercices
discutent d’autres possibilités.

ifelse = C (_ _ rst later ((Co pelse):(Co pthen):(I cnd):q) ->
((if cnd/=0 then pthen else pelse),rst:later,q)) U

-- les fonctions suivantes ne changent pas
biconvrt True = I 1
biconvrt False = I 0
-- modification assez triviale
boolop op =

O (_ _ rst later ((F x):(F y):q) ->
(rst,later,(biconvrt (op y x):q))) U

gt = boolop (>)
lt = boolop (<)
eq = boolop (==)

proc x = cnst Co x -- Comment empiler une procédure

msign = exec [dup, dblc 0.0, gt, -- Signe d’un nombre
proc [pop, dblc 1.0, ret],
proc [dup, dblc 0.0, eq,

proc [pop, dblc 0.0, ret],
proc [pop, dblc (-1.0),ret],
ifelse, ret],

ifelse, ret]

Et finalement la factorielle :

-- Ops binaires entiers. Aucune élégance...
binop op =

O (_ _ rst later (I x:I y:q) -> (rst,later,(I (op y x):q))) U

addi = binop (+)
muli = binop (*)
subi = binop (-)
-- Ops Booléens (relationnels) entiers
booliop op =

O (_ _ rst later ((I x):(I y):q) ->
(rst,later,(biconvrt (op y x):q))) U

gti = booliop (>)
lti = booliop (<)
eqi = booliop (==)

-- Variante d’exec : exécution précédée par le décodage

3.4 Gestion explicite de la pile des retours 45

execv n = O (\e (V i) rst later pile ->
let (Co cod) = e!i in (cod,rst:later,pile)) (V n)

-- L’indice de la factorielle
fact = 3
envirn = envir // [(3,fac)]

fac = Co [dup, intc 0, eqi,
proc [pop, intc 1, ret],
proc [dup, intc 1, subi,

execv 3, muli, ret],
ifelse, ret]

-- test:
res6 = interp envirn [intc 6,execv fact, ret]

Notons que la syntaxe deHaskell est suffisamment souple pour qu’on puisse aisément vérifier la machine
pendant sa construction, à condition de définir quelques abréviations. EnC ceci n’est pas si simple. . .

3.4.1 Omission importante

Nous n’avons pas traité les affectations, ni les définitions des fonctions utilisateurdans le programme(ce qui
peut être la même chose : l’association entre les noms et les objets). Pour le faire il faut faire des modifications
suivantes :

• Ne pas passer l’environnement à lamachine comme une variable globale, car elle risque de subir des
modifications, mais comme un argument.

• Les opérateurs doivent également retourner l’environnement. Ceci fait déjà quatre arguments, ce qui
détériore la lisibilité de la solution (mais on peut les emballer dans un record).

• L’opérateur(=) accepte une variable et une expression. On empile l’expression et on l’évalue, mais
ensuite il fautempiler l’adresse de la variable, sans la décoder. Ceci est facile, on peut définir l’opérateur
vaddr n = cnst V n .

• L’exécution de l’opérateur d’affectation dépile l’adresse de la variable et la valeur, et lance l’opération
primitive (//) qui change le tableau d’associations. Le nouveau environnement remplace le précédent,
la pile des données reste intacte.

3.4.2 Conseils pour les irrécupérables

Cette section est destinée aux lecteurs qui voudraient implanter une petite machine virtuelle selon notre modèle
dans un langage impératif classique, commeC++. Les différences par rapport àHaskell sont les suivantes.

• On n’est pas obligé de respecter le protocole fonctionnel. En particulier la pile des données peut être une
structureglobale, et sa gestion peut utiliser les procédures séparées d’empilement et de dépilement. Ces
opérationsmodifierontla variable globale.

• La même chose avec l’environnement qui ne sera pas seulement un tableau global (comme ici), mais qui
peut être arbitrairement modifié par les modules de la machine (ce qui d’ailleurs sera le cas en présence
des affectations).

• La pile et le code seront plutôt des tableaux que des listes. Le code est parcouru par une bouclefor ou
while, et les piles sont gérées par des indices spéciaux, qui adressent les sommets.

• Il faudra se débrouiller pour insérer dans le code lespointeurs sur les fonctionsenC ou C++, d’établir
un pont entre la machine virtuelle crée, et la couche sous-jacente, magique. Cette technique fait partie
du cours du langageC, ou du cours de génie logicielle, mais ne sera pas traitée ici.

46 Machines virtuelles et exécution des programmes par l’ordinateur

• Un tel programme enC++ peut etdoit utiliser les techniques orientées-objet, en particulier

– la surcharge des opérateurs arithmétiques doit être réalisée par les méthodes (fonctions génériques)
correspondantes ;

– les procédures polymorphes – vraiment polymorphes et non pas surchargées, comme la procédure
d’empilement d’une donnée, doivent être définies dans une super-classe de toutes les données em-
pilables.

3.5 Variante : Indirect threaded code

Montrons encore un autre modèle de la machine virtuelle . . . sans machine virtuelle. Jusqu’à présent nous
n’avons pas touché la structure globale de l’interprète : il était toujours une boucle qui récupérait la nouvelle
adresse (morceau de code) à exécuter, fourni par l’opérateur qui vient de terminer son travail. Rappelons que
dans la première proposition, la machine «incrémentait le compteur» (passait à la queue de la liste avec le code)
elle même, ce qui était trop rigide : les conditionnelles, les appels et les boucles demandaient un peu plus de
souplesse.

Mais si à présent l’opérateur local (empilement, addition, etc.,) trouve son code successeur, pourquoi re-
tourner au niveau de la machine uniquement pour ensuite passer la main à ce successeur? L’opérateur peut
lui-même appeller son successeur par l’appel terminal.Ceci constitue la réalisation de bas niveau du concept
descontinuations, déjà mentionné, et est une variante du «code enfilé». (l’attributindirectrésulte du fait que le
code ne contient pas directement les opérateurs (pointeurs), mais des structures qui contiennent ces opérateurs).
Voici, encore une fois, la machine complète. Elle est un peu différente de son prédecesseur. Pour simplicité,
l’environnement global est absent, sa présence n’apporte rien de pédagogique.

La pile des retours peut être une simple liste, mais pour varier un peu, définissons une «liste privée», une
structure linéaire construite par un opérateur(:>) défini par nous, avec un constructeurEmpty qui remplace
la liste vide. Voici la définition des valeurs, où nous avons ajouté aussi des listes (L [...]), et les vrais
Booléens :

data Value = I Integer | F Double | S String | B Bool | U | Ch Char
| L [Value] | V Int | C Code

type Dstack = [Value] La pile des valeurs
type Operator = Code -> Dstack -> Rtstack -> Value

data CodeItem = Op Operator Value
type Code = [CodeItem]

infixr 5 :>
data Rtstack = Empty | Code :> Rtstack La pile des retours

Notez qu’un opérateur prend 3 arguments : lecodedans lequel il se trouve, et les deux piles. Ce code sert
uniquement à trouver le successeur de l’opérateur. L’opérateur renvoie une valeur comme son résultat (le
sommet de la pile des données). Le code est composé deCodeitems qui sont des records possédant un
opérateur ettoujoursune valeur extra, souventU (et rappelons ici qu’une machine fonctionnelle aurait utilisée
des fermetures assemblées par le compilateur).

La «machine» maintenant ne fait pratiquement rien, seulement initialise les piles. La fonctionexec passe
la main au premier opérateur présent dans le code. (Cette fonction n’est pas un opérateur utilisateur. L’opérateur
utilisateur qui utilise directementexec s’appeleragoto , et réalisera l’appel terminal).

interp code = exec code [] Empty

exec code@(Op op _ : _) = op code
-- en fait: exec code pile retpile = op code pile retpile

La machine s’arrête en exécutant l’instructionstop . Voici sa définition, ainsi que la définition du branchement,
l’instructiongoto dont l’argument est une liste représentant le code :

3.5 Variante : Indirect threaded code 47

stop = Op stfun U where
stfun _ (v:_) _ = v

goto proc = Op (\(Op _ (C prc) : _) -> exec prc)
proc

Attention : la fonctiongoto définie enHaskell construitle CodeItem correspondant, la structureOp dont
le premier champ est une fonction anonyme qui lanceexec , et le second – la procédure utilisateur qui sera
exécutée.

Les définitions des opérateurs d’empilement, arithmétiques, et les autres deviennent maintanant plus com-
plexes qu’auparavant, puisque chaque opérateur est obligé de localiser (ou construire) son successeur. Comme
avant, les définitions enHaskell génèrent lesOp-structures correspondantes. Commençons par les procédures
d’empilement :

loadc v = Op ldfun v where
ldfun (Op _ x : nxcode@(Op nxop _ : _)) p

= nxop nxcode (x:p)

ldi n = loadc (I n)
ldf x = loadc (F x)
ldl l = loadc (L l)
ldcod cod = loadc (C cod)

etc. La déstructuration du premier argument de l’opérateur – le programme, sera souvent la même :

Op _ x : nxcode@(Op nxop _ : _)

ce qui peut être lu comme suit :

• l’argument anonyme qui suitOpest l’opérateur lui même (et donc, il n’a pas besoin de le spécifier);

• x est son paramètre extra ;

• nxcode est le code successeur, dontnxop est le premier opérateur.

les opérations typiques sur la pile :dup , exch , etc. possèdent toutes la même structure : la manipulation de
la pile des données, et la construction du successeur. Nous pouvons faire une petite abstraction, et paramétrer
nos opérations par leur «noyau», la fonction qui manipule la pile des données, et qui ne fait rien d’autre. Cette
fonction : action parametrisera le manipulateur générique de la pile –stackop .

stackop action = Op (actfun action) U where
actfun act (_ : nxcode@(Op nxop _ : _)) pile
= nxop nxcode (act pile)

dup = stackop (\p@(x:_) -> x:p)
pop = stackop (\(_:q) -> q) -- drop est reservé !
exch = stackop (\(x:y:q) -> y:x:q)
rot = stackop (\(x:y:z:q) -> y:z:x:q)
indx = stackop (\(I n : p) -> p!!(fromInteger n) : p)
under = stackop (\(x:y:q) -> y:x:y:q)

Rappelons que la notationliste!!n récupère len-ième élément d’une liste :n = 0 récupère la tête.
L’opérateurindx copie len-ième élément de la pile sur son sommet. L’opérateurrot effectue la trans-
formation[x,y,z,...] → [y,z,x,...] , etc. L’opérateurunder est équivalent àldi 1, indx , ou
àexch,dup,rot .

Voici quelques opérateurs «standard» binaires, et unaires :

unop action = Op (actfun action) U where
actfun act (_: nxcode@(Op nxop _ : _))

(x : p) = nxop nxcode (act x : p)

expop = unop (\(F x) -> F (exp x))
sqrtop = unop (\(F x) -> F (sqrt x)) -- etc.

48 Machines virtuelles et exécution des programmes par l’ordinateur

binop action = Op (actfun action) U where
actfun act (_: nxcode@(Op nxop _ : _))

(x : y : p) = nxop nxcode (act y x : p)

addi = binop (\(I x) (I y) -> I (x+y))
muli = binop (\(I x) (I y) -> I (x*y))
subi = binop (\(I x) (I y) -> I (x-y))

Nous avons défini déjà l’appel terminal. Voici un appel quelconque, et le retour. N’oublions pas que le retour
est un opérateur normal, qui attend son successeur. La machine ne s’arrête pas.

call proc = Op callfun proc where
callfun (Op _ (C prc) : nxcode) pile rtpile

= exec prc pile (nxcode :> rtpile)
ret = Op retfun U where

retfun _ pile (code :> rtpile) = exec code pile rtpile

Finalement, passons aux mécanismes décisionnels. Définissons quelques relations arithmétiques (ceci est tri-
vial), et les opérateursiff et ifelse

eqi = binop (\(I x) (I y) -> B (x==y))
gti = binop (\(I x) (I y) -> B (x >y))
lti = binop (\(I x) (I y) -> B (x <y))

ifelse = Op ifefun U where
ifefun (_ : nxcode)

(C elcod : C thcod : B cnd : pile)
rtpile | cnd = exec thcod pile (nxcode :> rtpile)

| otherwise = exec elcod pile (nxcode :> rtpile)

iff = Op ifun U where
ifun (_ : nxcode@(Op nxop _ : _))

(C thcod : B cnd : pile)
rtpile | cnd = exec thcod pile (nxcode :> rtpile)

| otherwise = nxop nxcode pile rtpile

Avec la bouclewhile la procédure sera un peu différente. Comme avant, on prévoit le bouclage en mettant
le code original (dont le premier opérateur estwhile) sur la pile des retours, mais d’abord il faudrait dépiler
une seule foisla procédure qui sera répétée. Cette fois, pour varier (et en contradiction avec PostScript !) la
procédure ne sera pas mise sur la pile, mais elle constitue un paramètre extra de l’opérateur.

while proc = Op whfun (C proc) where
whfun this@(Op _ (C prc) : nxcode@(Op nxop _ : _))

(B cnd : pile)
rtpile | cnd = exec prc pile (this :> rtpile)

| otherwise = nxop nxcode pile rtpile

Tout le reste ce sont des tests. Définissons lecube , et trois version de la factorielle : récursive, itérative
(récursive terminale), et itérative avecwhile .

cube = C [dup, dup, muli, muli, ret]

fact = C [dup, ldi 0, eqi,
ldcod [pop, ldi 1,ret],
ldcod [dup,ldi 1,subi,call fact,muli,ret], ifelse, ret]

rtfact = C [ldi 1, exch, goto fctmp]
fctmp = C [dup, ldi 0, eqi,

ldcod [pop,ret],
ldcod [dup, ldi 1, subi, rot, muli, exch, goto fctmp],
ifelse, ret]

3.5 Variante : Indirect threaded code 49

whfact = C [dup, ldi 1, exch, ldi 0, gti,
while [under, muli, exch, ldi 1, subi, exch,

under, ldi 0, gti, ret],
exch, pop, ret]

prog ff = [ldi 3, call cube, call ff, stop]

resa = interp (prog fact)
resb = interp (prog rtfact)
resc = interp (prog whfact)

Le résultat est 10888869450418352160768000000, mais les tests sousHugs donnent un résultat paradoxal : la
solution la plus efficace est la première, récursive en profondeur, ce qui est une calamité pour un informaticien
orthodoxe. . .

La section suivante retourne au modèle précédent, avec la machine virtuelle en forme de boucle, et avec
l’environnement.[Dans la prochaîne version de ces notes ceci sera révisé !]

Le threaded codevit actuellement une renaissance. Notez que son implantation est une réalisation de bas
niveau du concept descontinuations: l’enchaînement des opérations assemblées de manière à ce que chaque
opération connaisse son successeur, ce qui élimine la nécessité d’un dirigeant global.

Mais attention ! Nous utilisons dans nos construction un langage paresseux, ce qui peut provoquer un com-
portement inattendu de la part de la machine. En fait, même un concept si simple que la récursivité terminale,
est non-trivial, et risque de déborder le tas-système si on ne fait pas attention. Faites l’expérience suivante :

n = 1000000

add n t | n==0 = t
| otherwise = add (n-1) (t+0.05)

res = add n 0.0

Cette fonction calcule le produitn · 0.05. Mais sousHugs même si le programme est accepté, le résultat de la
tentative d’affichage :res peut être le suivant :

(3320991 reductions, 8302514 cells, 17 garbage collections)
ERROR: Garbage collection fails to reclaim sufficient space

car au lieu d’ajouter 0.5 au tampon, la fonctionconstruit unthunkqui suspend cette addition. La réduction
de tous cesthunksdifférés a lieu au moment de l’affichage. La conclusion est :un langage paresseux n’est
pas bien adapté à la construction des interprètes (ou programmes de simulation, etc.) par des personnes qui
ignorent les intrications de la sémantique non-stricte.

Cependant le problème est très bien connu, et tous les langages paresseux raisonnables offrent à l’utilisateur
la possibilité d’effectuer la réduction stricte des arguments. EnHaskell il existe un opérateur($!) dont la
sémantique est la suivante :f $! x est équivalent àf x , maisx est évalué d’abord. Donc, pour que le
programme marche, il faut le construire comme suit :

add n t | n==0 = t
| otherwise = add (n-1) $! (t+0.05)

Ceci dit, Hugs prend quand même plusieurs secondes pour afficher le résultat, et encombre le tas avec des
miettes, ce qui déclenche 9 fois le ramassage des miettes. Le même programme enClean, un autre langage pa-
resseux, mais qui découvreautomatiquement, sans aucun opérateur spécial le fait que l’opération(t+0.05)
est stricte, donne le résultat immédiatemment, en moins de 0.1 secondes. . .

Un compilateur d’un langage paresseux pour être compétitif doit être équipé d’un bon analyseur automa-
tique de la nécessité d’évaluation stricte, et il existe pourHaskell aussi, maisHugs n’a pas été conçu pour être
très rapide. (Les mêmes tests prouvent que GHCi n’est pas très rapide non plus).

Credoreligieux no. 6 : La paresse était toujours le moteur principal du progrès de l’Humanité. Mais il ne faut
pas exagérer, cette paresse doit être consciencieuse. . .

50 Machines virtuelles et exécution des programmes par l’ordinateur

3.5.1 Co-procédures

Ceci est une digression importante. Rappelons la Fig.(2.1) qui montre la différence entre les procédures et les
co-procédures. Après chaque phase d’activité, chaque module co-procédural doit «réveiller» son partenaire (ou
un de ses partenaires), et suspendre son activité en sauvegardant son état local qui sera restauré au moment du
«réveil».

La réalisation de ce mécanisme dépend des détails. Si les modulesA etB sont statiques et distincts (s’ils ne
sont pas des clones, des instances de la même définition de procédure), le mécanisme est plus facile à implanter
dans un langage impératif. On opère avec l’adresse de retour comme avec des procédures normales, mais cette
adresse n’est pas stockée sur une pile. QuandA réactiveB, stocke l’adresse de retour dans sa zone privée et
statique de données. La réactivation commence toujours par le début (A sait qu’il faut réactiverB, mais il ne
sait pas où l’autre module s’est arrêté). Tout module co-procédural possède un code préfixe qui s’exécute au
moment de la réactivation. Ce code récupère l’adresse de retour et branche. Dans le jargon de programmation
des processus parallèles ceci s’appelle lecontext-switching.

Mais si le système simule de très nombreux vaisseaux spatiaux qui essaient de se détruire, ces vaisseaux
seront des instances d’un seul module générique : la classe des vaisseaux. Ils partageronttousle même code,
qui ne peut donc contenir aucune zone privée. Il faut alors établir pour chacun uncontextelocal qui remplace
la zone statique de données mentionnée précédemment, et qui constituel’état local de chaque co-procédure. Ce
contexte est une structure de données assez simple, qui contient des données privées de chaque instance, et qui
peut naturellement être crée dynamiquement sur le tas système, de préférence par des techniques d’allocation
structurées et orientées-objet.

Dans le monde fonctionnel l’état privé d’une fonction, son contexte modifiable de l’intérieur n’existe pas.
Cependant, les co-procédures sonten principeréalisables (et dans un langage qui dispose de la primitive
call/cc ceci est facile et naturel). Rappelons l’essentiel d’un appel procédural standard : L’opérateurcall

• sauvegarde sur la pile des retours l’adresse qui suit sa position, et

• branche à son paramètre.

Pour les co-procédures la suite d’opérations peut être la suivante. L’opérateurresume

• sauvegarde sur la pile des retours l’adresse qui suit sa position,

• identifie sur cette pile la co-procédure qui doit être réveillée. Si celle-là n’a jamais été activée auparavant,
le resume se réduit à un appel. Mais si elle se trouve déjà sur la pile des retours,

• le contrôle «retourne» à elle.

Ceci est problématique, car comment le module appelantA peut identifier une adresse interne déposée par le
moduleB quand celui-ci a suspendu son activité? Et même si on stocke sur la pile des retours les adresses avec
quelques balises d’identification, la recherche risque d’être onéreuse, il faudra peut-être récupérer l’adresse du
retour co-procédural de l’intérieur de la pile (elle n’est plus une pile !).

En fait, la technique la plus universelle, lisible et portable consiste à maintenir

• un tableau spécialmodifiable, ou chaque co-procédure dépose son adresse de réactivation au moment
du resume d’un autre module – ceci est avantageux si le nombre de co-procédures est connu, et si
les co-procédures de réveillent directement (elles connaissent l’indice attribué au partenaire réveillé), ou
bien

• unefile (p. ex. une liste) avec les adresses de réactivation. Ceci est utile si les co-procédures «s’endorment»
(en plaçant son contexte à la fin de cette file), mais la réactivation est à charge d’un pilote global, le «sys-
tème d’exploitation», qui réactive toujours le premier (ou le prioritaire).

Nous n’allons pas implanter les co-procédures grâce à ce mécanisme, car pour les tester il faut prévoir que
les co-procéduresfassentquelque chose de non-trivial, qu’elles génèrent des effets de bord permettant de voir
leur exécution quasi-parallèle. Notre machine virtuelle n’est pas bien adaptée à cette sorte d’exercices. La
compilation du parallélisme dépasse les bornes de notre cours. . .

3.6 Le compilateur : première tentative 51

3.6 Le compilateur : première tentative

Les sections précédentes avaient pour but définir de manière la plus précise le modèle d’exécution de notre pro-
gramme interprété. À présent construisons le générateur de code linéaire à partir de l’arborescence syntaxique.
Ceci est (en principe) très simple.

Rappelons les structures définissant les expressions arborescentes, notre expression exemplaire, et intro-
duisons deux tables: une qui décode les noms des variables, et l’autre qui transforme les noms des opérateurs
(chaînes) en opérateurs – générateurs desCodeItems .

Opsymb = String
data Expr = L Value | A Opsymb Expr Expr

expr = A "-" (A "-" (L(F 1.0)) (A "*" (L(F 2.0))
(A "+" (A "*" (L(F 2.0)) (L(S "x")))

(A "/" (L(F 3.0)) (L(S "y"))))))
(A "*" (L(F 2.0)) (L(S "z")))

symtab = [("x",0),("y",1),("z",2)]
optab = [("-",sub), ("+",add),("*",mul),("/",dvd)]

Nous aurons besoin de la fonctionassoc , un peu plus générale que celle qui décodait les variables. Ici la
fonctionassoc est polymorphe et cherche un objet quelconque associé à une chaîne.

assoc _ [] = error "Pas d’association !"
assoc ch ((sy,v):q) | ch==sy = v

| otherwise = assoc ch q

Le compilateur des expressions est triviale :

compil :: Expr -> Code
compil (L val) = case val of

F x -> [dblc x]
S v -> [var n] where n=assoc v symtab

compil (A op e1 e2) = let f=assoc op optab in
compil e1 ++ compil e2 ++ [f]

La récursivité en cascade, surtout associée à la concaténation des listes n’est presque jamais une bonne chose.
L’usage de la pile système est intense, mais le désavantage principal, si on utilise les listes classiques chaînes
pour stocker le code linéaire est le fait que le fonction de concaténation(++) (connue enLisp comme
append) se trouve dans la clause récursive. Or, on sait queappend recopie entièrement son premier ar-
gument pour l’attacher au second. Notre compilateur produira donc des copies des copies des copies. . .

L’optimisation d’une linéarisation hiérarchique d’un arbre est très bien connue et appartient à la
panoplie standard de techniques fonctionnelles(et selon l’auteur de ces notes, si les étudiants en Informa-
tique arrivent au bout du deuxième cycle sans connaître ces techniques, ils ne méritent pas leur diplôme, et/ou
leurs enseignants sont coupables d’une négligence inadmissible. . .). Ce sujet a été traité dans l’exercice sur
le tri arborescent. Faisons la même chose ici. Ajoutons un argument-tampontmp à la fonctioncompil et
construisons la fonctioncompapp dont la définition (conceptuelle, non pas réelle !) serait

compapp expr tmp = (compil expr) ++ tmp

Répétons que ceci n’est pas sa vraie déclaration, mais sa sémantique. La vraie structure utilise le «unfolding»
(dé-pliage) de la concaténation :

compil expr = compapp expr [] where
compapp (L val) tmp = case val of

F x -> (dblc x):tmp
S v -> (var n) :tmp where n=assoc v symtab

compapp (A op e1 e2) = let f=assoc op optab in
compapp e1 (compapp e2 (f:tmp))

l’existence de deux branches implique deux appels récursifs, mais le dernier est terminal, et la concaténation a
été éliminée.

La compilation et l’optimisation des structures de contrôle : des conditionnelles, des boucles, éventuelle-
ment d’unswitch, c’est un bon exercice pour le travail individuel.

52 Machines virtuelles et exécution des programmes par l’ordinateur

3.7 Exercices

(Les exercices concernent la machine avec la boucle centrale, sauf si nous précisons explicitement qu’il s’agisse
du threaded code.)

Q1. Important ! Ajouter dans quelques opérateurs primitifs (dup , exch , opérations arithmétiques, etc.) un
vérificateur de la pile, qui déclenche une exception (fonctionerror) si la pile est vide ou trop courte.

R1. Les modifications sont purement techniques. Au lieu d’écrire

dup = O (_ _ rst later p@(x:q) -> (rst,later,x:p)) U

nous définissons

dup = O (_ _ rst later p ->
case p of (x:q) -> (rst,later,x:p)

_ -> error "Pile vide !") U

etc.

Q2. Les définitions des opérateurs primitifs commedup etc. dans la dernière version de la machine sont
horribles. Il serait beaucoup plus simple de pouvoir écrire simplement

dup p@(x:_) = x:p
pop (_:q) = q
exch (x:y:q) = (y:x:q)

etc. Peut-on simplifier cette notation baroque avec le constructeurC, arguments inutiles, constructeur
«bidon»Uetc.?

R2. Oui, notre proposition est la suivante. Les primitifs seront générés comme lesbinop ’s :

dup = oppgen (\p@(x:_) -> x:p)
pop = oppgen (\(_:q) = q)

etc., par le générateur

oppgen f = O (_ _ rst later p -> let np=f p in
(rst,later,np)) U

Q3. Construire l’opérateurwhile (pour la machine en forme de boucle) qui doit trouver sur la pile des
données une condition (nombre entier) et une procédure. La procédure est exécutée si la condition est
vraie, et le processus se répète, sinon le programme continue. La procédure peut (et en général le fera)
modifier la pile, mais elle doit obligatoirement mettre sur le sommet un objet qui jouera le rôle de la
condition pour l’étape suivante.

R3. Ceci est un exercice intéressant, carwhile d’habitude est un opérateur primitifrécursif, et nous nous
sommes refusés le droit d’utiliser la récursivité dans le langage d’implantation. Cet opérateur simule
donc la récursivité dynamique par la «récursivité statique» : il empile sur la pile des retours sa propre
instance si la condition d’itération est vraie.

while = O (_ _ rst later ((Co prc):(I cnd):q) ->
if cnd==0 then (rst,later,q)

else (prc, (proc prc:while:rst):later,q)) U

Voici la sémantique : si la condition est fausse, l’opérateur ne fait rien, sauf dépiler et ignorer la
procédure-boucle. Sinon, la procédure sera exécuté comme le nouveau code, maiswhile modifie le
programme à exécuter, et placedevantle code restant de nouveau la même procédure, et soi-même.

Notez l’auto-référence dewhile . Ce n’est pas un appel récursif direct, carwhile est une structure
de données, et non pas une fonction. Pourquoi ceci ne déclenche pas une exception? Normalement une

3.7 Exercices 53

struct ne peut pas contenir elle-même (mais elle peut contenir un champ contenant le pointeur sur
soi-même). En fait, la construction constituepresqueun appel récursif, car la référence àwhile dans sa
définition est cachée à l’intérieur d’une fonction, dans le corps de la forme lambda. Ce corps sera évalué
lors de l’application de la fonction par la machine virtuelle.

Dans des langages fonctionnels stricts commeML ou Scheme on peut simuler l’évaluation paresseuse
en cachant les objets différés à l’intérieur des formes lambda. Ce sujet sera encore abordé, mais nous
avons déjà vu que

• les structures de contrôle, commeif-then-elseouwhile sont en fait des fonctions paresseuses, et

• la réalisation de ces structures dans notre machine virtuelle passe par l’empilement des objets fonc-
tionnels anonymes (les codes «then» et «else»).

Notre définition dewhile sera utilisée pour définir la fonction factorielle itérative qui calculen! comme
n(n− 1)(n− 2) · · · 2 · 1. L’opérateurroll tourne les trois derniers éléments de la pile un peu différem-
ment derot .

roll = O (_ _ rst later (x:y:z:q) -> (rst,later,z:x:y:q)) U

zerop = exec [dup,intc 0,eqi,ret]
decr = exec [intc 1,subi,ret]

ifac = exec [zerop,
proc [pop, intc 1, ret],
proc [dup, decr, dup,

proc [dup, roll, muli, exch, decr, dup, ret],
while, pop, ret],

ifelse, ret]

ifres7 = interp envir [intc 7, ifac, ret]

La dernière ligne produit [5040] sans protester.

Q4. Implanter la bouclerepeat – un opérateur primitif qui trouve sur la pile des données la condition de
continuation et une procédure, et qui exécute la procédure avant de vérifier la condition. Si elle est vraie,
le processus se répète.

Implanter aussi l’opérateurloop qui boucle sans fin, exécutant la procédure trouvée sur la pile. Il faut
être raisonnable, et implanter aussi un opérateur primitifbreak qui arrête une telle boucle. Ceci est un
défi conceptuel, car comment désactiver l’opérateurloop de l’intérieur de la procédure exécutée?

R4. Non, pas de réponse ici. Ceci estvraimentun bon sujet d’examen.

Q5. Question difficile. Nous voudrions ajouter à notre machine virtuelle un module de déboguage. Chaque
fois quand l’interprète exécute un opérateur, une information est affichée. (On peut donner à chaque
opérateur un attribut textuel, par exemple son nom, et les fonctions d’empilement «écrivent un rapport»
de leur activité).

Pourquoi c’est difficile? Parce que notre machine est fonctionnelle. Il n’y a pas d’effets de bord, alors le
résultat est renvoyé à la fin, quand la fonction termine le travail, ce qui n’est pas bon pour le déboguage,
surtout si l’évaluateur déclenche une exception en mi-chemin. . .

Cependant si le langage d’implantation est paresseux, et si une fonction produit une liste ou une chaîne
qui sera éventuellement affichée, la création procède de manière incrémentale : une liste partielle peut
être formée et affichée avant la catastrophe. Essayer de comprendre cette stratégie et de l’implanter.

R5. Ce problème sera discuté plus tard, dans le contexte des structures de contrôlemonadiques.

Q6. La fonctioncompil est un exercice en parcours des graphes arborescents. Écrire une fonction sim-
plifiée, qui n’a pas besoin de décoder les variables ou les opérateurs, mais place les objets (les feuilles
ou les opérateurs) directement dans la liste de sortie. Essayer d’écrire cette fonction linéarisantede
manière combinatoire, sans paramètres. Commencer au moins par l’élimination du tampontmp grâce
au combinateurcomp (enHaskell : (.)).

54 Machines virtuelles et exécution des programmes par l’ordinateur

R6. Commençons par le code original, récursif arborescent :

type Val = Int -- pour la discipline
type Arb = F Val | A Val Arb Arb

flat (F x) = [x]
flat (A x gauche droite) = flat gauche ++ flat droite ++ [x]

et la variante optimisée :

flat a = flatmp a [] where
flatmp (F x) tmp = x:tmp
flatmp (A x gauche droite) tmp =

flatmp gauche (flatmp droite (x:tmp))

La fonction récursive interne peut être simplifiée. La clause terminale aura la formeflatmp (F x)
= (x :) . La clause récursive subira les transformations suivantes :

(flatmp gauche) ((flatmp droite) (x:tmp)) =
((flatmp gauche) . (flatmp droite)) (x:tmp) =
(((flatmp gauche) . (flatmp droite)) . (x :)) tmp

et ainsi le tampon est éliminé. On ne peut aller plus loin, car la sémantique de la fonctionflatmp
contient un discriminateur des types, et les combinateurs sont par nature polymorphes. Bien sûr, la
définition : f x tmp = x:tmp se réduit àf = (:) , mais on ne peut pas réduire à la forme sans
paramètres une fonction qui a deux clauses distinctes, il faut utiliserif-then-else. Laissons au lecteur le
reste de cette conversion.

Le but de cet exercice est un peu différent : comparez la forme récursive arborescente avec la forme
optimisée et réduite. Elles ont presque la même structure, avec le compositeur(.) replaçant la con-
caténation. Comparez ceci aux exemples d’affichage des objets de typeValue , et à la construction de
la fonctionshowPrec . Ceci nous aidera à composer les parseurs.

Q7. Optimiser (linéariser) la fonctionflat grâce aux continuations.

R7. Définissons d’abord l’opérateur(:) continué

cc x y cnt = cnt (x:y)

Avec cet opérateur on peut convertir la concaténation

apc [] l cnt = cnt l
apc (x:q) l cnt = apc q l $ \r -> cc x r cnt

où l’opérateur standard($) est un «applicateur» :f $ x = f x mais de très faible précédence, ce
qui économise l’usage des parenthèses. Notez que la concaténation standard :

[] ++ l = l
(x:q) ++ l = x : (q++l)

est une fonction récursive non-terminale, qui dans le cas d’un langage strict, où les arguments sont
évalués avant l’appel de la fonction, effectivement empile élément par élément la totalité du premier
argument. Donc, si la pile système, qui limite la profondeur de la récursivité, est courte (ce qui est une
bonne idée, car sinon c’est du gaspillage de mémoire presque toujours vide), on ne peut pas concaténer
une liste très longue avec une autre.

Dans la version continuée la concaténation est récursive terminale, mais il y a un prix a payer : une
fermeture, une fonction anonyme :\r -> cc x r cnt qui «attrape»x , cc et cnt est dynamique-
ment crée sur le tas système pour chaquex . Ainsi on est limité seulement par la mémoire dynamique du
système, d’habitude beaucoup plus large que la pile. Mais la consommation physique des ressourcesest
plus importante.

La conversion de la fonctionflat est

3.7 Exercices 55

flatc (F x) cnt = cc x [] cnt
flatc (A x g d) cnt = flatc g $ \a ->

flatc d $ \b -> apc a b $ \r ->
apc r [x] cnt

ce qui peut être encore simplifié.

Q8. Implanter les affectations en suivant les conseils dans le texte.

R8. Désolé, mais les conseils ont été mis justement pour encourager un travail personnel de la part des
lecteurs. Ceci est un bon sujet d’examen.

Q9. Pourquoi avons-nous forcé la présence de l’instruction RET ou de l’opérateurret dans toute procédure?
Vérifier que la liste est vide est très simple et facile, et le code devient plus court.

R9. Ne lisez pas la réponse ! Essayezvraimentde répondre à cette question. D’ailleurs, la réponse se trouve
dans le texte de ce chapitre.

OK. Il existe deux raisons importantes.

• Imaginez que les procédures ne sont pas stockées dans des listes, mais dans des segments contigus
d’un tableau-buffer global. La machine au lieu d’utiliser pour son paramètre-code la liste, qui en
fait est représentée par le pointeur, prend l’indice (l’adresse) du segment correspondant. Comment
séparer les procédures? Physiquement elles ne se terminent pas, car elles sont suivies par les autres.
L’opérateur de retour remplit cette tâche.

• On peut envisager un retour conditionnel au milieu de la procédure. Le retourestune opération de
base pour presque toutes les machines virtuelles de bas niveau.

Q10. (Tu l’as voulu, Georges Dandin. . .) Implanter le retour conditionnel.

R10. Bien sûr, on ne peut pas mettre une procédure[ret] sousifelse , car une procédure ne peut pas sortir
non-localement de son module appelant. Mais on peut parametrer l’opérateurret . Au lieu de

ret = O (_ _ _ (rt:demain) pile -> (rt, demain, pile)) U

nous aurons

ifret = O (_ _ rst ltr@(rt:demain) (cnd:pile) ->
if cnd/=0 then (rt, demain, pile) else (rst,ltr,pile)) U

qui ne fait rien si la condition n’est pas satisfaite.

Q11. Nous avons écrit:une procédure ne peut pas sortir non-localement de son module appelant. Générale-
ment ceci est faux ! L’opérateurstop le fait. Écrire un opérateurbreak qui sort du bloc où il se trouve,
mais également du bloc englobant. Ceci est un outil permettant d’arrêter les boucles sans fin.

R11. Rien de plus facile, regardez les définitions duret et stop . On sait que le code qui sera exécuté après
le retour normal est placé sur la pile des retours. Il suffit de l’éliminer.

break = O (_ _ _ (viré:hop:après) pl -> (hop, après, pl)) U

Q12. Pourquoi dans notre version duindirect threaded code(mais les autres modèles de machine virtuelle
donneraient des résultats pareils), la version récursive de la factorielle est plus efficace que les versions
itératives?

R12. C’est l’effet de l’interprétation parHugs. L’efficacité ici signifie le nombre de réductions effectué par
Hugs, et non pas par le processeur matériel. Une opération primitive est équivalente à une autre, et un
programe un peu plus long (à cause de la présence du tampon, et de sa manipulation) sera moins efficace.
Les opérations primitives sur la pile machine ne sont pas onéreuses. Mais on pourra optimiser encore ce
code !

56 Machines virtuelles et exécution des programmes par l’ordinateur

Q13. Alors, comment optimiser la machine sans boucle, qui passe le contrôle parthreaded code?

R13. En fait, ceci faitpartie intrinsèque de notre générateur du codefutur, et nous voulions aborder cette
question plus tard. Mais nous pouvons le faire tout de suite. Une machine de plus bas niveau encore,
plutôt style assembleur quePostScript ou FORTH peut éviter beaucoup d’appels/retours grâce aux
branchements conditionnels. Plus concrètement :

• Les opérateursifelse , while , etc. ne demanderont plus le chargement du code à exécuter sur la
pile des données. En effet, si ce code est produit par le compilateurstatiquement, avant l’exécution
du programme, il est inutile de le mettre dans le programme pour l’empiler et ensuite dépiler et
passer à l’opérateur en question. Ce code (son adresse) peut être placé comme la paramètre de
l’opérateur.

• Il n’y aura plus deprocéduresà exécuter, ce qui nous a obligé de sauvegarder la continuation sur la
pile des retours. Plus d’appels, plus de retours !

• Les opérateursifelse , while ne seront plus des primitives de la machine, mais leur généra-
teurs(ifelsegen , whilegen) construiront des séquences de code liées par les opérateurs de
branchementgoto , ifgoto (branchement en cas de succès) etifnotgoto (branchement en
cas d’échec). Voici, sur la Fig. (3.2) la structure du code réalisantif conditionthen code thenelse
code else, et sur la Fig. (3.3) la bouclewhile.

condition ifgoto code else goto code then le reste... ...

Fig. 3.2: If-then-else dans un code de bas niveau

condition ifnotgoto code de la boucle ifgoto le reste... ...

Fig. 3.3: Structure de la boucle while

Voici le codage de nouvelles primitives de branchement :

goto proc = Op (\(Op _ (C prc) : _) -> exec prc) (C proc)

ifgoto proc = Op ifgofun (C proc) where
ifgofun (Op _ (C prc) : nxcode@(Op nxop _ : _)) (B cnd : pile)

| cnd = exec prc pile
| otherwise = nxop nxcode pile

ifnotgoto proc = Op ifngofun (C proc) where
ifngofun (Op _ (C prc) : nxcode@(Op nxop _ : _)) (B cnd : pile)

| cnd = nxop nxcode pile
| otherwise = exec prc pile

ifelsegen cndlst thenlst elselst next =
cndlst ++ (ifgoto the : elselst ++ (goto next : the))

where the = thenlst ++ next

whilegen cndlst prclist next =
cndlst ++ ifnotgoto next : pr where

pr = prclist ++ ifgoto pr : next

3.7 Exercices 57

Ceci correspond aux diagrammes sur les Figures (3.2) et (3.3). Notez comment nous avons profité de
la programmation paresseuse pour «boucler» une structure de données (une liste) et de la rendre auto-
référentelle. Ceci est possible avec un langage strict par un algorithme à deux passes : d’abord on
construit la liste avec des «trous», et ensuite onmodifie physiquementle résultat, en remplissant les
trous par les adresses voulues (en avant ou en arrière, mais toutes déjà connues). L’algorithme paresseux
nécessite une seule passe.

à présent nous pouvons construire d’autres variantes de la immortelle factorielle. Voici le code récursif
et le code avec la bouclewhile :

recfact = C (ifelsegen [dup, ldi 0, eqi]
[pop, ldi 1]
[dup,ldi 1,subi,call recfact,muli]
[ret])

whilfact = C (whilegen [dup, ldi 1, exch, ldi 0, gti]
[under, muli, exch, ldi 1, subi, exch,

under, ldi 0, gti]
[exch, pop, ret])

(mais n’essayez jamais d’imprimer ces listes, elles sont cycliques !) Notre nouvelle solution est «presque
parfaite», plus économique que les précédentes, ce qui n’empêche que la solution récursive est plus
efficace que celle avec la boucle, et toujours pour les mêmes raisons. . .

Q14. Question très délicate : peut-on construire le «code enfilé» enC ouC++.

R14. Réponse encore plus délicate : oui et non. Le problème est qu’enC le goton’est pas dynamique ! Certes,
il y a des pointeurs sur les fonctions, mais ils permettent d’appelerles fonctions, et non pas de brancher
directement sur elles. Pour des raisons toujours un peu obscures, enC il n’y a pas de récursivité terminale
optimisée ! (même si quelques compilateurs offrent cette option).

Le gotostandard demande la présence d’une étiquette statique, nommée dans le programme. Mais il ex-
iste une extension GNUC (ce qui peut être considéré comme «presque standard»), permettant d’affecter
des adresses variables à l’argument d’une instruction de branchement. Un tel programme marche :

main(int argc, char *argv[])
{void *labl; labl = &&l1;

//
goto *labl;
cout << "ne sera pas affiché\n";
goto lend;
//
l1:cout << "nous y sommes !\n";

lend: cout << "fin du programme...\n";
return 0;

}

Cependant, il reste impossible de transférer le contrôle d’une procédure à l’autre, les étiquettes doivent
rester locales (cette restriction était relaxée enFORTRAN avec leASSIGNED GOTO, mais cette struc-
ture était vraiment dangereuse). L’appel d’une fonction ce n’est seulement pas la sauvegarde de l’adresse
du retour et le branchement, mais la création duframepour l’instance d’activation de la procédure ap-
pelée, la mise à jour de la pile système, etc. Quelques personnes qui connaissent bien ce protocole et
savent programmer en assembleur, ont su éliminer ces charges et construire un véritablethreaded code
enC (p. ex. les travaux d’Elliott Miranda sur Smalltalk), mais les résultats ne sont toujours pas portables.

Toutefois la situation n’est pas complètement désespérée si quelqu’un ne s’intéresse pas par l’efficacité de
la solution, mais uniquement au concept dethreading. Pour cela il faut restaurer la machine-interprète
central, la boucle. Dans cette boucle on appelle une fonction et on place sa valeur de retour dans un
registre global.

58 Machines virtuelles et exécution des programmes par l’ordinateur

La fonction appelée termine son travail par l’opérationJUMP(une autre fonction) . MaisJUMP
n’est pas ungoto (qui n’existe pas dans ce contexte), ni un appel standard, mais. . . – oui, vous avez
deviné – leretour ! On informe donc la boucle centrale quelle est l’adresse suivante, et la boucle appelle
l’adresse stockée dans son registre global. Et la situation se répète, jusqu’à une instruction spéciale,
disonsSTOP, qui provoque lebreak , ou déclenche une exception plus dramatique, p. ex. le vtlongjump.

En fait, ce protocole, pas très efficace mais portable, était la source de l’inspiration pour notre modele de
machine virtuelle où chaque opérateur prépare l’adresse suivante à exécuter pour la boucle principale de
l’interprète.

Credoreligieux no. 7 : Pour vivre longtemps, un langage de programmation doit êtremauvais, commeC. Si
un langage est bon, les gens s’y jettent pour l’améliorer encore plus, mais avec un langage mauvais la situation
est désespérée, donc on le laisse en paix.

Chapitre 4

Les tâches et la structure d’un
compilateur

4.1 Un peu d’anatomie et de physiologie

La «vraie» compilation est la génération du code. Le nom, d’ailleurs, est historique ; il signifiait le ramassage
des morceaux du programme en une entité organique, exécutable. Les morceaux résidaient sur cartes perforées,
et la compilation était moins une translation, que le montage d’une pile. À présent cette sorte de «compilation»
est plutôt la tâche del’editeur des liensque du compilateur. . .

Avant qu’un «ouvrage littéraire», le texte source d’un programme ne se transforme en quelque chose
d’exécutable, en une application indépendante, ou un tableau interne exécuté par un interprète, il faut compren-
dre le texte du programme, l’analyser, le décomposer en unités primitives, et ensuite, à partir d’une description
très précise et complète de ses éléments, de sa structure,et de sa sémantiqueon peut créer le code pour une
machine-cible. Alors la compilation se décomposepar conventionen deux phases majeures :

• L’analyse,

• La synthèse

mais cette division n’implique pas que les deux phases soientvraimentdistinctes, assez souvent elles se recou-
vrent partiellement, elles se chevauchent, et le compilateur bascule entre deux modes de travail plusieurs fois
durant un cycle de compilation. De plus, la phase d’optimisation de code possède d’habitude des modules ana-
lytiques et synthétiques, et la table des symboles qui assure la correspondance entre les noms et les références,
est gérée simultanément par les deux catégories de modules.

L’analyse est d’habitude divisé en étapes : lexicale, syntaxique et sémantique, ce qui facilite la concep-
tualisation et la modularisation de l’analyseur, et permet l’usage des outils simples pour des tâches simples.
Par exemple, l’analyse lexicale peut s’appuyer sur les automates finis, sans mémoire, tandis que la structure
récursive phrasale d’un langage nontrivial exige que l’analyseur syntaxique gère une pile. Mais – soulignons –
cette séparation est vraiment conventionnelle, et pour nous elle sera secondaire. Une vision globale, homogène
est pour nous plus importante que la modularisation. Un officier, par exemple un stratège du Quartier Général
voit l’armée à travers les Forces, les Divisions, les Unités ; il distribue les tâches et organise la communication
globale. (Et il ne demande pas qu’un sous-officier gagne seul une bataille, sauf s’il s’agit du John Rambo).
Mais pour son supérieur politique, il existeunearmée qui doit gagner la guerre, et il doit gérer cette armée de
manière uniforme. Et vous pensez que le mot «uniforme» vient d’où? (Mais, plus sérieusement, la construction
d’un analyseur monolithique qui comporte des éléments lexicaux et syntaxiques est plus facile).

Également lasynthèsetout court couvre la synthèse d’un code intermédiaire, son optimisation (qui – comme
nous l’avons dit – partiellement appartient à l’analyse) et – éventuellement – la sortie du code binaire final.
Parfois on arrête la synthèse assez tôt et on exécute directement le code intermédiaire ; tel est le cas des
interprètes classiques, comme les interprètes duBasic, Lisp, Prolog ou FORTH. (Mais presque jamais cette
exécution ne se fait «instruction par instruction», ce que suggèrent quelques auteurs des livres anciens sur la
compilation.)

59

60 Les tâches et la structure d’un compilateur

Cette exécution ne doit pas forcément suggérer les calculs numériques suggérés par les machines virtuelles
montrées précédemment. Il y a des compilateurs dont le code-cible sont des commandes graphiques qui per-
mettent de programmer un dessin technique ou une scène d’animation.Ce texte a été formaté par un metteur
en page spécialisé, LATEX équipé avec un interprète de commandes (macros). Nous l’avons tapé en utilisant
un éditeur textuel standard. Si nous voulions taper une formule mathématique relativement riche, comme, par
exemple

∞∑
n=0

αn√
n2 + 1

2

nous’écririons :

$$
\sum_{n=0}^\infty{{\alpha^n \over \sqrt{n^2+{1\over 2}}}}
$$

sans hésitation. La tâche de l’auteur humain est lalogiquede cette expression, sa structure correcte, sa signifi-
cation, mais sa mise en page et les problèmes visuels – on les laisse à la discrétion du LATEX. Il sait comment
comprendre les mots commeα et les «compiler» enα, il sait que les accolades délimitent les argu-
ments d’une forme fonctionnelle, comme\sqrt{...} , il sait appliquer la récursivité. Finalement, le «code»
généré – soit un fichier.dvi , soit un document en format PDF – contient les instructions de positionnement
des entités graphiques sur les pages, les instructions de saut de page, etc., exécutées par l’interprète Acrobat
Reader, ou l’interprètePostScript de l’imprimante (après une seconde compilation qui transforme le code
précédent considéré comme intermédiaire, en PS).

Prenons cependant un exemple plus «classique». Voici une instruction d’affectation écrite enPascal ou un
autre langage de ce genre:

x := 5+alpha*3*(21 - x+3*alpha)-1.0

4.1.1 Le lexique

Ceci est untexte, une chaîne de caractères. Il faut tout d’abord reconnaître et séparer les mots, les unités
lexicales, afin de pouvoir reconstruire les valeurs numériques comme «21» et de pouvoir reconnaître qu’il y
a deux occurrences de la même variablealpha . C’est le rôle de l’analyseur lexical connu également sous
le nom descanneur. Le scanneur doit reconnaître les commentaires et les espaces sans signification, générer
(ou préparer la génération) les nombres, les symboles identificateurs, et les mots-clés (il peut les distinguer,
ou laisser cette tâche au module syntaxique), etc., et en général, transformer le texte en une suite delexèmes.
Ces lexèmes passent au module suivant, syntaxique, avec leurscatégories lexicales. L’analyseur souvent n’est
pas intéressé par les noms concrets des variables ou par les valeurs numériques définies, mais uniquement par
la catégorie des objets. Il suffit de savoir qu’un lexème représente un nombre flottant, pour pouvoir compiler
le code qui traite ce nombre. (Le module de synthèse qui engendre les références aux données doit, bien
évidemment, donner au programme compilé l’accès à la valeur numérique d’un objet, mais ceci viendra plus
tard).

Les catégories classiques sont: identificateurs, constantes entières, réelles, Booléennes, etc., opérateurs
binaires comme<> enPascal ou != en “C”, mots-clé commewhile , éventuellement aussi les séparateurs ou
les terminateurs comme le point-virgule. Il faut y ajouter les parenthèses, crochets, accolades, etc. On appelle
ces catégories de lexèmes desjetons(ou tokens).

Il faut parfois prendre des décisions délicates. Qu’est-ce que c’est :17alpha ? En Pascal c’est une
calamité, une erreur. EnLisp cela peut êtreun lexème normal, un identificateur. Dans la plupart d’autres
langages un caractère alphabétique arrête le scanning d’un nombre, donc nous aurons deux lexèmes:17 et
alpha . Mais ensuite: est-ce légal, cette suite de lexèmes? Cette décision n’appartient plus à l’analyse lexicale,
bien qu’un analyseur lexical peut diagnostiquer une faute lexicale si le lexème est terminé par un caractère
considéré illégal (par exemple : un nombre suivi directement par une lettre). De très rares langages (comme par
exemple le systèmeMetaPost l’acceptent et traitent comme 17 multiplié paralpha, mais cette interprétation
n’appartient non plus au scanneur, et dans d’autres langages le parseur ne l’accepte pas.

4.1 Un peu d’anatomie et de physiologie 61

Une autre décision délicate est la gestion deformatdu document d’entrée.Fortran prévoyait une instruction
par ligne, alors tout retour-chariot était un caractère spécifique – le terminateur. La plupart de langages plus
modernes considèrent la fin de ligne comme tout autre espace blanc qui sépare les entités lexicales. Ceci
implique l’usage intense de caractères de séparationsyntaxique: les points-virgules. Cependant – pourquoi la
philosophie deFortran ou Basic dans ce contexte est pire? On note donc actuellement plusieurs réponses à la
question concernant la signification dulayout.

• En Matlab les points-virgules sont optionnels. On peut terminer une instruction par «; », mais si le
terminateur est absent, si l’instruction se termine par fin de ligne, le résultat est automatiquement affiché,
la présence du point-virgule bloque l’affichage. Ce caractère joue alors un rôle sémantique !

• Le langage de calcul formelMaple prévoit deux terminateurs : point-virgule, et deux points.Le second
bloque l’affichage du résultat, le premier force l’affichage. (Le paquetageMatlab possède un module
d’interfaçage avecMaple. Le travail simultané avec les deux systèmes est nuisible à la santé psychique
de l’utilisateur. . .)

• Python considère la fin de ligne comme terminateur, mais conditionnel ; si la ligne suivante est indentée,
elle est considérée comme continuation.Haskell suit la même philosophie, avec quelques différences.
En général, les langages qui respectent des règles spécifiques d’indentation sont très lisibles, mais il faut
être plus vigilant pour éviter des fautes dues à la négligence.

• Tout langage a ses propres techniques de déclarer qu’une ligne est la continuation de la précédente. En
C on termine la ligne précédente avecbackslash. En Matlab la ligne suivante commence par... , et
Fortran classique demande que la colonne 6 de la ligne suivante contienne un caractère non-blanc.

• Un compilateur professionnel doit naturellement diagnostiquer les fautes, et signaler l’endroit où ellels
ont été découvertes. Ceci suggère que le scanneur doit passer à l’étape suivante les lexèmesavec leurs
positions – les numéros de ligne et de colonne dans le document-source. (Ces informations doivent
survivre aussi l’analyse syntaxique, car parfois lors de l’analyse sémantique on découvre quelques fautes,
par exemple une erreur de typage, et il est utile de pouvoir les localiser précisement, même si les erreurs
de typage sont souvent «distribuées»).

Cette prolifération de protocoles lexicaux continue jusqu’aujourd’hui, et permet d’exprimer notre

Credoreligieux no. 8 : Les créateurs des langages de programmation sont tous des grands enfants et esprits
artistiques, qui ne se refusent presque jamais le plaisir d’introduire des petites différences inutiles par rapport
aux langages existants, et de démontrer ainsi leur originalité.

Mais aussi :

Credoreligieux no. 9 : Les enfants ont normalement une vie longue et joyeuse devant eux, tandis que les gens
stables, ceux qui résistent aux changements, hmmmm. . .

Une chose est certaine. Le scanneur transforme le flot de caractères en unités atomiques, reconnaît leur caté-
gories lexicales, et passe au module syntaxique les jetons, avec leur catégories. Accessoirement il construit
la table des symboles oùchaque atome existe en un seul exemplaire(sauf si le langage prévoit l’existence de
plusieurs espaces de noms (namespaces).

L’analyseur lexical peut avoir plus d’intelligence que l’on ne lui accorde traditionnellement.

• Il peut reconnaître les caractères de manière parametrée. D’habitude il «sait»a priori distinguer les
lettres, les chiffres, les parenthèses ou autres caractères spéciaux, l’espace blanc, etc., les attributions
des catégories lexicales c’est fait statiquement. Mais ceci n’est pas la seule stratégie possible. On peut
arbitrairement assigner la catégorie «lettre» à n’importe quel caractère, et ceci n’est pas un problème
académique ! Si on travaille avec les alphabets plus riches que le notoire ASCII, et si on veut que les
lettres accentuées, ou portant d’autres signes diacritiques (cédille roumaine ou turque, lettres “ś”, ou “ż”
polonaises), éventuellement les caractères en cyrillique ou arabe codés selon quelques standards parti-
culiers, soient reconnues comme telles, la meilleure stratégie est de commencer par définir un tableau
attribuant aux caractères leurs catégories. Ceci peut faciliter la reconnaissance des guillemets ou des
chevrons : “<< >>” comme des parenthèses spécifiques (ces derniers sont obligatoires dans des docu-
ments Français officiels), ou forcer la prise en compte des espaces ou des fins de ligne. (Cette technique

62 Les tâches et la structure d’un compilateur

est utilisée moins souvent qu’elle ne le mérite à cause de la monopolisation de l’informatique par la
coquille culturelle anglo-saxonne, et par la prédomination de langages de programmation «classiques».
Mais le standard Unicode commence à se faire reconnaître. . .).

• Au niveau de l’analyse lexicale on doit traiter lesmacrosqui forcent le remplacement d’un lexème par
une suite quelconque d’autres lexèmes. En présence des macros parametrés, éventuellement récursives,
la collaboration entre la couche lexicale d’entrée et l’analyseur syntaxique se complique considérable-
ment. (Et ceci rend le langage difficile non pas seulement au constructeur du compilateur, mais aussi
pour les personnes qui apprennent ce langage ; ceci est le cas deMetaPost, Clean et partiellement aussi
duScheme).

Cependant, d’autre part, accorder à un module trop d’intelligence est toujours risqué. Les macros enC (les
clauses#define) sont traitées par un programme spécial – le préprocesseur.

4.1.2 Syntaxe et Sémantique : introduction

Le module syntaxique construit les arborescences dérivées de la structure phrasale du programme.
Il ne faut pas croire que ces arbres sont toujours créés physiquement dans la mémoire de l’ordinateur, avec

les pointeurs, etc. Sachant que la structure récursive des phrases, par exemple des expressions arithmétiques
composites correspond souvent aux appels récursifs du parseur, qui s’appelle lui-même pour analyser une
sous-expression parenthésée, l’arbre syntaxique peut être «virtuel», caché dans lapile des instancesdu parseur
récursif (où dans la liste decontinuations latentes). La construction de cette pile par les appels, et sa destruction
par les retours constituent le parcours par ce graphe virtuel, et permettent la génération du code linéaire sans
jamais utiliser de vrais arbres. Ceci est la stratégie appliquée par de nombreux compilateurs dePascal, surtout
les compilateurs rapides, qui génèrent le code final en une passe (comme le premier compilateur de Wirth et
Amman, et les anciens compilateurs de Borland).

Cependant, parfois il est souhaitable de générer un code intermédiaire indépendant du parseur, il faut alors
construire l’équivalent d’une structure arborescente dans la mémoire ou sur un fichier, avec l’adressage relatif.
Ceci alourdit considérablement le compilateur, mais permet unemeilleure optimisationdu code final, et son
assemblage à partir de modules compilés séparemment. Et ce n’est pas si mauvais pour la pédagogie de la
compilation.

On n’est pas obligé d’accepter, mais on doit comprendre le

Credoreligieux no. 10 : Analyser et comprendre une structure textuelle équivaut à générer un objet correct à
partir de cette structure. Le seul moyen de savoir si un soldat a compris un ordre est de vérifier qu’il l’a exécuté
correctement.

Dans la théorie on peut réduire un analyseur à une machine, qui doit arriver finalement à un état (un nœud de
son graphe d’états) terminal. Mais 95% de travail est la création du «tracé» de ce parcours par le graphe d’états,
la construction du code, la mise à jour de la table de symboles, etc. Ce n’est pas la grammaire elle-même qui
détermine l’utilité d’un langage de programmation, mais toute sa «décoration sémantique».

Voici quelques propriétés sémantiques des objets linguistiques dans le programme :

• Les nombres ne sont pas seulement des séquences de chiffres, mais possèdent des valeurs numériques.

• Un atome symbolique (identificateur) n’est pas une séquence de lettres, mais possède sonidentitépropre,
et sa catégorie : variable, nom de type, mot-clé, étiquette, macro, etc.

• Toutes les constantes, variables et expressions possèdent leurtypes, parfois statiques, et parfois dy-
namiques (type d’une variable est temporairement le type de sa valeur, si le langage n’est pas typé). Les
types existent même dans des langages «non-typés» commeScheme, sinon comment peut-on calculer
une valeur? Quelles opérations appliquer?

• Les étiquettes «savent» à quel code elles se réfèrent (l’endroit-cible).

• Une instruction de branchement connaît sa ou ses destinations.

• Un fragment de code possède une longueur précise, et tôt ou tard aussi un emplacement (adresse) dans
la mémoire.

4.1 Un peu d’anatomie et de physiologie 63

• Une expression peut être marquée comme constante et pre-calculée par le compilateur avant l’exécution
du programme.

• Une instruction peut être marquée comme inaccessible (“dead code”), et éliminée par l’optimiseur.

Tout ceci est si important, que nous ne pouvons détacher complètement l’analyse formelle de l’analyse séman-
tique. La sémantique aura pour nous plutôt un goût opérationnel que dénotationnel, elle sera liée conceptuelle-
ment plutôt à la synthèse du code qu’à son analyse.

4.1.3 Lex et Yacc – premiers commentaires

Lex est un populairegénérateur de scanneursqui appartient à la couche brevetée de l’Unix. Son remplaçant
libre s’appelleFlex et il est presque totalement compatible avecLex.

Yacc (Yet Another Compiler Compiler) est un générateur de parseurs LR(1), dont le clone GNU s’appelle
Bison.

Lesgénérateurs d’analyseurssont des programmes qui lisent la description syntaxique (décorée) d’un langage
de programmation, par exemple sous forme de productions BNF ou d’expressions régulières, et qui construisent
un analyseur-hamburger, prêt à la consommation. Cet analyseur – scanneur ou parseur, est une fonction qui
doit être insérée par le programmeur dans l’ensemble des sources de son application, et compilée avec.

Entre les années ’70 et ’80 il y avait une tendance d’affaiblir l’enseignement de la construction «manuelle»
de parseurs, et jusqu’au aujourd’hui on trouve dans quelques livres et polycopiés un clivage entre la théorie du
parsing ou la théorie des automates finis, très élaborée et complète, et les exemples pratiques de parseurs, qui
sont trop souvent simplistes. Parfois les exemples sont primitifs et si mal codés (par exemple, on trouve des
instructions conditionnellesif-elseif-elseif. . . avec plusieurs dizaines de clauses, ou desswitch gigantesques),
que ses auteurs auraient dû ajouter à leur textes des incantations magiques de genre : «ici on ne discute que la
méthodologie générale de construction. Si vous avez un problèmeréel de parsing, prenezYacc. . . ». Voici les
avantages qu’apportent les générateurs de parseurs :

• Le programmeur définit son langage de manièrestatique, en définissant la grammaire. La partie séman-
tique n’est pas si statique que ça, les procédures sémantiques doivent être codées explicitement aussi,
mais on les attachestatiquementaux productions de la grammaire.

• Le générateur effectue pour nous les tests de la validité de la grammaire. Le langage mal conçu sera
rejeté dans plusieurs cas. Un parseur manuel d’habitude est plus fragile, et il a plus de chances d’être
bogué.

• Le parseur est construit de manière modulaire. Les protocoles de communication avec autres modules
du compilateur sont standardisés, et le travail en équipe est facilité.

• On trouve de très nombreux exemples de grammaires, et de scanneurs et parseurs réalisés avec les généra-
teurs, ce qui facilite leur apprentissage, et on peut créer un nouveau langage et parseur en modifiant une
réalisation existante.

Cependant, il ne faut pas oublier non plus quelques désavantages.

• Les générateurs figent le langage d’implantation,Lex et Yacc sont adaptés auC. Ceci n’est pas satis-
faisant pour tout le monde. Il existe des clones deYacc écrit enPascal, ML (SML etCAML) et aussi en
Haskell (Happy), mais ceci n’est pasla solution universelle de ce problème.

• Les protocoles de communication avec la table de symboles, générateurs de codes, etc. peuvent être
considéréstrop rigides. Adaptationdu restedu compilateur aux protocoles deYacc et Lex peut être un
peu pénible.

• Le déboguage des procédures sémantiques peut être très difficile, car l’utilisateur ne contrôle pas directe-
ment le contexte de leurs appels : ils sont codés automatiquement. (Ce problème peut être présent dans
les parseurs manuels aussi, mais un peu moins grave.)

• Le parseur généré est lourd, sans aucune élégance, et impossible à modifier.Et on n’apprend pas beau-
coup en construisant un analyseur par une machine automatique.

64 Les tâches et la structure d’un compilateur

La construction des générateurs évolue. Dans notre opinion personnelle, les générateurs sont indispensables si
vous êtes un professionnel qui travaille sur la compilation deplusieurslangages en utilisant le même langage
d’implantation.

Mais si vous, encore débutants, avez envie de faire un jourun compilateur, la construction manuelle du
parseur va vous prendre moins de temps que la maîtrise et l’usage d’un générateur. Et, en général,. . .

Credo religieux no. 11 : Le choix préférentiel entre la construction manuelle des parseurs, et l’usage des
générateurs de parseurs, appartient au domaine descredoreligieux.

4.1.4 Qu’est-ce que l’optimisation

Ce sujet sera (peut-être) abordé plus tard, mais quelques notions peuvent êtres utiles au lecteur tout de suite.
En particulier il est utile de savoir que

Credoreligieux no. 12 : La meilleure stratégie d’optimisation est de ne jamais générer un code mauvais.

Cependant, générer directement le code optimal est extrêmement difficile. Parfois l’analyse globale du pro-
gramme entier serait utile, mais le compilateur n’a pas de possibilité de mettre dans sa mémoire tout le code
d’une grande application, et de plus, l’optimisation globale esttrès lente.

Respecter au pied de la lettre lecredono. 12 est difficile. Même si le programmeur fait attention, s’il ne
génère jamais de structures inutiles ou redondantes, parfois le compilateur lui-même introduit des inefficacités
en développant des macros. Parfois l’écriture d’un code efficace est en contradiction avec sa lisibilité ou sa
modularité. On doit éviter l’évaluation multiple des expressions identiques, mais assignation de ces expressions
aux variables locales alourdit le programme, donc l’optimisation automatique peut être très utile.

Voici quelques stratégies d’optimisation classiques.

1. Élimination du «code mort», (dead code) qui ne sera jamais exécuté, par exemple d’un fragment de code
qui se trouve après un branchement obligatoire, et qui n’est pas étiqueté.

Ceci favorise l’assemblage du code final à partir des morceaux stockées dans des structures dynamiques
comme des listes (comme nous l’avons fait en construisant notre machine virtuelle à pile), même si cela
alourdit le compilateur.

2. Élimination des sous-expressions communes, et génération des valeurs intermédiaires locales.

3. Pre-évaluation des constantes. L’expression2*3 peut et doit être évaluée directement par le compilateur,
et la valeur 6 insérée dans le code compilé.

Cette optimisation peut être déclenchée par l’analyseur sémantique. Une constante numérique possède
unattribut : «constante évaluable». L’application d’un opérateur primitif numérique (fonction prédéfinie,
opération standard, etc.) aux objets constants génère un objet avec le même attribut. Ainsi le générateur
de code peut «plier» (réduire) les branches de l’arbre syntaxique qui ont été balisées comme constantes.

4. Réduction des opérateurs. Six correspond à une valeur entière, la multiplication par 2 (ou 4, ou 8,
etc.), ou la division par une puissance de 2 peut être transformé en décalage des bits. La multiplica-
tion 2*x peut-être transformé enx+x si le compilateur sait que l’addition est plus économique que la
multiplication pour cette concrète machine-cible.

5. Dépliage des boucles, et autresinlining : remplacement des abréviations, comme des appels procéduraux
ou des boucles, par le code explicite, répliqué. Ceci rend le code plus long (parfois beaucoup plus long),
mais plus rapide.

6. Transformation des appels terminaux en branchements. Sif appelleg et retourne immédiatement après,
peut-être il serait avantageux de sauter directement àg, qui retournera au contexte d’appel def . (Mais
ceci exige une gestion délicate des paramètres et des piles-système en général ; le débogage devient
parfois inextricable, et la gestion des exceptions – très difficile).

Pour des langages fonctionnelles commeHaskell (ouScheme, même si ce dernier n’est pas fonctionnel
pur)ceci est essentiel et obligatoire !, car il n’y a pas d’autres mécanismes d’itération.

4.2 Intégration d’un compilateur 65

7. Toute sorte d’optimisation de l’allocation des registres rapides (matériels, ou au moins dans des zones
mémoire accessibles directement, sans passer par la pile, etc.

Même pour notre machine virtuelle nous avons pu économiser un peu de temps en prévoyant que le
sommet, le dernier élément de la pile n’est stocké qu’en cas de besoin, et normalement il occupe un
registre statique (une variable) ; mais ceci est beaucoup plus avantageux pour les langages impératifs, où
la notion naturelle de variable statique, modifiable sur place existe.

8. Re-arrangement du code. Parfois la modification de l’ordre d’exécution de quelques instructions permet
mieux de sauvegarder et de réutiliser quelques valeurs dans des registres rapides. Ceci est une affaire
complexe.

9. Évaluation partielle. Pour évaluerxn où x et n sont des variables, il faut exécuter l’opérateur «puis-
sance». Mais si le compilateur «sait» quen = 3, il peut réduire l’opération, et compilerx · x · x.

(Le sujet d’évaluation partielle est devenu très important, et mérite une discussion approfondie.)

Il ne faut pas oublier que parfois l’optimisation du temps d’exécution est en contradiction avec l’économie de
la mémoire (l’inlining en est un exemple).

4.2 Intégration d’un compilateur

La «dissection» d’un compilateur n’étant pas terminée, dans cette section nous essayons de discuter les méth-
odes d’intégration qui fontungrand programme composé de plusieurs modules : scanneur, parseur, générateur
du code, table des symboles, etc. Notre but est de sensibiliser le lecteur au problème de communication entre
les parties d’un système de compilation. La richesse actuelle des langages de programmation et la possibilité
d’enseigner la compilation à un niveau assez élémentaire, sont des résultats d’une bonne modularisation des
compilateurs. Même si les phases d’analyse, synthèse et optimisation se chevauchent, on peut discuter sé-
parément les phases, et on peut montrer comment intégrer le système sans introduire à son intérieur un chaos
inextricable.

Question : comment assurer la transmission de l’information entre les étapes? Il serait ridicule d’effectuer
d’abord toute l’analyse lexicale, construire un fichier coupé en lexèmes (par exemple : un mot par ligne),
ensuite donner à manger ce fichier à l’analyseur syntaxique, etc. Le gaspillage est évident : si l’analyseur
syntaxique risque de trouver une faute sur la deuxième ligne, le découpage du texte entier en lexèmes sert à
rien.

Il faut assurer une communicationincrémentale. Mais ici il existe plusieurs stratégies possibles.

4.2.1 Intégration procédurale

La plus classique est la démarche procédurale. Le générateur du code a besoin de la structure intermédiaire,
alors il appellele parseur qui lui doit la fournir. Le parseur est une fonction (elle peut s’appeleryyparse() ,
s’il s’agit d’un parseur engendré parYacc), qui parcourt la liste des lexèmes actuellement disponibles.

Mais cette liste, peut-être, elle n’existe pas. Chaque fois quand le parseur a besoin d’un nouveau mot, il ap-
pelle le scanneur (la fonctionyylex()), et ce dernier s’occupe de la lecture de la source. Cette démarche est la
mieux connue, et les générateursLex etYacc génèrent les modules adaptés à une telle technique. Les compila-
teurs traditionnels dePascal (notamment les premiers compilateurs conçus par le créateur du langage, Niclaus
Wirth, et codés enPascal), l’exploitent aussi. Elle est également (ou mieux) bien adaptée à la construction de
parseurs «manuels» descendants, car elle est intuitive, et correspond au style traditionnel d’apprentissage des
langages de programmation.

L’intégration procédurale introduit naturellement des dépendances fonctionnelles entre les modules, et diminue
ainsi la modularité. Le déboguage peut ne pas être facile. La modification du compilateur après avoir introduit
des extensions dans le langage est d’habitude assez pénible, il faut vérifier tout.

4.2.2 Transducteurs de flux, ou «pipelining»

Nous avons souligné que la création d’un fichier intermédiaire peut ne pas être très économique. Il faut alors
simplement – au lieu d’utiliser un fichier disque, faire passer l’information par unfluxdynamique, par exemple

66 Les tâches et la structure d’un compilateur

par un «pipe» Unix. On peut également utiliser deslistes paresseusesqui sont réalisées différemment des
«pipes», mais qui offrent des fonctionnalités analogiques, et qui sont très intensivement exploitées dans le
domaine de la programmation fonctionnelle. (Par exemple les parseurs typiques enCaml utilisent des flux).
Nous allons en profiter aussi, les listes enHaskell sont naturellement paresseuses.

Attention ! Les listes paresseuses qui simulent lespipesoffrent à l’utilisateur la possibilité de traiter les
fichiers de longueur quelconque comme des chaînes de caractères. Ceci n’est pas vraiment conseillé à tout le
monde. Rappelons qu’enHugs, l’implantation deHaskell avec laquelle nous travaillons, il faut écrire

import IOExts
...
texte = unsafePerformIO (readFile nom du fichier)

en important d’abord le module d’extensionsIOexts comme ci-dessus. Rappelons que si le fichier est long, il
fautobligatoirementécrire le programme de manière à ce qu’il consomme la liste de caractères itérativement, et
oublie définitivement les segments contenant les caractères lus. Le compilateur doit être capable de le prouver
formellement, sinon le flux se transforme peu à peu en une liste réelle, et finit par avaler toute la mémoire
disponible. Il y a d’autres techniques d’interfaçage, mais traiter le contenu d’un fichier comme une chaîne
quelconque est utile pour tester les programmes courts.

La dynamique de ce transfert d’information peut être visualisée de manière suivante : le scanneur génère une
suite de lexèmes, et les injecte dans le flux. Mais le buffer du flux est très court et il se remplit immédiatement.
À ce moment là, le scanneur est bloqué, et le consommateur du flux commence son travail, en transformant les
lexèmes en arbres syntaxiques, etc. Quand le flux est épuisé, le parseur se bloque, et le scanneur redémarre.

Les deux modules travaillent donc en parallèle, ou plutôt quasi-parallèle, en temps partagé. On écrit les deux
modules séparément, ils ne se communiquent pas directement, mais ils collaborent comme deux partenaires
dans un jeu, en se «renvoyant la balle» : l’information concernant l’état du flux intermédiaire. Les deux
modules ne sont plus des procédures qui s’appellent, mais desco-procédures.

4.3 Organisation de la table des symboles

Le dictionnaire de symboles est le cœur du compilateur, il est partagé partousses modules. Il contient les
références aux chaînes et les attributs des symboles. Si le langage – comme presque tous – possède une structure
de blocs lexicaux ou de fermetures, c’est à dire, permet la définition de variables locales (ou paramètres) à
plusieurs niveaux, la table des symboles reflète la hiérarchie des blocs en train d’être analysés. La récursivité
du parsing correspond à la structure arborescente du dictionnaire des symboles. Le terme «table des symboles»
ne correspond pas à sa véritable structure. . .

Notre attitude vis-à-vis la table des symboles est un peu cavalière, car ses fonctions sont très simples,
même si structurellement elle peut devenir une toile d’araignée. Nous construisons des listes d’associations,
représentons les noms (mots-clés et identificateurs) par les chaînes de caractères, et, en général, le problème
d’efficacité de stockage ne nous concerne vraiment pas. Cependant ceciestun problème sérieux.

La mémoire consacrée au stockage des données peut être morcelée en plusieurs milliers de segments sans
pertes, à condition que tous ces segments occupent une zone contiguë, et que leurs adresses soient résolues
statiquement. Mais si l’ensemble bouge, si allocations dynamiques sont fréquentes, si quelques segments
deviennent inutilisables et doivent être retournés aupoolgéré par le système, cette gestion est compliquée, avec
plusieurs pointeurs sur les pointeurs, ce qui est toujours un gaspillage. Il faut alors au moins utiliser l’allocation
simple et statique partout où ceci est possible. On ne doit pas représenter les noms par les chaînes, mais plutôt
réserver un long buffer, un tableau 1-dimensionnel, et y placer les chaînes de façon contiguë. Chaque objet
placé dans le buffer est identifié par son indice et sa longueur, comme sur la Fig. (4.1).
Quand l’analyseur lexical identifie une nouvelle chaîne, il la met dans le buffer, et il construit une nouvelle
entrée dans le tableau des paires (adresse,longueur). Les indices dans ce tableau sont lesseulesréférences de
la chaîne dans le dictionnaire. Le dictionnaire lui même peut être le «prolongement horizontal» du tableau
chtab , et les colonnes suivantes contiennent les attributs du symbole. Cependant, en général un symbole peut
signifier plusieurs choses en dehors et à l’intérieur d’un bloc, ou si un langage prévoit plusieurs espaces de
noms (p. ex. les identificateurs déclarés commestatic dans un fichier contenant un programme enC).

Le dictionnaire est alors un autre structure de données, où le symbole (la référence d’un élément du tableau
chtab , et non pas la chaîne) est l’attribut «nom» d’un objet lexical. Cette stratégie permet aussi de traiter de
manière homogène les symboles qui dénotent les identificateurs du programme et les mots-clés. L’analyseur

4.3 Organisation de la table des symboles 67

while Belle marquise else · · ·

4

8

5

5

buffer :

chtab

Fig. 4.1: Table de chaînes

lexical ne voit pas de différence entre eux, mais les mots clés (et quelques identificateurs standard) sont prédéfi-
nis, et occupent une autre table dans le compilateur.

Le temps de vie et la portée des attributs sont très différents. Après l’analyse lexicale le compilateur peut
jeter le buffer des chaînes, sauf s’il veut garder les noms littéraux pour le déboguage, ou si les programmes
sont compilés par fragments, et le compilateur doit préserver l’information lexicale concernant les symboles
exportés (globaux) pour l’éditeur des liens.

La valeur d’une constante est construite par l’analyseur lexical, et consommée finalement par le générateur
de code qui génère l’instruction de chargement(load . . .). Le parseur peut totalement ignorer cet attribut.
Mais si le compilateur optimise le code, la propriété «être constant» peut se propager depuis des constantes
numériques vers les expressions sans variables, et le parseur peut déclencher une pre-évaluation sans invoquer
le générateur. Dans ce cas il aura besoin de la valeur. Pour éviter trop d’ambiguïté, d’habitude l’optimisation
est une phase séparée, liée plutôt au générateur du code, qu’à l’analyse, mais on voit clairement que la gestion
du dictionnaire des symboles peut être compliquée. Accessoirement, quelques attributs, comme le type des
données caractérisent pas seulement les symboles, mais les expressions entières, qui deviennent les «arbres
décorés». Ceci montre que les attributs ne doivent pas être statiquement représentés comme des positions de la
table des symboles, mais ajoutés selon les besoins comme des champs dynamiques.

La question vitale pour l’organisation de ce dictionnaire est la vitesse de recherche et/ou de l’insertion. On
peut utiliser la recherche dichotomique dans un tableau trié, mais actuellement l’approche connue comme le
hachagedomine.

4.3.1 Techniques de hachage

L’idée générale du hachage ou duhash-codingconsiste à transformer une chaîne de caractères par une ma-
nipulation locale et rapide enindice, permettant ainsi la recherche d’un atome sans être obligé de parcourir le
dictionnaire (ou le tableauchtab) entier.

Tout objet informatique peut être considéré comme un nombre entier, puisque tout objet est une séquence
de bits. Mais un tel nombre d’habitude est très long, et les tableaux de stockage des symboles doivent être
raisonnables. La stratégie de hachage consiste donc à transformer un entier très long en court. Une possible
solution serait de calculer ce nombremoduloN , oùN est la taille du tableau indexé par les symboles «hachés».
La division entière (Euclidéenne) est raisonnable et utilisée, mais elle est relativement lente, donc parfois on
construit une somme pondérée des codes :S =

∑n
k=0 αCk + β, où Ck est le code du caractère, etn – la

longueur de la chaîne. On peut utiliser leexclusive or, ou autres manipulations itératives. Leur propriété
commune est de repartir de manière la plus homogène les indices résultants sur l’espace disponible. En effet,
la fonction de hachage doit se comporter comme un générateur de nombres aléatoires repartis uniformément.

Une stratégie exploitée dans le compilateur de P. Weinberger est toujours réputée comme bonne : un nombre
entierh initialisé à zéro est modifié dans une boucle par :

h = (h << 4) + ch.suivant;

mais si le nombre devient trop grand, on effectue un décalage des bits à droite (de 24 positions), et on ap-
plique l’opérationxor entre le nombre et le résultat de ce dernier décalage. Les bits à gauche sont nettoyés.
Finalement on calcule le reste de la division Euclidéenne par un nombre premier – la taille du tableau. Cette
technique est mentionnée pour l’orientation générale du lecteur, et non pas comme une recette de cuisine.

68 Les tâches et la structure d’un compilateur

Indépendamment du choix de la fonction de hachage, il y aura descollisions– deux symboles différents auront
le même code. La fonction de hachage n’a aucune chance d’être réversible, car le nombre de symboles possibles
est très grand, et le tableau de stockage est limité. Il existe deux catégories de solutions de cette difficulté :

• On choisit le premier emplacement libre dans le tableau, ou on répète le hachage paramétré par le dernier
indice. (Ou on utilise une variante similaire, p. ex. on ajoute à l’indice haché une constante première par
rapport à la taille du tableau, modulo cette taille. (Le nombre 1 est une possibilité). Si le tableau possède
une case vide, elle sera trouvée. Quand le tableau est presque plein, l’efficacité de recherche diminue
considérablement.

• Chaque élément du tableau contient une liste chaînée des symboles en collision. La liste peut être par-
courue linéairement, ou par un moyen plus efficace, mais ces listes doivent être courtes. Si la fonction
de hachage est bien choisie, et si le programmeur n’a pas choisi des noms très bizarres, toutes les listes
auront (statistiquement) la même longueur. Si la longueur du tableau est 1000, la longueur de chaque
liste sera d’ordreN/1000, oùN est le nombre de symboles.

4.4 Exercices

Q1. Listez au moins douze conventions différentes de représenter les commentaires dans les programmes.

R1. Vous avez cherché vous même, n’est-ce pas?. . .

• (* ... *) ou { ... } enPascal.

• /* ... */ enC.

• EnC++ le précédent, ou// ... jusqu’à la fin de ligne. Le même style est utilisé aussi enClean,
et pour écrire lesshadersRenderman..

• Les deux tirets-- ... jusqu’à la fin de ligne enAda et Haskell. Mais ce dernier utilise aussi
{- ... -} , qui peuvent être imbriqués.

• Le dièse :# enshell, Makefiles,Python, Tcl etPerl. Et aussiVRML, et fichiers RIB (Renderman).

• Le pourcent :%enMatlab, TEX, MetaPost, quelques implantation deProlog, PostScript, etc.

• Le point-virgule; ... jusqu’à la fin de ligne enScheme. (Aussi dans quelques assembleurs)

• Et enCAML? Comme enPascal.

• Fortran? Le caractère “C” en première colonne.

• <!-- ... --> enHTML, etc.

• REM ou l’apostrophe en Basic.

• POVray?// .

On n’utilise plus le langageAlgol 60 où le commentaire suivait le mot-clécomment, ouAlgol 68 où le
caractère «cent» était de rigueur. Mais on utilise toujoursLisp, et les premières versions prévoyaient des
constructions de genre(comment Belle marquise n’importe quoi, et encore) dont
la valeur retournée était NIL indépendamment de la couleur des yeux de la belle marquise.

Q2. Question accessoire qui ne concernedirectementpas les compilateurs, mais importante pour le support
d’exécution du code compilé : Comment réaliser lesfiles(Structures FIFO) dans un langage fonctionnel?
Comment réaliser fonctionnellement le parcours des arborescences en largeur?

R2. L’importance de ce problème doit être évidente. Lespipessont des files ! La programmation événemen-
tielle ou pseudo-parallèle, les threads en ont besoin aussi.

Il faudra construire au moins deux fonctions, l’enfilement qui à partir d’un objet et une file construit une
autre, et le défilement qui renvoie une paire : l’élément récupéré et la file restante. Une possibilité est
l’usage des listes :

enfiler x q = q ++ [x]
defiler (x:q) = (x,q)

4.4 Exercices 69

mais l’usage de la concaténation pour ajouter un élément est très inefficace (rappelons que la concaténa-
tion recopie son premier argument). En général, sans la possibilité demodifierdes structures de données
la situation semble désespérée, toute modification est obligée de reconstruire la nouvelle file sans abîmer
la précédente, et pendant la compilation d’un grand programme les structures de données dans le compi-
lateur sont assez volatiles.

D’habitude un programme – fonctionnel ou pas – n’utilise jamais en même temps une vieille structure :
(pile, file ou autre chose) et la nouvelle. Si le programme est considéré comme l’enchaînement des opéra-
tions qui passent les structures de données construites à ses continuations, il est possible d’éliminer une
bonne partie d’inefficacité. La technique ressemble beaucoup à l’optimisation canonique de la procé-
dure qui renverse une liste à l’aide d’une variable-tampon (mais, ce qui est curieux, cette optimisation
appartient aux «canons» de la programmation, et pourtant les files fonctionnelles sont très rarement en-
seignées. . .)

Une file xs est représentée par unepaire de listes,(ys,zs) , telles que (conceptuellement !)xs =
ys ++ (reverse zs) . On ajoute toujours le nouvel élément à la tête deys , et on récupère le plus
ancien du début la listezs (alors, conceptuellement de la fin dexs). Quand la listezs devient vide, on
renverseys ot on la substitue pourzs . Voici les fonctions de base

enfl x (ys,zs) = (x:ys,zs)
defl (ys,(z:zq)) = (z, (ys,zq))
defl (ys,[]) = defl ([],reverse ys)

De temps en temps le programme sera obligé à dépensern unités de temps pour renverser la liste, oùn
est la taille moyenne de la file, mais l’efficacité globale de cet algorithme est raisonnable, la complexité
moyenne est constante par un élément inséré ou enlevé (on l’appelle lacomplexité amortie.

Le parcours en largeur consiste à enfiler l’arbre, et itérer la manipulation suivante, avec la file comme
argument : si la file est vide, le résultat est une liste vide ; sinon, défiler la racine. Si c’est une feuille, la
mettre à la tête de la liste résultante. La queue est le résultat de l’aplâtissement de la file restante. Si la
racine est un nœud intermédiaire, placer l’étiquette devant le résultat de l’aplâtissement de la file restante
enrichie par l’enfilement de la branches gauche et droite.

data Arbr = F Int | N Int Arbr Arbr
type Lst a = [a]
data Queue a = Q (Lst a) (Lst a)
x= N 1 (N 2 (F 4) (F 5)) (N 3 (N 6 (F 8) (F 9)) (F 7))
enfl x (Q a b) = Q (x:a) b
defl (Q a (z:zq)) = (z, (Q a zq))
defl (Q a []) = defl (Q [] (reverse a))
flat ar = fl (enfl ar (Q [] [])) where

fl (Q [][]) = []
fl q = let (z,q1)=defl q in

case z of (F i) -> i : fl q1
(N i g d) -> i : fl (enfl d (enfl g q1))

r=flat x -- donne [1 2 3 4 5 6 7 8 9]

La fonction n’est pas récursive terminale. Laissons au lecteur la tâche d’optimiser cet algorithme. Élim-
iner tout de suite la fonctionenfl . Essayer d’incorporer égalementdefl dansfl . Essayer d’évaluer
la complexité de cet algorithme. Voir aussi l’annexe, section (B.6).

Q3. Comment stocker sur un fichier séquentiel les arborescences? Et les graphes quelconques, possiblement
cycliques?

R3. La représentation séquentielle des arbres est bien connue des lecteurs : ce sont des listes (Lisp, Prolog
etc.) Il suffit d’avoir les parenthèses qui jouent le rôle d’opérateurs : empiler/dépiler.Cet exercice est
important, il suggère comment peut marcher un simple parseur qui analyse les listes !Comparer

70 Les tâches et la structure d’un compilateur

cette stratégie avec la digression dans un de chapitres précédents, qui décrit la classeShow (procédures
d’affichage enHaskell).

Les graphes acycliques sont équivalents aux arborescences avec duplication des nœuds partagés, et ils
n’ont pas besoin d’une autre stratégie, mais naturellement pour l’efficacité il est envisageable de ne pas
proliférer les expressions partagées. À l’envers, la réduction d’un arbre à un DAG est toujours souhaitée.
Dans ce cas,et même dans le cas cycliqueil suffit de stocker le graphe sous forme indirecte : choisir un
ensemble de symboles spéciaux, p. ex.#1 , #2 , etc. et d’associer à chaque symbole son graphe, qui peut
contenir à l’intérieur des occurrences de ces symboles.

Une autre stratégie consiste à «atomiser» la précédente. Chaque sommet du graphe aura son étiquette.
Le fichier contient la liste des étiquettes suivie de la liste des arcs : paires d’étiquettes. On stocke un
graphe représenté par sa matrice d’incidence.

Q4. Connaissez-vous la technique permettant desimuler les structures de données par des fonctionspures
(formes lambda?)

Construire une fonctioncons qui s’applique à deux objets, disonsx et y , et qui construit un objet
opaque, intraitable par quoi que ce soit, sauf par deux fonctions qui s’appellent (oui, vous avez déviné. . .)
car et cdr . L’application ducar à cet objet récupèrex , et ducdr – y . On n’a aucun droit d’utiliser
un constructeur de données, et les arguments decons ne subissent aucune manipulation.

R4. Vous renoncez si vite? Tant pis. Voici la solution.

cons x y = trouNoir
where trouNoir arg | arg=="car" = x

| arg=="cdr" = y
| otherwise = error "argument illégal"

car z = z "car"
cdr z = z "cdr"

Question accessoire pour déstabiliser les ambitieux. On a triché ici ! La fonctiontrouNoir n’est pas
une «fonction pure», mais une fermeture qui profite desx et y comme des variables non-locales. Peut-
on résoudre cet exercice sans variables non-locales? Ceci est un excellent sujet d’examen, mais soyons
humains. Voici la solution, complètement triviale :

cons a b arg | arg=="car" = a
| arg=="cdr" = b
| otherwise = error "argument illégal"

En fait, on peut toujours remplacer un module fonctionnel avec des variables globales, par une fermeture
réalisée par une application partielle. Cette transformation s’appelle «lambda-lifting» et appartient à
l’abécédaire de la compilation des programmes fonctionnels.

Cet exercice figure dans nos notes ailleurs. trouvez-le ! Comparez l’autre solution avec celle là, discuté
les différences concernant le typage !

Chapitre 5

Analyse syntaxique I – Techniques
fonctionnelles

5.1 Grammaires etparsing

Ce cours exige et suppose une raisonnable connaissance de la théorie des grammaires et de la notation BNF
(Backus-Naur Form). Notre notation sera classique, pour un langage non-contextuel, une production syntaxique
aura (symboliquement) la forme

NonTerminal ::= UneChose UneSéquence | AutreSéquence (Groupe composite)

etc., où à droite on a une séquence arbitraire des variables syntaxiques (objets nonterminaux), et de littéraux
(terminaux). Les méta-caractères utilisés ici sont

• La barre verticale – l’alternative.

• Les parenthèses (pour le groupement), et les crochets (pour les regexps).

• Les apostrophes.

• l’assignation::= (plutôt que souvent utilisée←).

Tous les autres caractères visibles, notamment les virgules, etc. sont des littéraux. Pour noter littéralement
un méta-caractère, par exemple’(’ on le mettra entre apostrophes. Un apostrophe littéral s’écrit\’ , et les
symboles\s , \n , et \t dénotent l’espace, le saut de ligne et la tabulation. Pour distinguer les mots littéraux
des variables syntaxiques, et ne pas encombrer les productions avec trop d’apostrophes, nous utiliserons la
police proportionnelle pour des textes terminaux.

5.1.1 Exemple

Essayons d’écrire la grammaire définissant (de manière incomplète !) un programme en langageProlog.
Le lecteur doit se rappeler les exemples montrés dans des sections précédentes. Une liste ressemble à son
homologue enHaskell, seulement au lieu d’écrire(x:y) la syntaxeProlog est[x|y] .

Un programme (en fait : la définition d’un prédicat) enProlog est une séquence de clauses, chaque clause
possède l’entête, un «corps» qui peut être vide, et se termine par le point final. Le corps commence par
l’opérateur d’inférence:- , suivi d’une séquence de prédicats, dont la structure est la même que celle du
prédicat constituant l’entête. La syntaxe d’un prédicat est exactement la même, que la structure d’une donnée
généraleProlog – le terme, ou plus spécifiquement : le terme atomique. Les termes dans la séquence peuvent
être séparés par des virgules, ce qui dénote la conjonction («et») logique, ou les point-virgules, qui construisent
l’alternative. La précédence de la virgule est plus grande. On peut utiliser les parenthèses pour le groupement,
et il ne faut pas confondre les parenthèses et les méta-parenthèses.

Programme ::= Entete Corps .
Entete ::= TermeAtome
Corps ::= φ | :- AltTerme

71

72 Analyse syntaxique I – Techniques fonctionnelles

AltTerme ::= SeqTerme | SeqTerme ; AltTerme
SeqTerme ::= AtomeLog (φ | , SeqTerme)
AtomeLog ::= TermeAtome | ’(’ AltTerme ’)’

où naturellementφ dénote la chaîne vide. Notez la factorisation du préfixeTermeAtome dans la production
décrivantSeqTerme ; la ligne précédente contient une construction structurellement identique, mais dévelop-
pée.

Passons aux données. Les termesProlog sont des expressions qui peuvent être atomiques au sens : iden-
tificateurs ou nombres (et ceci n’est pas la même chose que l’atomicité logique, l’absence des connecteurs),
fonctionnelles :f(x,2*y) , etc., contenir les opérateurs arithmétiquesou autres opérateurs infixes que ne
seront pas discutés ici, et les listes.

TermeAtome ::= Terme
Terme ::= AExpr | Liste | Tfunc | Atomic
Atomic ::= Symbol | Number
Tfunc ::= Symbol ’(’ Seq ’)’
Seq ::= φ | SeqTrm
SeqTrm ::= Terme (φ | , SeqTrm)
Liste ::= ’[’ Seq Queue ’]’
Queue ::= φ | ’|’ Terme
AExpr ::= Atrm | Aexpr OpAdd Atrm
OpAdd ::= + | -
Atrm ::= Factor | Atrm OpMul Factor
OpMul ::= * | /
Factor ::= Primary | Primary ^ Factor
Primary ::= Atomic | Tfunc | ’(’ Aexpr ’)’

où ces définitions implicitement déclarent les quatre opérations arithmétiques comme associatives à gauche, et
la puissancê comme associative à droite. Les atomes ne présentent pas trop de problèmes :

Number ::= Sgn (Integ | Float)
Integ ::= Digit | Digit Integ
Float ::= Integ . Integ OptExp
OptExp ::= φ | E Sgn Integ
Sgn ::= φ | + | -
Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Symbol ::= Letter (φ | AlnSeq)
AlnSeq ::= Alnum | AlnSeq Alnum
Alnum ::= Letter | Digit

. . . et les lettres? Ah, non, écrire une clause avec 52 alternatives, sans compter les lettres accentuées, est
un peu trop. On voit que l’approchestrictementsyntaxique, «extensionnelle», à la définition du langage a
ses handicaps. Bien sûr, la notation BNF n’épuise pas la présentation des grammaires, et tous les lecteurs
connaissent (ou doivent connaître !) les expressions régulières avec des règles spécialesad hoc, par exemple

Integ ::= Digit +

Letter ::= [A- Za- z]

etc. La définition deInteg montre que la fermeture de Kleene (positive) est une simple abréviation, qui
d’ailleurs implicitement contient l’associativité de la concaténation. La forme BNF peut être dans ce cas
récursive à gauche ou à droite, selon la philosophie d’implantation. La définition deLetter est une définition
syntaxiquement incomplète, elle assume que l’alphabet est figé et bien connu.

Rappelons-nous donc de la proposition introduite dans la section précédente : si les définitions des objets
irréductibles utilisent obligatoirement une information sémantique extérieure, que cette information soit au
moins souple. On peut donc définir une lettre comme caractère qui possède l’attribut «sémantique» «lettre». Il
faut alors considérer que l’analyseur des lettres (quelconques) soit primitif. Ceci n’est pas possible directement
enLex, le seul moyen de procéder serait d’accepter un caractère quelconque, et procéder à sa reconnaissance
dynamique par une procédure sémantique, ce qui est pénible, pratiquement inutilisable.

5.2 Stratégies du parsing 73

La notation classique aura aussi quelques difficultés pour décrire des opérateurs de précédence quelconque,
ajoutés éventuellement dans le programme – le programme qui sera compilé et exécuté, et non pas dans
l’analyseur. Ceci est possible enHaskell, ML, Prolog, etc. Partiellement pour cette raisons nous ne pou-
vons donner la définition complète duProlog, cette définition aurait un niveau méta- trop important, et pas
très lisible. Ce problème suggère fort aussi qu’une bonne partie de ce que nous appelons la sémantique, est en
fait la syntaxe, mais avec des dépendances contextuelles importantes, et de longue portée. Pour qu’enHaskell
l’expression(x+1 <=> x-1) soit légale, l’objet lexical<=> doit figurer dans une clauseinfix ou équiva-
lente, et ainsi devenir un objetsyntaxique. EnProlog c’est pareil, les opérateurs (préfixes, infixes et postfixes)
doivent être déclarés par le prédicat primitifop .

En C toute occurrence d’une variable doit être accompagnée par sa déclaration, sinon ceci est une erreur
sémantique, mais la déclaration elle-même est une simple structure syntaxique. Les exemples de ce type sont
très nombreux. Bref, nous ne savons pas vraiment comment définir sans aucune ambiguïté le mot «sémantique»
dans le domaine de la compilation, car le «sens» est souvent caché dans lastructure. . .

La notation BNF standard manque un outil de reconnaissance parfois inestimable – la négation. Comment
décrire un commentaire enC? Toute chaîne qui commence par/* et qui se termine par*/ , mais avec
la restriction dene pascontenir la chaîne*/ à l’intérieur. La construction d’un caractère «non-slash» par
énumération : une alternative de tous les autres, est théoriquement correcte, mais pas pratique du tout. On peut
construire une expression régulière correspondante, mais les regexps ne sont que des abréviations. Dynamique-
ment on procède de manière suivante : quand on trouve la première occurrence de*/ , on s’arrête. Ceci est la
solution du problème des commentaires, mais la négation est un concept plus général.

En général l’introduction de la négation dans une grammaireestpossible, et le parseur correspondant, quand
il trouve l’expression sous la négation, il génère un échec. Ceci – si on utilise une stratégie non-déterministe –
provoque lebacktracking, et la recherche d’une autre alternative. Par contre, quand ce parseur trouve le contexte
qui ne correspond pasà l’expression sous la négation, l’échec se transforme en succès.

5.2 Stratégies du parsing

Par convention les techniques d’analyse syntaxique se divisent en deux grandes catégories :

• Techniquesdescendantes, et

• techniquesascendantes.

Si conceptuellement le rôle d’analyseur est de construir l’arbre syntaxique à partir de la représentation linéaire,
textuelle, on peut construir cet arbre à partir de la racine, en ajoutant les branches et terminant le processus au
niveau des feuilles, ou à l’envers, commencer par les feuilles, lier les feuilles par les branches, et terminer par
la racine.

Les deux stratégies sont complémentaires. La stratégie ascendante est plus universelle, et peut être plus
efficace, mais elle n’est pas très facile à implanter, et souvent beaucoup plus difficile à comprendre. Nous
allons traiter en priorité la technique descendante, plus propice à la construction manuelle des analyseurs. Les
parseurs générés parYacc ou autres générateurs de ce type exploitent d’habitude la stratégie LR(1), ascendante.

5.2.1 Stratégie descendante

Dans la stratégie descendante unparseurpeut être apparié à unnon-terminal. Nous pouvons imaginer que
le parseur est une fonction qui s’applique à un flux de données d’entrée, par exemple les caractères, et qui
produit une arborescence. Le symbole non-terminal principal (le symbole de départ) de la grammaire entame
l’analyse. Par exemple le parseurProgram s’applique au flux d’entrée et construit le code (pas forcément
final) du programme.

Si la production qui définit ce non-terminal utilise autres non-terminaux :

Program ::= Entete Corps .

la procédureprogram appelle les procéduresentete et corps , qui appellent leurs «esclaves», etc. Bien
sûr, les appels qui s’enchaînent séquentiellement : Le Corps doit suivre l’Entête – doivent consommer séquen-
tiellement le flux d’entrée. En fait, si la grammaire est écrite, la construction d’un parseur descendant qui cor-
respond à un non-terminal est relativement claire – elle correspond à la production qui définit ce non-terminal.
Le programmeur doit assurer à peine deux choses :

74 Analyse syntaxique I – Techniques fonctionnelles

• passer correctement le flux d’entrée d’un fragment à l’autre, et

• construir un résultat du parsing.

Nous verrons que la construction d’un parseur descendant à partir d’une grammaire, peut être une procédure
presque méchanique. La complexité interne est gérée par les appels récursifs. On continue à descendre, et
finalement un parseur primitif commelettre consomme un caractère qui constitue la feuille d’une branche
correspondant à un identificateur, etc. En remontant l’arbre des appels récursifs, l’arbre du parsing est construit
physiquement, ou le parseur le linéarise directement, et engendre le code postfixe. Mais ceci constitue une
manipulation sémantique, et ici le procédé est beaucoup moins automatique. Il est partiellement régularisé
grâce au concept desattributsdont nous allons encore parler.

5.2.2 Techniques ascendantes

Un parseur ascendant n’utilise pas des appels récursifs, mais il est piloté par un nombre de structures de données
spécifiques au langage – tableaux, piles, etc. qui contiennent des informations sur les enchaînements légaux
des symboles. Si l’analyseur – par exemple – est en train d’analyser les expressions, et il se trouve devant la
chaîne “a*(1/x ...)+2... , il trouve le premier lexème – l’atomea. Selon la grammaire, cet atome peut
être réduit à unFacteur , mais pas tout de suite, car s’il est suivi par la parenthèse ouvrante, il fera partie d’un
appel fonctionnel. Ceci n’est pas le cas dans l’exemple ci-dessus. Faut-il réduir leFacteur à unTerme? La
réponse estnon, le lexème suivant, l’opérateur de multiplication, suggère que si unTerme est formé ici, il sera
composé de plusieurs Facteurs multipliés ensemble.

Ensuite le perseur trouve la parenthèse ouvrante, et ilsait que ceci sera une expression primaire, paren-
thésée. Quand le parseur trouve l’opérateur additif(+) , il sait que l’expression sera composée de plusieurs
termes, dont le premier vient d’être assemblé.

Pour que la stratégie fonctionne, le parseur doit pouvoir répondre à la question :quelle production utiliserpour
la réduction éventuelle? On ne peut faire cela à l’aveugle, car la complexité de l’algorithme serait exorbitante.
Il faut donner au parseur les moyens de «pilotage» – la possibilité de prendre de bonnes décisions sans connaître
trop de choses sur la partie du flux d’entrée qui n’a pas été encore découverte. En particulier, les tableaux de
pilotage répondent à la question : faut il consommer et stocker encore quelques items (effectuer l’opération
shift), ou réduire quelques feuilles et branches déjà formées de l’arbre syntaxique, pour construir un arbre plus
grand, et s’approcher ainsi de la racine (opérationreduce).

Les détails seront précisés plus tard, à présent passons à la réalisation des parseurs descendants, en utilisant
les stratégiesfonctionnellesde codage. Nous verrons d’ailleurs, que notre stratégie ne sera pas complètement
descendante, mais mixte.

5.3 Philosophie du parsing fonctionnel

Cette section montre comment construire les parseurs (surtout les parseurs descendants) dans un langage fonc-
tionnel, parcomposition. Le but principal de cette stratégie est de construire les parseurs utilisables, relative-
ment efficaces et économiques, de manière statique, déterminée par la syntaxe du langage. Nos parseurs ne
seront pas des simples automates de reconnaissance, mais ils généreront le «code», les objets de sortie, on
devra donc les équiper de procédures sémantiques. Chaque parseur sera donc un petit compilateur.

De plus – comme nous le verrons très tôt – nous envisageons de construire des parseursuniversels, qui
s’adaptent facilement à des structures syntaxiques fréquemment trouvées dans les langages de programmation
traditionnels.

Pour l’instant nous ne distinguons pas entre l’analyse lexicale et phrasale – tout appartient à l’analyse
syntaxique. Dans les deux cas les flux sont différents : flux de caractères, ou flux de mots ; les objets de
sortie également : les mots ou les arbres. Cependant les méthodes de combinaison restent les mêmes, et une
partie de l’analyse phrasale qui n’a pas besoin de récursivité, peut profiter des compositions itératives qui
caractérisent les expressions régulières utilisées dans l’analyse lexicale. (Exemple : formation des listes ou
blocs d’instructions demande uniquement la récursivité linéaire (et codage itératif).)

Ainsi l’exemple de la syntaxe deProlog cache sans commentaires ces deux niveaux différents : lexical et
syntaxique (phrasal). Pendant l’analyse lexicale on doit se poser la question : «que fait-on avec les espaces
et les sauts de ligne?». Pour l’analyse phrasale ces objets n’existent plus (sauf si lelayout, la fin de ligne et

5.3 Philosophie du parsing fonctionnel 75

l’indentation jouent un rôle sémantique ou syntaxique active, et sont stockés avec les symboles pour faciliter le
déboguage).

5.3.1 Qu’est-ce qu’un parseur?

Commençons par une description simplifié, qui sera vite enrichie et complétée. Le contexte du parsing contient
un flux d’entrée – les caractères pour le scanneur, ou déjà les lexèmes pour le parseur phrasal. On peut imaginer
donc que le parseur est une fonction de type (flux→ objet), mais nos parseurs sont plus localisés, ils ne sont
pas obligés de consommer entièrement le flux. Donc, le flux restant fera partie de la valeur construite par
l’analyseur, et correspond à l’«état» du système. Il faut le préserver pour que le successeur d’un module parseur
puisse consommer le segment suivant. N’oubliez pas que notre construction est purement fonctionnelle, et que
rien, et surtout pas le flot d’entrée, n’est caché «sous la moquette». Il n’y a pas de procédure «scanf ».

Même si le langage et le parseur soient globalement parfaitement déterministes, un peu de non-déterminisme
local est toujours présent, au moins intuitivement : quand on commence à consommer les chiffres, on ne sait
pas encore si le résultat sera un nombre entier ou flottant. Parfois le parseur échoue et il faut annuler une déci-
sion précoce (faire le retour en arrière, oubacktracking). L’élimination totale du non-déterminisme est souvent
possible, mais ceci sera discuté plus tard. Les parseurs parfaits n’ont pas beaucoup de valeurs pédagogiques,
car ils sont trop compliqués. Il ne faut pas avoir peur de la situation où le parseur peut donner deux ou plusieurs
réponses différentes (ambiguës), elles seront stockées dans une liste, et discriminées plus tard, selon le contexte.

Nous proposons alors l’introduction d’un type de parseurs universels, qui peuvent être spécifiés de cette
manière :

type UParser c a = [c] -> [(a,[c])]

où c est le type des items sur le flux d’entrée (pensez que ce sont des caractères), eta – le type des objets
de sortie (pensez aux lexèmes, ou aux arbres syntaxiques). Les flux seront réalisés par les listes, puisque les
chaînes de caractères dansHaskell standard ne sont que des listes.

Attention !! La vraie définition duUParser introduite dans (5.4.1) sera un peu différente, nous allons
baliser cette fonction.

Le parseur universel peut consommer un flux quelconque, et fournir un résultat quelconque. Il peut con-
sommer un flux d’arbres syntaxiques, et créer un code postfixe, il peut donc aussi représenter un générateur de
code piloté par une grammaire.

Dans la pratique une telle généralité sera nécessaire uniquement pour définir les combinateurs internes.
Plus concrètement, nous aurons besoin de :

• un «tailleur» (Cutter) qui coupe un morceauatomiquedu flux et le fournit comme valeur. Par exemple
– le premier caractère d’une chaîne. Bien sûr, ceci implique que le typea est égal àc ;

• des parseurs génériques adaptés à traiter les chaînes de caractères, pour pouvoir rapidement tester l’approche.
Par exemple,CScanner parcourt un flux de caractères, et fournit un caractère, etScanner parcourt
une chaîne de caractères et renvoi un «<mot», aussi une chaîne. Plus tard nous construirons un parseur
qui prend un flux d’atomes et qui en construit une arborescence.

5.3.2 Objectifs finaux

La grammaire du langage possède toujours un symbole non-terminal de départ, qui sera la racine de l’arborescence
(physique ou conceptuelle) conçue par le parseur. Ce symbole peut être leProgramme . Il existe une produc-
tion quidéfinitce programme, par exemple

Programme ::== Déclarations Instructions

(ou dans d’autres langages : ensemble des clauses définissant les prédicats enProlog, ou les définitions des
classes et leurs méthodes enJava, etc.

Le compilateur lance alors (par exemple)

... -- décl. initiales
code = Programme fluxDentrée

76 Analyse syntaxique I – Techniques fonctionnelles

...
fluxSortie = transforme code

où la dernière instruction doit assurer la génération physique du code final. Le parseurProgramme est exé-
cuté, et appelle ses parseurs subordonnés, par l’exemple le parseurinstruction , qui appelle le parseur
variable à gauche, et le parseurexpression à droite. Ainsi l’arbre syntaxique est bâti à partir de la
racine et pour cela on appelle cette stratégie du parseur :descendante. (Comme tout le monde le sait, si un
informaticien se trouve près de la racine d’un arbre, il descend pour arriver aux feuilles. Les gens normaux
montent. Ainsi on a prouvé que les premiers singes qui ont descendu des arbres étaient des informaticinges qui
voulaient s’éléver vers le Progrès et l’Avenir. . .)

Un parseur n’est pas un compilateur complet, même s’il – comme nous avons envie de faire – génère le
code grâce à son intégration avec les procédures sémantiques qui construisent son résultat. Il faut penser à
d’autres choses :

• La génération du «prologue» – le code qui doit démarrer l’exécution du programme compilé. D’habitude
ce code se trouve au début du programme compilé, et il est placé dans le fichier de sortie avant de démarer
le parseur. (Ceci concerne le programme compilé indépendant, exécuté directement sous le contrôle du
OS. De tels fragments s’appellent parfoisstubs.)

• Nous avons menti un peu. . . Imaginez que la compilation échoue, et que le fichier contenant le pro-
gramme compilé est incomplet, tronqué au millieu par une erreur. Un tel programmene doit pas
s’exécuter du tout, car il peut causer des dégats. Le prologue doit alorsavant le démarrage du pro-
gramme compilé vérifier son integrité, par exemple la présence du code “OKEY” à la fin du fichier, ou
la cohérence d’autres dispositifs de sécurité, comme les codes CRC (Cyclic Redundancy Check).

• Si le programme compilé est prévu pour être exécuté par une machine virtuelle, le prologue est parfois
absent, mais pas toujours. Même s’il n’a pas besoin d’un code d’initialisation, par exemple d’ouverture
des canaux d’entrée/sortie standards, car l’interprète lui-même s’en occupe, le prologue peut contenir une
importante bibliothèque de fonctions prédéfinies, l’ouverture des canaux non-standard, ou la spécification
des ressources supplémentaires.

Ainsi presque tout programme enPostScript généré par un traitement de texte ou un paquetage graphique
ajoute à la tête de son document envoyé à l’impression un prologue avec plusieurs abréviations et co-
mandesPS qui ne sont pas prédéfinies dans le pilote de l’imprimante, mais qui seront utilisées plusieurs
fois.

• Le compilateur ajoute dans le programme compilé des procédures de gestion des buffers I/O, la gestion
des exceptions «paniques», les procédures de récupération des signaux du OS (si le programme est
compilé en code natif), les primitives d’allocation de mémoire, etc. Souvent ces procédures occupent
90% du code, si le programme est très court. Les programmes interprétés sont alorsbeaucoupplus
courts que le programmes compilés, et c’est une raison pour laquelle la plupart des langages descripting
est interprété.

Revenons donc à nos parseurs. Quand on regarde la définition d’une grammaire, on voit que les définitions sont
réellement descendantes, récursives, et qu’il faut s’arrêter au niveau des primitives. Mais on voit également
des propriétés «méta-» de la grammaire : les mêmes stratégies de structuration s retrouvent plusieurs fois dans
l’ensemble de productions. Par exemple, on trouve souvent

• les itérations ou séquences, typeA ::= B | B A ; De cette façon on construit les mots composés des
lettres, les entiers construits des chiffres, les listes (enLisp), etc.

Une légère modification, la présence d’un lexème de séparation, style :A ::= B | B , A nous
permet de construire les listes ou autres séquences, p. ex. les initialisations des tableaux enC) d’objets
séparés par des virgules, blocs d’instructions séparées par les points-virgules, etc. La même stratégie
s’applique à la reconnaissance des suites d’arguments des procédures. Une stratégie presque identique –
à la déclaration des variables, ou à la déclaration des champs d’unestruct ;

• plusieurs parseurs «presque primitifs» qui vérifient – par exemple – l’appartenance d’un caractère à la
classe des majuscules, ou des symboles spéciaux. Un tel parseur consomme un item (caractère) et lance
un prédicat de vérification. On peut évidemment construire quelque chose de plus abstrait ;

5.4 Composition des parseurs fonctionnels 77

• parseurs d’objets «parenthésés» : listes enLisp ou enProlog, tableaux, blocs délimités par des accolades,
suites d’indices entre crochets enPascal, construction typebegin . . . endou repeat . . . until, appels
fonctionnels avec la liste d’arguments entre parenthèses, etc.

Donc, quel que soit le langage, la structuration des parseurs composites suit souvent les mêmes règles. Nous
allons alors commencer par la construction des briques génériques, universelles, qui seront réutilisés dans des
parseurs concrets. Les définitions de ces derniers peuvent alors êtretrèscourtes.

5.4 Composition des parseurs fonctionnels

5.4.1 Premiers pas

Le contexte global du processus du parsing sera le suivant. Nous définiront unopérateur de parsing universel
-*> utilisé pour appliquer un parseur à un flux de données :

infixl 0 -*>
...
unParseur -*> unFlot

En fait, nous pourrions définir directement les parseurs comme des fonctions qui agissent sur les flux d’entrée,
mais nous préférons les voir comme les «objets» que l’on «applique». Donc, les définitions des types de
ces objets, du parseur universel, du «Cutter» qui coupe un élément du flux, et d’un scanneur lexical, sont les
suivantes :

newtype UParser c a = Pa ([c] -> [(a,[c])])

type Cutter a = UParser a a
type CScanner = UParser Char String -- Analyseur lexical

Notez qu’unCScanner lit une chaîne (liste de caractères) :String , mais le type de son premier argument
estChar – unélémentdu flux. Par contre, le type du résultat est de nouveau une chaîne.

Le mot-clénewtype enHaskell est une nouveauté. Pratiquement nous pouvons l’exploiter commedata ,
l’introduction d’un nouveau type algébrique, dont les instances sont identifiées par la balisePa. Mais la
sémantique est un peu différente, en fait, ceci ressemble un peu à un synonyme (type), qui se comporte
comme la définition suggérée (et ensuite désavouée) dans la section (5.3.1). Quand le programme enHaskell
est compilé, la balisePa disparaît, et notre objet se comporte comme une fonction. Mais dans le code source,
nous écrirons

Pa parseFun -*> flux = parseFun flux

Définissons d’abord trois parseurs primitifs. Le premier,fail ne consomme rien, et échoue toujours, c’est-
à-dire, retourne la liste vide. Le second,return , est son dual : laisse le flux d’entrée intact, mais retourne
une valeur spécifiéa priori. Le troisième,item , est finalement un parseur qui fait quelque chose, il coupe le
premier item du flux, et le retourne.

fail s = Pa (\inp -> [])

return :: a -> UParser c a
return x = Pa (\inp -> [(x,inp)])

item :: Cutter a
item = Pa (\inp -> case inp of

[] -> []
(x:xq) -> [(x,xq)])

Le parseurfail sera utilisé rarement. On en a besoin seulement dans des cas spéciaux, où on provoque
l’échec volontairement. Plus souvent il sera généré par les circonstances : quand aucune autre possibilité ne
marche. (Il est parametré pour des raisons qui seront expliquées un peu plus tard, mais son paramètre ici n’est
pas utilisé ; dans d’autres circonstances il peut contenir un message diagnostic).

Le parseurreturn est incontournable : malgré sa simplicité d’est une des constructions les plus fonda-
mentales dans notre présentation.

78 Analyse syntaxique I – Techniques fonctionnelles

L’outil fondamental deliaison, la «colle» qui permet de combiner deux parseurs de manière séquentielle, est
l’opérateur qui traditionnellement s’appellebind , et que nous construirons comme un opérateur infixe(>>=) .
Il agit sur des parseurs qui sont des fonctions (oublions la balisePa ; elle est là, mais nous pouvont presque
toujours traiter les parseurs comme des objets fonctionnels), donc il est une fonction d’ordre supérieur.On doit
pour l’instant imaginer que la construction(p >>= f) est une généralisation assez évoluée de l’application
f(p) .

Imaginons quep est un parseur, etf un «générateur de parseurs» – une fonction qui s’applique à une
valeur(souvent : la valeur retourné par le parseur précédent), et qui retourne un parseur. Par exemple,return
appartient à cette classe : il s’applique à une valeur quelconque, et produit un parseur qui génère cette valeur
indépendamment du flux d’entrée. Un autre exemple peut être la construction d’un parseur qui vérifie et filtre
une valeur concrète, passé comme argument àf . Encore un autre, très important : le parseur construit par la
fonction f génère la valeur finale à partir du fluxet l’objet passé comme paramètre. Les exemples seront très
nombreux.

Le parseurp est une fonction qui renvoie une liste de valeurs appariées avec les segments non-consommés
du flux : [(v1,i1),(v2,i2),...] . Le lecteur doit comparer ce comportement avec nos définitions de
fonctions non-déterministes, comme la fonction d’insertion d’un élément «n’importe où» dans une liste. Le
parsing est une opération qui peut être non-déterministe, même si tout non-déterminisme redondant est à éviter
au nom de l’efficacité.

La fonctionf récupère, élément par élément, les valeursv_k , et pour chaque valeur rend un parseur. Bien
sûr, l’itération : «élément par élément» est assurée par l’opérateurbind, non pas par la fonction. Ce parseur
est appliqué au flux correspondanti_k . Le résultat est de nouveau une liste de paires valeur-flux. Cette
application élément par élément peut être réalisée par la fonctionnellemap, mais le résultat final doit être
aplati. Commençons par :

infixl 1 >>=

mais attention, cet opérateur est déjà prédéfini et constitue une fonction de «liaison» plus générale que la
composition de parseurs. La fonctionfail est prédéfinie aussi, tout ceci appartiend au monde des Monades.
Mais pour l’instant nous allons les introduire comme s’ils n’étaient pas connus, ce qui ne dispense pas le lecteur
de lire les Annexes !.

conc = foldr (++) [] -- Aplatisseur des listes de listes

(>>=) :: UParser a c -> (a -> UParser b c) -> UParser b c
Pa p >>= f =

Pa (\inp -> concat [(f v) -*> out | (v,out) <- p inp])

ou, si l’on préfère :

Pa p >>= f =
Pa (\inp -> concat (map (\v out -> f v -*> out)

(p inp))

Récapitulons : le résultat de la constructionPa p>>=f est un parseur, une fonction qui agit sut un fluxinp .
Son fonctionnement est le suivant.p agit surinp et produit une liste de résultats possibles, dont une instance
est notée par(v,out) . La fonctionf agit sur chaque instance, mais elle même peut créer plusieurs résultats,
et on obtient ainsi une liste de listes. La fonctionconc aplâtit le résultat.

5.4.2 Séquences, filtres, alternatives, itérations

Grâce au combinateurbindconstruisons à présent

• un parseurseqp qui représente la séquence de deux parseurs, et qui renvoie comme valeur la paire
(x,y) si le premier produitx , et le second –y . Mieux : on n’est pas obligé de retourner un tuple
(x,y) , mais nous pouvons appliquer une fonction – constructeur quelconque àx et y . Le parseur
seqp sera donc parametré par ce constructeur ;

• un parseur filtrantsat , qui vérifie que le premier item du flux satisfait une condition logique ;

• une réalisation plus concrète dusat – un parseur vérifiant l’égalité entre la tête du flux, et une valeur
donnée. (Ceci peut être utilisé pour la reconnaissance d’un séparateur lexical, d’un mot-clé, etc.)

5.4 Composition des parseurs fonctionnels 79

• Les parseurs qui filtrent, et génèrent des lettres, chiffres, et caractères alphanumériques. Pour cela nous
aurons besoin d’un combinateur très simple qui construit l’alternative de deux parseurs, en concaténant
leurs résultats respectifs.

seqp cnstr p q = p >>= \x ->
q >>= \y -> return (cnstr x y)

alt (Pa p) (Pa q) = Pa (\inp -> p inp ++ q inp)

sat :: (a -> Bool) -> Cutter a
sat p = item >>= \x ->

if p x then return x else fail ""

lit c = sat (==c)

Avant de passer aux parseurs lexicaux observons que la constructionalt n’est pas une bonne solution dans
la plupart de cas intéressants, surtout là où l’alternative sert à définir une itération, ou dans le cas où les deux
variantes sont visiblement incompatibles, p. ex. une lettre ou un chiffre. Nous pouvons définir une autre
alternative, plus fréquemment utilisée, qui teste le premier composant et seulement s’il échoue, on applique le
second :

xor (Pa p) (Pa q) =
Pa (\inp -> let s=p inp

in if s==[] then q inp
else s)

infixl 0 # -- pour notre confort
a # b = xor a b

Et voici les éléments primitifs d’un scanneur :

interval a b = sat (\x -> a <= x && x <= b)

digit = interval ’0’ ’9’

lower = interval ’a’ ’z’
upper = interval ’A’ ’Z’

letter = lower # upper
alphanum = letter # digit

(Rappelons que la définition des lettres est un peu primitive, sans accents ni autres diacritiques. La généralisa-
tion à d’autres langues humaines est un joli exercice.)

Finalement, construisons un mot à partir d’une chaîne de caractères, et effectuons un test. Le mot (word)
consomme les lettres par l’enchaînement des parseursletter . Le parseur doit correspondre à la production
suivante :

Word ::= Letter Word’
Word’ ::= Letter Word’ | φ

Le parseurword appelera une fonction interneword’ qui doit itérerletter . Quandletter échoue, la
clause alternative duword’ renvoie la chaîne vide – l’objet terminal, auquelword’ attache toutes les lettres
précédentes. La différence entreWord et Word’ est claire :Word’ peut être vide,Word – jamais, c’est une
fermeture positive.

Nous avons remarqué qu’une telle construction est assez typique, donc au lieu de construire ces parseurs,
construisons d’abord un combinateur générique, capable d’itérer un parseur quelconque, et mettre les éléments
partiels dans une liste. Nous allons donc exploiter le combinateurseqp parametré par le constructeur(:) :

infixr 1 +>
a +> b = seqp (:) a b

many p = p +> many’ p
many’ p = p +> many’ p # return []

80 Analyse syntaxique I – Techniques fonctionnelles

et à présent il suffit d’écrireword = many letter . L’application

word -*> "Belle marquise ..."

retourne[("Belle", " marquise ...")] . Bien sûr, si on remplace(#) par ‘alt‘ , le résultat sera
une liste qui contient"Belle" avec"Bell" , "Bel" etc.

La construction des nombres demande un autre protocole de combinaison des items, nous ne voulons pas
construire une chaîne, mais combiner les chiffres selon l’algorithme qui a déjà été discuté :

nombre l = nb l 0 -- où l est une liste d’entiers entre 0 et 9
where

nb [] tmp = tmp
nb (x:xq) tmp = nb (10*tmp+x)

Il nous faudra généralisemany, avec un constructeur arbitraire, et une valeur initiale du tampon aussi arbitraire.
Mais il y a un autre problème. Supposons que l’on essaye de construire un itérateur générique comme ci-
dessous :

iter constr tmp0 p = seqp constr p it where
it = seqp constr p it # return tmp0

et que le parseur des entiers soit défini

integ = iter accum 0 digit -- où

accum x tmp = 10*tmp + ord x - ord ’0’

Le résultat du test :integ -*> "7802 beaux yeux..." nous réserve une mauvaise surprise :[(2087,"
beaux yeux ...")] . La récursivité a été mal exploitée, le parseur interneit qui remplacemany est er-
roné ! Il faut qu’il soit parametré par le tampon comme la fonctionnb . Cette question sera abordée avec plus de
détails encore deux fois : lors d’élimination de la récursivité à gauche, et quand nous allons parler des attributs
et de l’analyse sémantique pilotée par la syntaxe.

Construisons d’abord un autre combinateur de séquentialisation, nomméseql . Il prend deux parseurs,
p et q, et la fonction constructriceconstr qui combine les deux résultats partiels, mais cette fois le second
parseurq possède un paramètre-tampon. Il faut donc prévoir aussi sa valeur initiale. Voici la construction :

seqf constr tmp p q =
p >>= \x -> q (constr x tmp)

seql constr tmp p q =
seqf constr tmp p q # return tmp

Attention. Le parseurseqf peut échouer,seql non, mais il doit être utilisé dans un contexte où le parseurq
n’échoue jamais. Si parseurp échoue, on retourne le tampon.

Le sérialiseurseql peut nous servir à présent à construire un itérateur correcte pour notre problème :

lmany constr tmp0 p = seqf constr tmp0 p lmany’ where
lmany’ tmp = seql constr tmp p lmany’

Cette fois la constructioninteg = lmany accum 0 digit produit un parseur correcte. Notez que
lmany’ n’échoue jamais, comme nous l’avons demandé, carseql a toujours un résultat à rendre, mais
qu’il commence par lancerseqf , donc, la tentative de trouver un nombre dans un texte qui ne commence pas
par un chiffre, échoue au lieu de retourner 0. Ceci est raisonnable.

5.4.3 Sérialisation sans mémoire

L’analyse lexicale doit consommer et jeter les espaces blancs, tabulations, fins de ligne, etc. On peut éventuelle-
ment sauvegarder la position dans le flux d’entrée, mais on n’a jamais besoin d’accumuler les résultats partiels,
donc l’usage des sérialiseursseqp ou seql serait inefficace et inutile. Dans un autre contexte, par exemple
si on analyse une liste qui commence par le caractère[, on doit le reconnaître (parsat ou lit), mais, encore
une fois, on n’a pas besoin de stocker aucune information qui le concerne, car on en sait tout.

Dans le Prélude il existe un sérialiseur universel(>>) (que nous allons appeler :suite), défini (par défaut)
parbind :

5.4 Composition des parseurs fonctionnels 81

p >> q = p >>= \ _ -> q

ou les deux argument seront des parseurs. Nous pouvons l’utiliser tel quel, ou éventuellement définir un autre,
légèrement plus efficace, car plus spécifique :

Pa p >> Pa q = Pa (\inp -> concat [q out | (_,out) <- p inp])

Ceci suffit pour définir un parseur qui nous débarasse des espaces :

space = lit ’ ’ # lit ’\n’
spaces :: CScanner
spaces = (space >> spaces) # return []

Notez la déclaration de type. Sémantiquement elle semble redondante, mais le système de types deHaskell
nous le demande à cause de la restriction de monomorphisme. Sans cette déclaration,spaces serait trop
polymorphe. Une autre solution est de figer le type ailleurs, par exemple en définissant

empty = return [] :: CScanner
spaces = (space >> spaces) # empty

5.4.4 Encore un exemple : listes Prolog

Construisons un parseur qui consomme un flux de forme

[alpha, b , [x,y,123], gg, [[v], hhh,[]], [klm,n|p]]

et qui construit une arborescence qui représente une liste – possiblement hétérogène – composé de mots
(chaînes), entiers, ou autres listes. La liste peut se terminer par une «feuille» comme dans[klm,n|p] ,
ou être vide. Ceci est une raisonnable approximation des listes enProlog. Nous voulons également que le
parseur ignore les espaces. Il nous faudra définir d’abord la grammaire, et ensuite le type du résultat. (La
grammaire ci-dessous est une légère modification de la grammaire présentée dans la section (5.1.1)).

List ::= ’[’ Lseq Ltail ’]’
Lseq ::= φ | Lseqp
Lseqp ::= Item | Item ’,’ Lseqp ou, factorisé. . .
Ltail ::= φ | ’|’ Item
Item ::= Word | Number | List

Les structuresHaskell qui représenteront les listes seront définies comme des arbres :

data Atom = N Integer | S String
data Tree = Nil | F Atom | L Tree Tree

et nous pouvons passer à la construction du parseur. Avouons cependant que l’exercice est un prétexte, grâce
auquel nous voulons introduire quelques techniques un peu plus génériques de composition fonctionnelle des
parseurs. tout d’abord, il est utile de généraliser le parseurmany, comme nous l’avons fait aveclmany . Nous
allons le paramétrer par le constructeur (pas forcément l’assemblage des listes par(:)), et par une valeur
initiale arbitraire, compatible avec le constructeur. Ce parseur,rmany servira de définition demany par une
simple instantiation :

rmany constr init p = seqp constr p w where
w = seqp constr p w # return init

many p = rmany (:) [] p

Il est utile de pouvoir transformer sur place le résultat d’un parseur, par exemple de transformer un mot ou un
entier en une feuille de notre arbre. ceci est trivial, voici un générateur convenable, qui prend le parserp et une
fonction «normale»f et qui construit le parseur transformé :

transf f p = p >>= return . f

Notez l’ommission de «lambda» grâce au combinateur(.) .
Nous voudrions éliminer les espaces, donc il est utile d’augmenter tout parseur par un préfixe qui s’en

charge. introduisons également quelques abréviations pour les littéraux «nettoyés» :

82 Analyse syntaxique I – Techniques fonctionnelles

clr p = spaces >> p

clit c = clr (lit c)

virg = clit ’,’
bar = clit ’|’

Les itérateurs commermany ou lmany demandent que la suite d’items soit contiguë, sans séparateurs, mais
nous avons ici la virgule. Construisons donc un itérateur paramétré par un parseur-séparateur.

rmsep constr rest sep p = seqp constr p w where
w = seqp constr (sep >> p) w # rest

Il a été généralisé par rapport aux précédents par un autre aspect.Au lieu de retourner une valeur initiale dans
le cas d’échec de la boucle, il lance un parseurrest , qui s’en charge de procurer cette valeur. Ceci sera
très utile pour le parsing des formes[a|b] . Un autre parseur génériquebrack met un parseurp quelconque
«entre parenthèses» filtrées par les parseursa etb :

brack a p b = a >> p >>= \v-> b >> return v

Voici le reste de notre construction :

list = brack (clit ’[’) lseq (clit ’]’)
lseq = lseq’ # return Nil
lseq’ = rmsep L ltail virg itm
ltail = clit ’|’ >> itm # return Nil
itm = clr (list

transf (F . N) integ
transf (F . S) word)

Notre construction prouve l’utilité pratique du formalisme. Les parseurs construits de cette manière seront
plusieurs fois plus courts que les analyseurs construits par des générateurs enC. Ils ne sont pastellement plus
lents !

Attention ! La stratégie exploitée dans cette section : la combinaison de l’analyse lexicale et syntaxique dans
un module, n’est pas idéale. Parfois, vous devez d’abord séparer les items lexicaux (et éliminer les espaces),
construire un flux de lexèmes, et ensuite effectuer l’analyse syntaxique «pure». Ainsi, si on change la syntaxe
du langage sans modifier sa couche lexicale, les modifications sont plus localisées.

5.5 Exercices

Q1. Construire l’instanceShowpour la structureTree de la section (5.4.4). Les arbres doivent être affichées
comme les listes-sources, avec crochets, virgules et éventuellement avec la barre verticale. les balisesF,
NetS doivent être omises.

R1. instance Show Atom where
showsPrec _ (N i) = shows i
showsPrec _ (S s) = shows s

instance Show Tree where
showsPrec _ Nil = showString "[]"
showsPrec _ (L a b) = showChar ’[’ . shows a . shl b

where shl Nil = showChar ’]’
shl (L x xs) = showChar ’,’ . shows x . shl xs
shl (F x) = showChar ’|’ . shows x . showChar ’]’

showsPrec _ (F a) = shows a

Q2. Réfléchir comment, au lieu de transformer une telle structure de données en chaîne, ce qui ajoute des
guillemets à l’intérieur, définir une procédure d’affichage, qui trnasporte le résultat sur un fichier ex-
térieur.

R2. J’ai dit : réfléchir. . .

5.5 Exercices 83

Q3. Lire dans le Prélude standard etessayer de comprendrela classeRead.

R3. Ah, vous n’avez pas le temps? Bien, vous allez le regretter. . .

Q4. Alors, il est souhaitable de séparer l’analyse lexicale et syntaxique? Faites le. Construisez un parseur des
listesProlog qui passe d’abord par l’étape lexicale.

R4. La solution n’est pas immédiate, car nous devons préciser d’abord notre conception dulexème. Il faut
– de préférence – transformer les chaînes (mots), les entiers, etc., ainsi que les séparateurs, les crochets,
etc. en entités spéciales, appartenant à un type à part entière. Nous avons eu déjà ce problème, quand il
fallait convertir les atomes (mots ou nombres) en feuilles de l’arbre final. Nous allons changer aussi la
définition de l’arbre qui représente les listes hétérogènes.

La parsing reste néanmoins assez primitif. Commençons par l’analyse lexicale :

data Lexem = I Integer | W String | Op String | Spec Char
deriving (Eq,Show)

liter c = lit c >> return (Spec c)
lbrack = liter ’[’
rbrack = liter ’]’
barre = liter ’|’
virgule = liter ’,’
wrd = transf W word
nbr = transf I integ
oper = transf Op (many opchar)
opchar = sat
(\c -> elem c [’+’,’-’,’*’,’/’,’=’,’<’,’>’,’&’,’!’])

lexs = lbrack # rbrack # virgule # barre # oper # wrd # nbr

scanner = spaces >> rmsep (:) (return []) spaces lexs

Il suffit de tester :scanner -*> " Belle [Marquise, vos 123, []..." . Les balises
I , Wetc. jouent le rôle des spécificateurs decatégorie lexicalede l’item concerné. À présent ce sont
ces balises qui pilotent l’analyse syntaxique. La fonctionelem vérifie si un objet appartient à une
liste. Construisez cette fonction, et comparez votre solution avec celle du Prélude. Vous serez peut-être
surpris. . .

Le parseur proprement dit (analyseur et constructeur des arbres) ne subit presqu’aucune modification
importante. Nous avons changé un peu le style du codage pour plus de variété.

data PTree = Void | Id String | Nb Integer | PL PTree PTree
deriving Eq

spec c = lit (Spec c) -- remplace litr
comma = spec ’,’ -- remplace virgule

atom = item >>= \x -> case x of
(W a) -> return (Id a)
(I a) -> return (Nb a)
_ -> fail []

list = brack (spec ’[’) lseq (spec ’]’)
lseq = lseq’ # return Void
lseq’ = rmsep PL ltail comma itm
ltail = spec ’|’ >> itm # return Void
itm = list # atom

84 Analyse syntaxique I – Techniques fonctionnelles

En général, la séparation des deux phases est souhaitable, mais ajoute un peu de complication. Il faut
traîner plusieurs systèmes d’identification des objets : leurs catégories lexicales et syntaxiques sépare-
ment. Finalement on risque de confondre les balises, de les oublier, etc., ce qui n’est pas dangereux, mais
pénible.

Chapitre 6

Analyse syntaxique II – développement et
optimisation

6.1 Analyse des expressions algébriques

Les vrais langages de programmation sont relativement simples sur le plan syntaxique. Bien sûr, rien n’est
trivial, mais on est loin de la généralité traitée parfois dans la théorie des automates et langages. Le plus souvent
on trouve des simples itérations, ou des structures imbriquées, et même si le langage contient des centaines
d’opérateurs infixes différents (le langageIcon s’approche de ce terrible «idéal», et quelques programmeurs
en Haskell également aiment bien les formes infixes privées très longues, comme-#*>--*=>), mais ceci
n’augmente pas la complexité syntaxique du langage.

6.1.1 Premier essai, opérations Booléennes

Construisons un parseur pour la grammaire qui exprime la composition des opérations logiques. Les objets
atomiques dans le flux d’entrée seront des caractères alphabétiques. Nous savons comment généraliser ceci.

Atome ::= F | T | A | B | C etc.
Expr ::= Conj | Conj OR Expr
Conj ::= Prim | Prim AND Conj
Prim ::= (NOT | φ) (Atome | ’(’ Expr ’)’)
NOT ::= ’~’
AND ::= ’&’
OR ::= ’|’

Les opérations «et» et «ou» logiques sont associatives et symétriques (commutatives), donc nous nous sommes
permis de définir leur composition en utilisant l’associativité à droite. Notons qu’une optimisation a été ap-
portée ci-dessus : la factorisation de la négation.

Comme d’habitude, avant de construire le parseur il faut préciser quel est le résultat de l’analyse. Intro-
duisons donc une structure arborescente qui représente des expressions Booléennes :

data Connect = AND | OR
data Arbool = At Char | Cn Connect Arbool Arbool | Ng Arbool

Ceci est un peu différent par rapport aux listesProlog, ici pas seulement les feuilles, mais les noeuds intermé-
diaires stockent aussi une information concrète : le connecteur «et» ou «ou». La baliseAt identifie l’atome, et
Ng – la négation.

ou = clit ’|’
et = clit ’&’
non = clit ’~’
lpar = clit ’(’
rpar = clit ’)’
atomic = transf At (clr letter)

85

86 Analyse syntaxique II – développement et optimisation

bexpr = conj >>=
\u -> (ou >> bexpr >>= \v -> return (Cn OR u v)) # return u

conj = prim >>=
\u -> (et >> conj >>= \v -> return (Cn AND u v)) # return u

prim = (non >> prim’ >>= return . Ng) # prim’
prim’ = brack lpar bexpr rpar # atomic

et nous pouvons demander l’analyse de, disons,a&(b|t|~(x|a&b))|c&~f&(a|p) .
Notons l’usage des alternatives asymétriques. D’abord on essaie la clause la plus longue, et si elle échoue,

on reste avec le segment initial. La même observation s’applique à la définition de la conjonction. Le parseur
prim’ est toujours positif, etprim peut contenir optionnellement la négation.

(Observons également un certain maniérisme notationnel : au lieu d’écrire de manière plus lisible\x -> return (Ng x) ,
nous avons abrégé cela à :return . Ng , ce qui n’est pas tellement clair pour les débutants. Mais il faut
s’habituer à l’usage des combinateurs.)

Passons à l’optimisation et aux généralisations éventuelles. En fait, une optimisation (factorisation) a déjà
été effectuée. Une solution un peu plus courte, mais moins efficace serait :

bexpr = conj >>= \u -> ou >> bexpr >>= \v -> return (Cn OR u v)
conj

ce qui correspond mieux à la grammaire d’origine, mais qui – si «ou» échoue, répète l’application du parseur
conj .

On peut observer encore :

• La négation optionnelle existe aussi en arithmétique, et en général un parseur qui optionnellement fait
une chose avant un autre parseur serait d’utilité générale.

• bexpr et conj ont la même structure compositionnelle, qui est d’ailleurs presque la même qu’en al-
gèbre numérique. Comment en extraire tout comportement générique?

La préfixation optionnelle est simple, par exemple :

option constr opt p =
(opt >>= \o -> p >>= \x -> return (constr o x)) # p

prim = option (_ z -> Ng z) non prim’

Le méta-parseuroption prend comme arguments le préfixe, le parseur principal, et une fonction de compo-
sition des résultats (un opérateur binaire).

Les observations restantes se réduisent à une simple constatation : les deux formesbexpr et conj se
réduisent à l’itération associative à droite des composantes séparées par les opérateurs. Notre précedent parseur
– itérateur avec séparateurs :rmsep ne convient plus, car le séparateur ne peut être plus ignoré. Voici donc un
générateur des itérations opérationnelles à droite, et leur usage :

iterr cnstr3 op p = w where
w = p >>= f
f x = (op >>= \y -> w >>= \z -> return (cnstr3 y x z))

return x

bexpr = iterr (_ x y -> Cn OR x y) ou conj
conj = iterr (_ x y -> Cn AND x y) et prim

La construction du parseuriterr est un peu trop générale pour nos besoins : l’opérateur lui-même (l’argument
op) peut apporter quelque chose de spécifique à la construction de l’arbre. Ici, si l’opérateur est «ou» nous
savonsa priori qu’il faut utiliserOR, etc, donc le premier argument decnstr3 n’est pas utilisé.

6.1 Analyse des expressions algébriques 87

6.1.2 Arithmétique et problèmes avec la récursivité à gauche

Dans cette section nous nous occuperons (en outre) de lanormalisation de Greibach– la transformation des
règles récursives à gauche, en règles récursives à droite.Vu l’importance des expressions arithmétiques dans la
programmation courante, la construction du parseur dans cette section doit être bien maîtrisée.

Nous voulons pouvoir analyser les expressions arithmétiques classiques. Éliminons la puissance, laissons
seulement les quatre opérations de base, les appels fonctionnels de genresin(x) et les parenthèses. La
grammaire réduite aura la forme (déjà discutée)

Expr ::= Trm | Expr OpAdd Trm
OpAdd ::= + | -
Trm ::= Fctr | Trm OpMul Fctr
OpMul ::= * | /
Fctr ::= Atome | Tfunc | ’(’ Aexpr ’)’
Atome ::= Id | Nombre
Tfunc ::= Id ’(’ Seq ’)’
Seq ::= φ | ESeq
ESeq ::= Expr (φ | , ESeq)

Elle est suffisamment riche, et elle contient des éléments déjà connus, comme les séquences itératives asso-
ciatives à droite. UnAtome sera une chaîne de caractères, numérique ou alphanumérique. Nous permettrons
l’occurrence d’espaces dans la chaîne d’entrée. Les espaces pourront entourer les opérateurs ou les virgules,
et être placées derrière la parenthèse ouvrante ou devant la parenthèse fermante. Ils ne doivent pas couper les
mots (ou nombres), et ne doivent pas séparer le nom de la fonction de la parenthèse ouvrante.

Ici nous avons cependant aussi les règles associatives à gauche, et ceci est une bombe à retardement. Toute
application de ce parseur commence par l’appel de lui même, et la lecture du flux d’entrée ne progresse pas. Les
règles récursives à gauche sont très dangereuses, et le bouclage récursif est leur conséquence directe indépen-
damment de la construction du parseur, fonctionnel ou pas. Ce problème touchetousles parseurs descendants.
La «solution» ci-dessous n’est pas seulement inefficace, elle est tout simplement mortelle :

aexpr = aexpr >>= \u -> op >> trm >>= \v -> return (plus u v)
trm

La solution «officielle» du dilemme consiste à modifier la grammaire par la technique qui s’appelle lanormal-
isation de Greibach

Si la grammaire contient une règle suivante

S ::= S α1 | S α2 | ... S αn | β1 | ... | βm

oùα etβ sont des séquences quelconques, la normalisation consiste à remplacer cette production par

S ::= β1S’ | ... | βmS′

S’ ::= α1S’ | α2S’ | ... αnS’ | φ

Par exemple, au lieu de la définition du terme additif :

Trm ::= Fctr | Trm OpMul Fctr

nous aurons

Trm ::= Fctr TrSeq
TrSeq ::= OpMul Fctr TrSeq | φ

Une telle transformation peut être faite automatiquement par un processus de pré-traitement de grammaire.
Parfois une normalisation ne suffit pas, car la récursivité à gauche peut être indirecte. Il faut alors itérer le
schéma ci-dessus pour tous les non-terminaux «dangereux».

Notons encore une fois que la nécessité d’éliminer les règles récursives gauches est caractéristique aux
parseursdescendants. Les analyseursascendants, p. ex. les automates produits parYacc, qui construisent une
arborescence syntaxique à partir des feuilles, peuvent gérer ce problème, car ils ne sont pas récursifs.

La règle transformée nous rappelle quelque chose : c’est un cas déjà traité, une itération linéaire. La seule
différence par rapport au cas des opérateurs associatifs à droite s’exprime par une réduction différente :

((x1 ⊕ x2)⊕ x3) · · · ⊕ xn

88 Analyse syntaxique II – développement et optimisation

(Ceci doit rappeler la différence entre les fonctionnellesfoldr et foldl . . .).
Pour ne pas répéter le schéma Booléen, au lieu d’assembler l’arbre syntaxique «physique», notre parseur

construira directement le code postfixe adapté à une machine virtuelle à pile (très simplifiée !), et l’arbre sera
purement conceptuel.

Commençons par le définition duCode et d’une chaîne-exemple.

type Code = [CodeItem]
data CodeItem = I Int | S String | O String
ch6 = "alpha *(b-55/beta) - c*d-(165-(y - zzz))"

Le résultat du parsing doit être la liste dont la structure est

[alpha,b,55,beta,/,-,*,c,d,*,-,165,y,zzz,-,-,-]

(Pour l’instant nous ne discutons pas les expressions sous forme des appels fonctionnels (procéduraux). Ceci
viendra un peu plus tard.) Commençons par les parseurs atomiques :

tlit c = transf (\x-> O [x]) (clit c)

add = tlit ’+’
sub = tlit ’-’
mul = tlit ’*’
dyv = tlit ’/’
opAdd = add # sub
opMul = mul # dyv

entier = transf (\x -> [I x]) (clr integ)
ident = transf (\x -> [S x]) (clr word)
atm = ident # entier

(Le nomdiv est prédéfini enHaskell.) Pour assembler le code postfixe à partir de deux opérandes et un
opérateur, il suffit d’utiliser le constructeur suivant :

assembl op x y = x ++ y ++ [op]

(ce qui est horriblement inefficace et fait mal aux dents. . .), mais le vrai cheval de bataille est unitérateur à
gaucheiterl , dont la forme ressemble un peu àiterr , mais qui réduit la chaîne différemment, comme
lmany . Observons que le parseur interne, qui itère l’argumentp est un parseur parametré, une fonction d’un
argumentqui est le tampon. Voici l’itérateur et le reste de la construction :

iterl cnstr3 op p = p >>= pseq where
pseq tmp = (op >>= \y -> p >>= \z -> pseq (cnstr3 y tmp z))

return tmp

aexpr = iterl assembl opAdd trm
trm = iterl assembl opMul fctr
fctr = brack lpar aexpr rpar # atm

La construction d’un terme fonctionnel (appel genref(x, y+z))) a été différée, et se trouve dans la section des
exercices, car il faut que le lecteur travaille un peu aussi. (C’était une blague. Mais est-elle vraiment drôle?. . .)

Pourquoi ce tampon? Regardons la normalisation de Greibach encore une fois, sous un aspect graphique.
Prenons un terme compositea*b*c . Si la production est récursive à gauche, il sera analysé comme(a*b)*c ,
ce qui correspond à l’arbre dessiné sur la Fig. (6.1). Les productions utilisées par le parseur sont les suivantes

Trm ::= Fctr TrSeq
TrSeq ::= OpMul Fctr TrSeq | φ

(où il faut noter le fait que la séquenceFctr TrSeq dans la définition deTrSeq n’a pas été optimisée
à Trm.) L’Expression, le Terme, etc. sont des non-terminaux qui possèdent une valeur intuitive et visuelle
importante : ils constituent des nœuds de l’arbre du parsing complet, ils forment des sous-arbres.

Or, TrSeq n’est pasun sous-arbre. La portée de ce nonterminal est la boîte pointillée : tout sauf le premier
item. C’est une structure de données «incomplète». On peut considérer qu’une telle structure est unobjet
fonctionnelqui représente un sous-arbre après sa complétion parson contexte gauche. Le parsing deTrm

6.2 Opérateurs de précédence et associativité quelconques 89

*

*a

b c

Fig. 6.1: Terme composite, associatif à gauche

lance le parseurFctr , dont la valeur (disons :x , ici «a») sera justement le contexte gauche pour l’appel de
TrSeq suivant.

TrSeq lance de nouveau son sous-parseurFctr qui récupère le premier item restant – ici «b». La réduc-
tion a · b fournit à présent le contexte gauche à un appel ultérieur. Comparez avec les exercices, notamment
avec la reconstruction d’un nombre entier à partir des chiffres.

6.1.3 Quelques optimisations

Les combinateurs sont simples et très souples, mais la transposition de la structure statique d’une grammaire
vers le dynamisme des objets fonctionnels qui se cachent à l’intérieur des parseurs, peut générer des algorithmes
peu efficaces, avec une sur-consommation de mémoire, et gaspillage de temps. Le retour de réponses multiples
et lebacktrackingsont des sources évidentes du gaspillage. L’usage des outils commePREMIERdécrit dans
une section ultérieure est souhaitable. Cependant :

Credoreligieux no. 13 : Optimisation d’un compilateur commence par l’optimisation de la grammaire.
Il faut donc au moinsfactoriserles alternatives, et éviter tout non-déterminisme inutile. Sachant que le vrai

travail d’un parseur n’est pas l’analyse pure : acceptation ou rejet du texte, mais la construction du code inter-
médiaire, il faut connaître des techniques de programmation en général : optimiser les appels récursifs,éviter
la concaténation des listes en cascade !, etc. Si possible : réduire directement, pendant la compilation, des
expressions constantes. Cependant ceci est l’optimisation de l’application compilée, et non pas du compilateur.
Ce sujet sera abordé lors de la discussion des attributs.

Il existe plusieurs autres stratégies d’optimisation, qui dépendent très fort du langage d’implantation. En
particulier, les langages paresseux et les langages stricts se comportent différemment, et la programmation
paresseuse favorise l’usage de la récursivité non-terminale, si l’appel récursif se trouve à l’intérieur d’un con-
structeur de données qui seront consommées incrémentalement. Ceci n’est pas restreint aux problèmes de
compilation. Pour les langages strictes une telle approche peut déborder la pile, et il faut l’éviter.

6.2 Opérateurs de précédence et associativité quelconques

Cette section constitue une introduction aux grammaires d’opérateurs, et elle décrit une stratégie du parsing
ascendante (mais attachée à nos parseurs descendants standard). Nous voulons implémenter le parsing des
expressions un peu plus compliquées que celles vues jusqu’à présent. Rappelons, que si les opérateurs infixes
qui figurent dans une expression sont soit tous associatifs à gauche, soit à droite, on peut construire les parseurs
correspondants par les itérateurs – à gauche ou à droite, comme ci-dessous :

iterl cnstr3 opp p = shift where
shift = p >>= pseq
pseq ctx = (opp >>= \op -> p >>= pseq . (cnstr3 op ctx))

return ctx

iterr cnstr3 opp p = shift where
shift = p >>= pseq
pseq ctx = (opp >>= \op -> shift >>= return . (cnstr3 op ctx))

return ctx

90 Analyse syntaxique II – développement et optimisation

où cnstr3 op x y construit un noeud dans l’arbre syntaxique,opp est le parseur d’un opérateur appar-
tenant à la catégorie correspondante, etp est le parseur d’un élément de niveau inférieur (qui peut naturellement
contenir l’appel aux itérateurs, donc onpeutmélanger les opérateurs de deux associativités dans la même ex-
pression, mais pas au même niveau).

Mais le problème est le suivant : comment effectuer le parsing, si le langage permet la définition des
opérateurs de précédence et associativité quelconque, qui peuvent figurer ensemble dans une expression? La
grammaire n’est pas close. En principe nous pouvons clore le parseur en limitant le nombre de précédences
différentes à, disons, 10 (comme enHaskell. Ainsi il est possible de faire une grammaire non pas à deux trois
niveaux, comme notre langage algébrique : expressions – termes – facteurs, mais plus profonde, cependant
ceci devient vite illisible.

Les techniques ascendantes générales ont été mentionnées, et elles méritent une discussion à part, voir
section (8). Une technique ascendante facile s’appuie sur les grammaires dites de précédence, ou grammaires
d’opérateurs. (En anglais :operator precedence grammars. Elles n’ont rien d’inhabituel, et plusieurs gram-
maires bien connues peuvent être réduites à la forme opérationnelle. Formellement, une grammaire de précé-
dence se caractérise par deux exigences :

• il n’y a pas de production dont la partie droite est la chaîne videφ , et

• aucune production ne contient deux non-terminaux adjacents. (Ceci est une affirmation forte qui risque
d’être mal comprise ; il s’agit de prevenir la juxtaposition de deux données, elles doivent être séparées
par des opérateurs qui sont considérésici comme des terminaux.)

Ni grammaire pour les séquences

Seq ::= φ | Item Seq

ni une description simplifiée des expression algébriques

E ::= E Op E | ’(’ E ’)’ | Atm
Op ::= + | - | * | /

ne sont pas des grammaires de précédence. La formeE Op Econtient même trois non-terminaux adjacents.
Mais on peut la transformer en forme

E ::= E + E | E - E | E * E | E / E | ’(’ E ’)’ | Atm

Ceci est contraire à la philosophie du parsing dirigé par la syntaxe, c’est à dire à la correspondance simple et
immédiate entre l’analyseur et la grammaire. Lors de la conception du langage toute simplification et factori-
sation de la grammaire sont indispensables. Ilfaut extraire toute généricité de la grammaire, sinon les règles
deviennent longues et illisibles. Le parseur doit également être compact, sinon son déboguage risque d’être
pénible, et de plus, la construction d’un analyseur que vérifie dans unswitch une vingtaine de cas particuliers
qui structurellement sont presque des jumeaux, est très décourageant.

En décrivant la stratégie du parsing par les règles de précédence nous pouvons presque «oublier» les produc-
tions syntaxiques. Il n’y a plus de non-terminalExpressionqui appelleTermequi appelleFacteur, etc., et ainsi
toutes les multiplications à l’intérieur d’un terme additif sont réduites avant de toucher à un opérateur addi-
tif. Ici nous dirons simplement qu’un opérateur additif a une précédence plus faible que celle d’un opérateur
multiplicatif.

Plus concrètement : introduisons troisrelations de précédence, existantes entrecertainespaires d’objets
terminaux, qui jouent le rôle d’opérateurs dans le langage :≺, � et

.=. Si a ≺ b on dit quea a la précédence
plus faible que celle dub. Par exemple,+ ≺ ∗, ou/ � −. Attention,ces relations en principe peuvent ne pas
respecter pas des propriétés de relations d’ordre connues en algèbre. En particulier, il est possible d’avoir dans
un langagea ≺ b eta � b en même temps. Il n’est pas sûr quea

.= a.
Si dans le texte analysé le parseur découvre une séquenceα β telle, qu’entre les terminauxα et β aucune

relation de précedence n’a pas été définie, ceci est une erreur, la combinaison de ces deux terminaux est illégale.
Exemple : deux nombres qui se suivent dans une expressions, ou deux mots-clés en dehors des structures de
contrôle bien formées. En général le tableau des précédences est assez creux. Nous proposons alors une
simplification de la stratégie de précédences générale.

L’ensemble d’objets terminaux d’un langage se divise en deux sous-catégories : lesdonnéeset lesopérateurs.
On peut considérer qu’une donnée est un opérateur très spécifique, mais c’est inutile. Une donnée est un objet
qui ne figure pas dans la liste des opérateurs.

6.2 Opérateurs de précédence et associativité quelconques 91

Un opérateur dont la précédence relative par rapport à un autre est plus haute, est «plus fort», et attrappe en
priorité l’argument entre les deux.

La stratégie du parsing opérationnel peut se réduire aux règles suivantes.

• On définit deux piles, la pile des données, et la pile des opérateurs.

• Initialement la pile des données est vide, et la pile des opérateurs contient un opérateur «bidon» (mar-
queur) de très faible précédence.

• En consommant le flot on trouve les données et les opérateurs. Une donnée est toujours empilée. Un
opérateur est comparée avec le dernier opérateur empilé, et si ce dernier est plus faible, le nouvel opéra-
teur est empilé. Si le nouveau est pluis fort, l’opérateur déjà empilé est réduit, avec ses argument, et un
noeud est formé.

• Après chaque réduction on continue avec la réduction (peut être il faut réduire plusieurs opérateurs
empilés).

• Quand l’expression se termine, on dépile le reste.

Commençons par la définition de nos arborescences syntaxiques, mais aussi d’un type qui définit l’opérateur :
sa précédence, et associativité : gauche, droite ou aucune. Construisons aussi une lise d’opérateurs.

data Assoc = Lft | Rgt | Non deriving (Eq,Ord)
termop = ("$$$$",0,Non) -- Opérateur bidon, faible

infops =[("^",8,Rgt),("*",7,Lft),("/",7,Lft),("quot",7,Lft),
("+",6,Lft),("-",6,Lft),("++",5,Rgt),
("<",4,Non),(">",4,Non),("<=",4,Non),("==",4,Non),
("elem",4,Non), termop]

Rappelons geHaskell permet l’usage d’une fonction binaire quelconque comme l’opérateur, à condition de
mettre son nom entre apostrophes inversés (backquotes). Donc, un opérateur est un tuple qui contient le nom,
un attribut entier, et une propriété de typeAssoc .

La fonction qui trouve un opérateur dans la listeinfops (ou échoue) est une simple boucle :

findop x (p@(y,a,b):q) | x==y = Just p
| otherwise = findop x q

findop x [] = Nothing

mais nous pouvons envisager une stratégie plus efficace. En fait, on peut mettre les opérateurs dans une table
des symboles globaux – hachée ou arborescente.

Voici la définition des arbres :

data Gentree = None | Lf String | Nod String Gentree Gentree
deriving Eq

instance Show Gentree where
showsPrec _ None = showString "()"
showsPrec _ (Nod op a b) =

showChar ’(’ . shows op . shows a . shows b . showChar ’)’
showsPrec _ (Lf a) = shows a

constrnod (op,_,_) x y = Nod op x y

(La dernière fonction est une abréviation). Pour simplicité, les feuilles sont des chaînes, laissons au lecteur de
rétablir toute la structure algébrique déjà discutée, avec des nombres, variables, etc. Le parseur qui trouve un
opérateur est :

infixop = spaces >> (many opchar) >>= \o ->
let a = findop o infops
in case a of

Nothing -> fail ""
Just oper -> return oper

92 Analyse syntaxique II – développement et optimisation

Voici la définition d’un parseur primitif, atomique, et d’un objet «primaire» – atomique ou parenthésé. La
généralisation aux cas plus sérieux est triviale, et en tout cas ceci a déjà été discuté.

Ajoutons à cela la définition de la fonction qui compare les précédences, et qui répond à la question si le
premier argument est plus fort que le second.

atomp = spaces >> (many letter)
primp = spaces >> (brack lpar opexpr rpar # transf Lf atomp)

domin (_,pl,asl) (_,pr,asr) -- nom n’a pas d’importance
| pl > pr = True
| pl < pr = False
| pl == pr = (asl==Lft)

Finalement, le parseur principal. Le lecteur doit lire soigneusement sa définition et essayer de le comprendre.

opexpr = shift [termop] [] where
shift opstack dstack = primp >>= \x -> pseq opstack (x:dstack)
pseq opstack dstack =

(infixop >>= reduce opstack dstack) # e_reduce opstack dstack
reduce ops@(lastop:rops) dstack op

| domin lastop op = reduce rops (cst lastop dstack) op
| otherwise = w (op:ops) dstack

e_reduce (lastop:rops) dstack@(top:_)
| lastop == termop = return top
| otherwise = e_reduce rops (cst lastop dstack)

cst op (x:y:rdat) = (constrnod op y x) : rdat

Les précédences sont des «forces d’attraction» exercées par l’opérateur à sa gauche et à droite, selon l’associativité.
D’autres convention que celle adoptée ci-dessus existent, par exemple, au lieu de préciser un attributAssoc
spécifique, nous pouvons affecter à chaque opérateur deux précédences : gauche et droite. Si la précédence
droite est plus grande que la gauche, cela implique l’associativité àgauche. Le parseur est itératif.

La technique peut être généralisé à l’extrême : pratiquement toute la structure syntaxique peut être représen-
tée par les opérateurs.if , then etc. peuvent être des opérateurs, et les parenthèses aussi ! Ceci demande des
techniques décisionnelles assez compliquées. Par exemple, une parenthèse ouvrante «vue de gauche» a une
précédence si forte, qu’elle est toujours empilée. Mais elle force la réduction detous les opérateurs à droite,
jusqu’à la parenthèse fermante (où les deux parenthèses s’annulent réciproquement, et ne génèrent aucun code).
En général les techniques opérationnelles seules sont difficiles à déboguer, et elles sont utilisées éventuellement
en combinaison avec des techniques plus orientées vers une grammaire fixe. Elles doivent être complétées par
les procédures de vérification de légalité des constructions analysées. En général il ne faut pas s’appuyer trop
si le langage est complexe. Il existe un algorithme qui lit une grammaire et qui en déduit les précédences des
opérateurs, mais cette stratégie est rarement exploitée. Répétons : l’application la plus fréquente est la pos-
sibilité d’élargir la syntaxe des langages existants, s’ils prévoyaient les déclarations des opérateurs et de leur
précédences.

6.3 Exercices

Q1. Compléter le parseur des expressions arithmétiques par le module qui reconnaît les appels fonctionnels :
fun(e1,e2,...,en) .

R1. La première question qui doit être traitée est : quel est le résultat fourni par ce parseur? Nous devons
étendre notre code-cible (arborescent ou postfixe) par un opérateur d’«appel» procédural. La partie
analytique est si simple que nous la laissons au lecteur : identificateur et une liste d’arguments entre
parenthèses. Rien de nouveau.

Q2. Comment optimiser la création du code postfixe par le parseur des expressions arithmétiques en évitant
la création de nombreuses listes éphémères recopiées plusieurs fois par(++) .

R2. Ce problème a déjà été discuté. Si on construit une fonction d’aplatissement qui parcourt un arbre binaire
et qui concatène le résultat de l’aplatissement avec un deuxième argument «tampon», la récursivité en

6.3 Exercices 93

cascade se transforme en linéaire, et(++) disparaît. Mais la réalisation de cet algorithmen’est pas
triviale. Ce «tampon» (la suite du code) doit être présent danstousles parseurs.

Q3. Construire un scanneur de mots (alors un parseur vraimenttrèssimple), qui ignore (mais pas totalement !)
les espaces et les fins de ligne, et qui retourne les mots accompagnés par laposition: le numéro de ligne
et le numéro de colonne du premier caractère du mot. Ceci est indispensable pour le déboguage du
programme.

R3. On peut reformuler le scanneur des mots en lui ajoutant un compteur spécial, incrémenté chaque fois
quand un caractère est consommé. La construction explicite n’est pas compliquée, mais assez pénible :
on compte toujours en consommant les lettres, mais on n’attache pas le compteur à chaque lettre du mot,
seulement à la première.

La stratégie la plus universelle consiste à modifier le type décrivant le flux d’entrée : au lieu d’avoir une
chaîne, l’objet de typeString , nous définissons

type Flux = Fl (Int,Int) String

où les deux nombres entiers dénotent la ligne et la colonne courantes. Le parseur primitif que nous avons
appeléitem aura la forme :

item = Pa (\(Fl (y,x) inp) -> case inp of
[] -> []
(x:xq) -> [(x, case x of

’\n’ -> Fl (y+1,0) xq
’\t’ -> Fl (y,x+8) x
_ -> Fl (y,x+1) xq)])

Bien sûr, le tabulateur peut être interprété différemment, et nous pouvons ajouter quelques caractères de
contrôle, y compris le «backspace», mais c’est inutile.

On peut faire beaucoup de choses concernant la position, à condition quetouteconsommation du flux
passe par ce parseur. Voici un parseur-observateur qui ne consomme pas le flux, mais qui rapporte la
position actuelle.

posit = Pa (\imp@(Fl pos str) -> [(pos,imp)])

Si maintenant un parseur quelconque, par exempleword consomme le flux et construit une chaîne
spécifique, et s’il utilise le protocole conforme avec le parseuritem , il nous suffit de déclarer

wordPos = posit >>= \pos -> – juste avant le mot
word >>= \wrd -> return (At pos wrd)

Nous ajoutons ainsi l’information positionnelle là où nous voulons.

Chapitre 7

Informations complémentaires sur les
parseurs descendants

7.1 Diagrammes syntaxiques

Les productions BNF ne constituent pas le seul moyen de représenter les structures syntaxiques dans un lan-
gage. Les structures particulièrement simples, itératives, s’expriment mieux par les expressions régulières ou
par les automates. Ces derniers, visualisés par ses graphes de transition, offrent une technique particulièrement
intuitive et élégante, qui facilite la compréhension des règles par un lecteur humain. Le codage d’un automate
est une autre chose, mais en général, le dicton folklorique : «une image vaut 1000 mots» mérite une attention.

Quand le langagePascal est né, sa première définition syntaxique popularisée par son créateur Niclaus
Wirth, allait à l’encontre des archetypes établis par le langageAlgol 60. Au lieu de décrire tout en BNF, ce
qui était toujours possible, les auteurs ont préféré de décrire tout à travers des graphes, ou des diagrammes
de transition. Chaque symbole terminal ou non-terminal est un sommet du graphe syntaxique, l’enchaînement
séquentiel entre deux symboles devient un arc, et l’alternative est la bifurcation d’un arc (plusieurs successeurs).
Les itérations (productions récursives à droite) deviennent des boucles.

Les diagrammes apportent un peu d’esthétisme graphique au domaine de la compilation et facilitent la
compréhension des structure syntaxiques, et nous allons montrer quelques uns, mais ils ne sont pas directement
utiles pour un travail sérieux comme un outil de codage.

La Fig. (7.1) montre le diagramme pour le signe optionnel :

signe ::= φ | + | -

+

-

Fig. 7.1: Signe optionnel

Et voici, sur la Fig. (7.2) la construction du graphe qui représente une expression algébrique, d’abord récursive
à gauche, et ensuite normalisée selon l’algorithme de Greibach, et optimisé.
Fig. (7.3) montre le résultat de la normalisation de Greibach. Il a fallu introduire un nouveau non-terminal
trmSeq . Fig. (7.4) présente les optimisations de la nouvelle syntaxe.

7.2 Optimisation classique des parseurs descendants

94

7.2 Optimisation classique des parseurs descendants 95

±expr terme

termeexpr:

Fig. 7.2: Expression :terme | expr ± terme

terme trmSeqexpr:

terme± trmSeqtrmSeq:

Fig. 7.3: Représentation graphique de la normalisation de Greibach

Dans les sections suivantes nous aborderons encore les techniques ascendantes LR. Mais la technique de-
scendante, récursive, reste toujours la plus pédagogique et mieux structurée. Elle est irremplaçable pour la
construction de petits parseurs pour des petits langages bien formalisés.

Mais la stratégie descendante est par nature non-déterministe, ce qui implique une certaine inefficacité,
si le langage compilé est déterministe, et le non-déterminisme de l’analyse reflète uniquement le fait que
l’information sur la structure phrasale ne soit pas transmise au parseur suffisamment tôt. Répétons : le non-
déterminisme signifie simplement que le parseur n’est pas suffisamment prévoyant. L’usage de la pile récursive
est plus intense que nécessaire.

Le backtrackingéventuel doit être découvert très tôt, et les parseurs présentés dans cette partie de notes
sont parfaitement utilisables dans les compilateurs sérieux. Il faut naturellement préparer manuellement ou
automatiquement la grammaire – éliminer la récursivité à gauche, factoriser le préfixe gauche commun, etc.
Dans presque tous les cas intéressants le non-déterminisme est éliminé (le parseur devientprédictif) après la
reconnaissance du premier item sur le flux d’entrée.

Encore une fois : si le parseur réduit la chaîne par la productionS ::= A | B , il essayeA, et siA échoue,
alors lebacktrackingrelance la varianteB. Si l’échec deA se produit après la consommation de plusieurs

±terme termeexpr:

terme

±

expr:

Fig. 7.4: Optimisations du diagramme : expr

96 Informations complémentaires sur les parseurs descendants

lexèmes, et création de plusieurs morceaux d’arbre syntaxique, la stratégie non-déterministe est visiblement
inefficace.

Cependant, si la factorisation a été faite correctement, si l’alternative plus longue précède la plus courte,
etc., souvent la décision de basculer vers l’autre alternative est basée sur un simple test, ou il n’y a aucune
différence entre l’alternativeA ou B, et l’expression :if test(A) then A else B . (Toute alternative
devient exclusive).

La gestion du non-déterminisme dans un langage fonctionnel est commode. On peut «consommer» la tête du
flux d’entrée, mais rendre le même flux intacte à un autre module du parseur. Un parseur est unobjetqui peut
être combiné avec autres objets de la même catégorie (mais pas forcément du même type ; il suffit de regarder
les exemples).

Les techniques de programmation impérative sont plus brutales. Il n’y a pas de flux d’entrée, mais une
procédure de lecture qui consomme une partie du buffer d’entrée, et cette action est extérieure par rapport au
programme, elle constitue un effet de bord. Il est difficile de restaurer le contexte précédent. On a élaboré
alors la stratégie delook-ahead: la lecture de l’item suivant passe par un double tampon, le parseur a la
possibilité de regarder un peu en avant (d’habitude un item suffit), et de reconnaître un objet sans le consommer.
Ainsi l’ambiguïté, par exemple l’alternative –un facteur, ou un produit de facteursconstitue un terme additif
arithmétique – est réduite quand le parseur voit que l’item après le premier facteur est/n’est pas un opérateur
multiplicatif. Mais il n’a pas le droit de le consommer s’il s’agit d’un opérateur additif, car le parseur qui
construit la somme de termes en aura besoin. La technique classique d’optimisation est basée sur les éléments
decrits ci-dessous.

7.2.1 Élimination de la récursivité

En fait, elle ne peut être vraiment éliminée, les productionssontrécursives. Il s’agit simplement de construir le
parseur sous forme d’une procédure non-récursive, qui manipule explicitement toutes les piles indispensables
pour sauvegarder les données et le fil de contrôle.

L’élimination de l’usage de la pile système en faveur de nos piles privées est une partie mineure de la
stratégie. Ce qui nous intéresse est l’invention d’un «oracle» qui nous dira quelle production alternative ap-
pliquer, comment rendre le parseurprédictif? Il nous faudra introduire untableau de pilotagedu parseur, qui
spécifie la production «éligible» pour le développement d’un non-terminal.

Pour cela on introduit deux tableaux accessoires : PREMIER et SUIVANT, qui déterminent le tableau de
pilotage.

Un parseur descendant prédictif contient un tableau bi-dimensionnelM [A, a], où A est un non-terminal, et
a dénote un terminal (ou un marqueur de fin spécial, souvent noté comme $). Il possède également une pile
capable de stocker les symboles de la grammaire. Au début on y place le marqueur $, on on le couvre avec le
symbole de départ de la grammaire.

Le programme du parseur regardeX – le symbole au sommet de la pile, eta – le lexème d’entrée. L’action
du parseur est alors determinée :

• Si X = a = $, alors le parseur s’arrête.

• Si X = a, mais il est différent de $, alors le parseur a reconnu un symbole littéral.X est dépilé et la
lecture du flux d’entrée progresse d’un item.

• Si X est un non-terminal, le programme consulteM [X, a]. Ceci peut être uneproduction, ou la signal-
isation d’erreur. Si la production a la formeX ::= αβ, X est dépilé, et il est remplacé parβα. Une
procédure sémantique construit le résultat du parsing.

Bien sûr, si le programme trouve un élément du tableau de pilotage qui correspond à une configuration illé-
gale, l’analyse s’arrête et le parseur essaie de se calmer en cherchant un terminateur ou un autre terminal de
synchronisation. Le tableau SUIVANT peut être utile dans ce contexte.

7.2.2 Tableaux PREMIER et SUIVANT

(Dans la littérature anglophone ils s’appellent : FIRST et FOLLOW.)

7.3 Exercices 97

• Pour toute chaîne de terminaux et non-terminauxα qui après son développement se transformera en
chaîne terminale, définissons une fonction PREMIER(α), et cette fonction définit l’ensemble de tous les
terminaux qui peuvent se trouver au début de la chaîne réduite.

• Il est évident que le premier symbole de la chaîneα détermine cet ensemble, alors il suffit de construire un
tableauPREMIER(X), oùX est un symbole quelconque de la grammaire. Pour un symbole terminalP ,
PREMIER(P) se réduit à {P }. Si une production vide pourX existe, il faut ajouterφ à PREMIER(X).

• Nous avons menti. SiX peut se réduire à la chaîne vide, alors PREMIER(XY) dépend de PREMIER(Y),
et n’est pas déterminé par seulX. Il faut continuer la construction.

• Pour un non-terminalX on trouve PREMIER(X) en regardant la productionX → Y1Y2 . . . Yk, et en
calculant PREMIER pour la chaîne à droite.

• Pour chaque non-terminalA on construit un autre tableau, SUIVANT(A), qui contient l’ensemble de
tous les terminaux qui peuvent apparaître à droite deA dans une phrase, c’est à dire peuvent suivre le
développement deA. S’il existe une dérivation (finale) :S ⇒ αAaβ, où a est un terminal, alorsa
appartient à SUIVANT(A).

• La construction de SUIVANT procède récursivement, en réduisant les productions. Si dans la production
ci-dessusa n’est pas un terminal, on récupère son PREMIER.

• Si A figure dans la productionA⇒ αB, tout dans SUIVANT(A) se retrouvera dans SUIVANT(B). Les
règles sont vraiment simples.

Voici la construction du tableau de pilotageM . Il faut exécuter les opérations suivantes pour toute production
A ::= α de la grammaire :

• Pour chaque terminala dans PREMIER(α), ajouterA ::= α àM [A, a].

• Si la chaîne videφ se trouve dans PREMIER(α), il faut ajouter cette productionA ::= α à M [A, b],
pour tout terminalb dans SUIVANT(A).

Faire la même chose pour le marqueur $ – s’il se trouve dans SUIVANT(A), il faut ajouter la production
courante dansM [A, $].

Tout élément du tableau qui n’est pas défini, signale l’erreur du parsing.

7.3 Exercices

Q1. Essayer de construire un tableau de précédences permettant de structurer les expressions conditionnelles
if . . . then . . . else . . .en considérant tous les mots-clé comme des opérateurs.

Fig. 7.5: Arbre d’une expression conditionnelle

98 Informations complémentaires sur les parseurs descendants

R1. C’est facile, sachant que toutes les expressions algébriques, etc. doivent être liées par des opérateurs
«plus forts». Le motif est un opérateur préfixe, et les autres sont infixes. Mais on peut former des arbres
alternatifs, p. ex. celui sur la Fig. (7.5), et l’autre, avecthen et elseéchangés. Ce qui compte c’est la
génération d’un code correcte, mais aussi la possibilité de reconnaître des erreurs syntaxiques de tout
genre. Analysez cette question.

Q2. Construire les tableaux PREMIER et SUIVANT pour une grammaire classique qui décrit les expressions
arithmétiques avec les 4 opérations et les parenthèses.

R2. Ceci est un bon sujet d’examen. Pas de réponse ici.

Chapitre 8

Stratégie ascendante d’analyse
syntaxique

8.1 Idée générale

Nous avons essayé de démontrer que les parseurs construits par des techniques fonctionnelles combinatoires
– qui formellement appartiennent à la catégorie des parseursdescendants, structurellement correspondent aux
productions de la grammaire du langage. Ainsi, la construction du parseur est plus statique. La technique
descendante (fonctionnelle ou autre) convient bien à la construction manuelle des parseurs. Rappelons nous
pourquoi elle est descendante. Une production type

S :: a A B e

correspond à un parseurSqui s’applique au flux de données courant, et construit son fragment de l’arborescence
syntaxique finale. Son nomS peut être considéré comme l’étiquette de la racine de cet arbre, et par cette racine
la construction commence. Le parseurS appelle ses composantesa, A, etc., terminales ou non-terminales qui
construisent les sous-arbres et les feuilles. La récursivité des définitions syntaxiques se traduit clairement par
la récursivité des parseurs.

Une production qui contient des alternatives est équivalente à plusieurs productions «parallèles». Ladéfini-
tion de la règle possède des alternatives, mais une dérivation concrète de l’arbre doit être unique, dans chaque
contexte une seule alternative doit être applicable, sinon le langage est mal conçu.

Cependant, une autrestratégie analytique est également possible. Cette technique, qui gravite autour des
symboles cryptiques comme grammaires LR(1), stratégies LALR etc. est reconnue par son universalité et
efficacité dans le domaine de compilation des langages classiques. Cependant, elle est difficile à implanter
«à la main», les parseurs construits par les méthodes ascendantes d’habitude sont des résultats du travail d’un
générateur de parseurs, et ils sont lourds. Nous allons présenter ici deux variantes de la stratégie ascendante : les
grammaires d’opérateurs, qui a l’avantage de pouvoir enrichir la syntaxe des langages existants, et la stratégie
générale LR propice à la construction des générateurs de parseurs.Attention, les grammaires d’opérateurs
seront à peine mentionnées – un exemple de leur usage dans le monde de parseurs monadiques se trouve
dans un des chapitres précédents.

L’idée générale de la technique ascendante est la suivante. Prenons encore une fois la production exemplaire
écrite ci-dessus, mais complétons-la par la définition des composantes.

S ::= a A B e
A ::= A b c | b
B ::= d

Si le flux d’entrée contient la chaîne «abbcde », un parseur ascendant commence la création de son arbre par
les feuilles. Il déplace sa «tête de lecture» et consomme le lexèmea. Cette opération s’appelle en jargon «shift»
(décalage).

Avant de procéder, le parseur vérifie s’il peut faire quelque chose avec la feuille acceptée. S’il y avait une
règleX :: a , le parseur aurait pu construire le grapheX← a, mais avec notre grammaire il est obligé de
relancer leshift et consommerb. Cette fois il est possible de construireA← b. Cette opération s’appelle

99

100 Stratégie ascendante d’analyse syntaxique

«reduce». Elle ne consomme rien, seulement remodèle l’état interne du parseur, en réduisant les sous-arbres
déjà stockés sur une pile interne en leur nœud-père. Souvent une réduction est suivie par une autre réduction,
et c’est ici que le compilateur déclenche l’exécution des procédures sémantiques.

«Virtuellement» notre chaîne est équivalente àaAbcde , et dont les deux premiers items se trouvent déjà
dans le parseur, sur la pile. Il n’y a pas de productionX ::= a A , alors le parseur est obligé d’exécuter le
shift. L’item b suivant peut être réduit àA, comme avant, mais supposons qu’un oracle magique informe le
parseur de la possibilité de faire une autre réduction, à condition de consommer encore quelques items. Ceci
s’appelle la résolution du conflitshift-reduce. Quand leshift suivant résulte en séquenceaAbc sur la pile, le
parseur la réduit àaA. Le reste est immédiat :d se réduit àB, e est consommé, et la pile qui contientaABe
donneS ce qui termine l’analyse.

Donc, toute difficulté pour implanter une telle stratégie d’analyse consiste à identifier la «poignée» (ang.
handle), la chaîne d’items qui doit être consommée afin d’effectuer une réduction.

• Quelle production choisir?

• Comment résoudre les conflits entreshiftet reducesimultanément possibles?

Il nous faudra aussi répondre à la question comment résoudre le conflit entre deux réductions alternatives
possibles (conflit : reduce-reduce). Les techniques ascendantes utilisent les tableaux de pilotage, comme le
parseur descendant prédictif décrit dans la section consacrée à l’optimisation des parseurs descendants. Ces
tableaux de pilotage constituent l’oracle dont nous aurons besoin.

8.2 Grammaires d’opérateurs

Rappelons que formellement, une grammaire de précédence, qui constitue la base de la technique ascendante
avec des opérateurs, se caractérise par deux exigences :

• il n’y a pas de production dont la partie droite est la chaîne videφ , et

• aucune production ne contient deux non-terminaux adjacents.

La forme

E ::= E + E | E - E | E * E | E / E | ’(’ E ’)’ | Atm

possède cette structure, mais pour enlever les ambiguïtés, chaque objet spécial comme+ ou les parenthèses,
doit être équipé avec des priorités (précédences) et l’attribut de l’associativité. Un tel objet portera le nom
d’opérateur, et ce qui reste, ce sont des données : termes, atomes, etc.

Dans la section précédente nous avons défini la précédence des opérateurs commeun nombre entier, et
l’associativité (gauche, droite ou aucune) était un attribut séparé. Mais les deux peuvent constituer une seule
propriété, la précédence, avec deux champs : à gauche et à droite. Une donnéex qui se trouve entre deux
opérateurs, par exempleA x B, après avoir été empilée, participe à la réduction suivante. Si la précédence
droite deA et plus grande que la précédence gauche deB, la pile des données (contenantx) est réduite, sinon
B est empilé. Si les précédences sont égales, on peut effectuer des opérations spéciales, par exemple réduire
les deux opérateurs à la fois.

La construction d’un parseur complet basé sur ces principes constitue un joli exercice, mais le déboguage
d’un tel parseur pose quelques problèmes. . .

Voici un perseur opérationnel basé sur cette stratégie. Il est plutôt rudimentaire, et il possède la même
structure qu’un parseur déjà vu dans cec notes, dans la section (6.2). On commence par la définition du
tableau de précédences. On considère que le marqueur $ initialize la pile. Notez comment représente-t-on les
parenthèses.

optab=[("=",31,30),("+",49,50),("-",49,50),("*",59,60),
("/",59,60),("(",-1,10),(")",10,-1),("$",0,0)]

data Op = Nil | O String Int Int
marq = O "$" 0 0

parse l = shift [] [marq] (l ++ ["$"])

8.3 Parseurs LR 101

shift datstack operstack (c:q) = case (assoc c optab) of
Nil -> shift ((F c):datstack) operstack q
op -> reduce op datstack operstack q

reduce op@(O nm lf ri) datstack opst@((O np l1 r1):oq) q
| lf < 0 = shift datstack (op:opst) q
| lf >r1 = shift datstack (op:opst) q
| lf <r1 = let (a:b:dq)=datstack

in reduce op ((Nd np b a):dq) oq q

| lf==r1 = if nm=="$" then (head datstack,q) else shift datstack oq q

Tout le débogage, les actions sémantiques, etc., sont laissées à la discrétion du lecteur qui un jour trouve besoin
d’exploiter cette stratégie.

8.3 Parseurs LR

Le parseur LR est un automate à pile, qui peut être codé une seule fois, indépendamment du langage. Ainsi
Yacc en lisant la grammaire (décorée par les opérations sémantiques)ne construit pas la procédure-parseur.
Cette procédure, ou plutôt son squelette, estprédéfinie, et stockée dans le générateur.Yacc construit des
tableaux de pilotage, les «scripts» statiques contenant des instructions pour l’automate. Les tableaux sont
ajoutés au squelette, «décorés» par les actions sémantiques prévues par l’utilisateur, et le parseur est généré en
sa forme-source, qui doit encore être compilée par le compilateurC.

Les avantages de la stratégie LR sont nombreux, elle est universelle et efficace. Les erreurs sont découvertes
relativement tôt. On peut prouver que la classe de langages reconnus par les techniques LR (basées sur les
grammairesLR) est plus riche que celle décrite par les grammaires LL (et techniques descendantes). Bien sûr,
a priori il n’est pas sûr si cette richesse est vraiment utile, des langages vraiment complexes et atypiques sont
rares.

Mais la stratégie LR n’est pas facile à implanter, et nous allons seulement présenter la structure générale
de l’algorithme. La construction complète d’un parseur LR est un peu longue. Nous ne voulons pas non-plus
de décrire dans ces notes le générateurYacc (ou Bison). Les lecteurs qui le veulent utiliser disposent de la
documentation officielle, librement accessible partout.

Comme il a été dit, l’algorithme général du parsing ne dépend pas de la grammaire. Nous allons alors con-
struire d’abord un automate général à pile, et la discussion de la construction des tableaux sera faite ultérieure-
ment.

Le programme opère sur une pile qui peut stocker les symboles de la grammaire (terminaux, et – après leur
réduction – les non-terminaux), ainsi que quelques symboles spéciaux qui représententl’état de l’automate.
Si sk dénote un état, etXi un symbole syntaxique, la pile contient la séquences0X1s1X2 · · ·Xmsm, où sm

est le sommet. Dans une implantation concrète on peut éviter de stocker les symboles de la grammaire sur la
pile ; ceci peut être restauré depuis le contexte, mais ainsi la présentation de l’algorithme (selon Aho, Sethi et
Ullman) est plus facile.

Le tableau de pilotage est composé de deux parties, nommées conventionnellement :ACTION et GOTO.
Les éléments du segmentACTION contiennent une parmi les quatre valeurs possibles :

• shift s – l’action de décalage. Icis dénote le nouveau état de l’automate qui sera empilé ;

• reduce , action de réduction par la productionA→ β ;

• accept – la terminaison du parsing, et

• error – puisque personne n’est parfait. . .

Le tableauACTION est indexé par l’état, et par un symbole terminal. Le programme du parseur après avoir
consommé l’item suivant de son flux d’entrée, disons,ai, consulte l’élémentACTION[sm, ai] , où – comme il
a été dit –sm est le sommet de la pile. Le flux contient les items en attente de consommation :ai+1ai+2

Le tableauGOTO est indexé par l’état et un symbole syntaxique, et génère un nouvel état. C’est la fonction
de transition de l’automate.

102 Stratégie ascendante d’analyse syntaxique

Si l’élément consulté contientshift s , l’automate passe à la configuration

(s0X1s1X2 · · ·Xmsmais)

et procède à consommerai+1 etc.
Si ACTION[sm, ai] estreduce A → β, le programme vérifie la production en question et récupèrer,

la longueur (le nombre d’items) deβ. Ensuiter états, etr symboles syntaxiques sont dépilés. L’étatsm−r

devient le sommet, les étatssm, sm+1 etc. disparaissent, et les symbolesXm, Xm+1 etc. se réduisent àA. Le
flux ne change pas, le lexème suivant resteai, mais la configuration de la pile devient

(s0X1 · · ·Xm−rsm−rAs)

où s est le contenu de l’élémentGOTO[sm−r, A] . Ceci est presque tout. la signification des entréesaccept
eterror est intuitive.

Exemple. Reprenons notre grammaire d’expressions arithmétiques, et plus concrètement l’ensemble de règles :

(1) E ::= E + T
(2) E ::= T
(3) T ::= T * F
(4) T ::= F
(5) F ::= ’(’ E ’)’
(6) F ::= id

Le tableau de pilotage de cette grammaire aura la structure présente sur la Fig. (8.1).

State ACTION GOTO
id + * () $ E T F

0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Fig. 8.1: Tableau de pilotage de la grammaire algébrique

Son analyse n’est pas difficile quand on comprend intuitivement la stratégie. Peut-être un exemple concret de
parsing aidera le lecteur.

Effectuons l’analyse deid * id + id. Fig. (8.2) montre la séquence d’états et la pile de la machine.
Avant de passer aux tableaux, remarquons que nos parseurs, descendants, et ascendants LR partagent une
inefficacité apparente générée par la structure de la grammaire. La séparation de l’expression en séquence
de termes, du terme en facteurs, etc. définit correctement les précédences et l’associativité des opérateurs
correspondants. Une grammaire style

Expr ::= Atome | Expr + Expr | Expr * Expr | Expr / Expr

etc. serait ambiguë. Mais la réduction d’un atome en facteur, ensuite en terme, qui finalement aboutit à la
réduction en expressionestun gaspillage de temps.

Les techniques classiques du parsing détestent toute ambiguïté. On peut traiter la grammaire mentionnée
ci-dessus, si aux attributs standard, spécifiés par les productions, et alors par le contexte d’utilisation de tel
out tel symbole syntaxiqueon ajoute les précédences et l’associativité. La combinaison de la technique LR
régulière et les précédences permet la construction des parseurs rapides et efficaces, mais cette construction est
délicate et difficile.

8.4 Exercices 103

Pile Flux Action
(1) 0 id*id + id $ shift
(2) 0 id 5 *id + id $ reduce: F→ id
(3) 0 F 3 *id + id $ reduce: T→ F
(4) 0 T 2 *id + id $ shift
(5) 0 T 2 * 7 id + id $ shift
(6) 0 T 2 * 7 id 5 + id $ reduce: F→ id
(7) 0 T 2 * 7 F 10 + id $ reduce: T→ T*F
(8) 0 T 2 + id $ reduce: E→ T
(9) 0 E 1 + id $ shift

(10) 0 E 1 + 6 id $ shift
(11) 0 E 1 + 6 id 5 $ reduce: F→ id
(12) 0 E 1 + 6 F 3 $ reduce: T→ F
(13) 0 E 1 + 6 T 9 $ reduce: E→ E+T
(14) 0 E 1 $ accept

Fig. 8.2: Exemple d’analyse LR

8.3.1 Construction des tableaux de parsing

Dans la littérature courante on présente trois méthodes différentes de construction des tableaux de pilotage,
la méthode SLR (simpleLR), la méthode dite canonique, et LALR –lookaheadLR, la technique utilisée en
pratique, qui permet de traiter quelques cas en dehors de la stratégie SLR, et qui partage avec elle une certaine
simplicité du résultat. Pour un langage de complexité de Pascal le nombre d’états générés par SLR et LALR est
de quelques centaines. La méthode canonique engendrera dans ce cas un automate à plusieurs milliers d’états.

Nous aurons besoin de la notion de «grammaire augmentée», qui ajoute à une grammaire donnée avec le
symbole de départ S, une production extra :S’ ::= S , et oùS’ est le nouveau symbole initial. Quand cette
nouvelle production est réduite, le parseur s’arrête. On n’a pas besoin d’action spécialeaccept. En fait, les
actionserror sont redondantes elles aussi, on peut considérer l’erreur comme une réduction particulière, avec
l’action sémantique qui doit «calmer» le compilateur, et synchroniser ses données (et, naturellement, écrire
le diagnostique, et bloquer la génération du code ultérieur, si après la découverte de la faute, la compilation
continue, pour découvrir d’autres éventuelles fautes).

Dans cette version de notesnous n’allons pasmontrer la construction des tableaux de pilotage. Ceci n’est
pas très compliqué, mais pénible, et redondant de point de vue de notre philosophie. Si le lecteur avraiment
besoin de la stratégie LR pour le parsing, il peut utiliser un de très nombreux générateurs. S’ils ne suffisent pas,
prière de contacter l’auteur personnellement.

8.4 Exercices

Q1. Comment implanter les appels fonctionnels de genref(x) , où la parenthèse ouvrante n’est plus un
opérateur préfixe, mais plutôt infixe?

R1. Tout d’abord, il n’est pas sûr que dans ce contexte la parenthèse ouvrante doit être considérée comme un
opérateur infixe entre deux données : le nom de la fonction, et les arguments. On peut toujours considérer
un identificateur comme un opérateur, et toute formex y comme l’appel fonctionnel équivalent àx(y) .

Alors, comment forcer l’interprétation d’un identificateur quelconque comme un opérateur? Il suffit
d’attribuer par défaut à toutes les variables (noms) qui n’ont pas été déclarées comme des opérateurs,
le statut d’opérateur de très haute précédence. Il sera donc toujours empilé, s’il suit un autre opérateur.
(D’ailleurs, il doit être toujours considéré comme opérateur préfixe, car telle est la structure des appels
fonctionnels standard). Mais dans la séquenceid1 id2 + ... l’opérateurid2 trouve déjà sur la
pile un identificateur, et nous pouvons leur attribuer la propriété de parenthésage – après l’exécution de
la réduction, les deux disparaîssent. Cette fois la procédure sémantique est plus élaborée que dans le cas
des parenthèses, où le opérateurs disparaîssaient sans laisser des traces.

104 Stratégie ascendante d’analyse syntaxique

Ici la réduction peut former un appel(id1 id2) , et ensuitele stocker à nouveau sur la pile des opéra-
teurs, avec les mêmes attributs. L’occurrence de la séquenceid1 id2 id3 construira l’appel((id1
id2) id3) .

Un opérateur de moindre précédence, l’addition par exemple, réduit la pile des opérateurs. Le dernier
«objet fonctionnel» trouvé se transforme en un simple objet et passe à la pile des données. C’est tout.

Q2. Comment implanter à travers les grammaires de précédence des constructions commerepeat... instructions
... until condition enPascal, oudo { ... } while ... enC?

R2. La situation est légèrement plus générale que celle décrite en cours, carwhile ouuntil dans les construc-
tions mentionnées semblent être des opérateurs infixes, mais également les opérateurs de parenthésage.
(En fait, while en C est simple, entredo et while on peut trouver une seule instruction, tandis que la
constructionrepeatenPascal est plus délicate.

Q3. Lire la documentation deHaskell et la partie du Prélude consacrée à l’affichage. essayer de comprendre
la fonctionshowsPrec , qui est un «anti-parseur». Dans quelles circonstances nous pouvons l’utiliser
pour nos messages diagnostiques, etc.?

R3. Lire la doc. . .

Chapitre 9

Sémantique

9.1 Grammaires attribuées et décorées

Notre philosophie d’analyse suit la règle :comprendre signifie construire. Les analyseurs ne sont pas des
simples machines à dire oui/non à la question : «est-ce une phrase correcte?», mais ils doivent retourner un
résultat qui correspond à la phrase analysée.

Ils sont donc déjà des générateurs du code (au moins intermédiaire), et ceci signifie qu’une certaine dose de
sémantique doit y être présente. Mais cette sémantique souvent est très pauvre, dans la réalité la sémantique est
toujours contextuelle : le «sens» d’une sous-phraseA peut dépendre de son contexteX etY dans une production
S ::= X A Y , et de plus, quelques propriétés du résultat fourni parA lors de l’analyse peuvent dépendre du
non-terminalS qui définit la production utilisée.

Commençons par l’introduction de la notion d’unattribut sémantique qui caractérise tout terminal et non-
terminal du langage. En particulier tout symbole de la grammaire possède un ou plusieurs attributs, et toute
construction syntaxique peut propager les attributs soit de droite à gauche : les propriétés deA déterminent
les propriétés deS, soit à l’envers, de gauche à droite. Dans le premier cas on parle d’attributssynthétisés,
dans le second – d’attributshérités. Les attributs peuvent aussi se propager entre les symboles à droite d’une
production, ils sont alors aussi appelés hérités.

Il faut préciser que la séparation entre la syntaxe et la sémantique, entre le parsing et l’analyse sémantique qui
l’accompagne, estun peuune question de convention. Nous avons déjàincorporédes actions sémantiques dans
nos parseurs. L’avantage de séparer cette partie d’analyse comme une catégorie conceptuellement indépendante
nous permet surtout de

• Préciser la sémantique de manière statique et homogène ; parler de propriétés des objets syntaxiques
indépendamment des programmes d’analyse. Quand la technique de construction de parseurs était prin-
cipalement impérative, la sémantique cachée dans les procédures d’analyse était illisible. Ceci n’est plus
le cas dans le cas des parseurs fonctionnels modernes, ou des parseurs écrits dans un langage logique, les
actions sémantiques sont beaucoup plus claires.

• Grâce à cette description statique, nos actions sémantiques peuvent piloter de manière homogène un
parseur construit par la technique LR, où nous spécifions les productions, mais nous ne construisons pas
les procédures du parsing qui sont générées automatiquement.

Ceci est très utile aux fans deYacc, mais nous ne pouvons consacrer ici trop de temps à ce modèle.

Ceci est tout concernant l’«indépendance» de la sémantique et la syntaxe. Il va de soi que si la sémantique est
traitée à travers des divers attributs, et ceux-si sont attachés aux symboles de la grammaire, et que les actions
sémantiques sont pilotées par les productions syntaxiques, les deux parties de l’analyse sont intrinsèquement
liées et inséparables. Passons à quelques exemples.

9.1.1 Valeurs des nombres

Rappelons les règles syntaxiques qui définissent un nombre entier par la concaténation des chiffres, ou N
signifie un nombre (entier), et C – un chiffre :

105

106 Sémantique

N ::= C N
N ::= C

mais si à présent nous devons attacher des significations concrètes à tous les symboles ci-présents, il faut
désambiguër la double occurrence du mot «nombre », puisque évidemmentle nombre à gauche, et celui à
droite ne sont pas identiques : celui à gauche contient un chiffre de plus. Traditionnellement nous pouvons
indexer les non-terminaux ambigus. Nous allons aussi numéroter les productions.

(1) N 0 ::= C N 1

(2) N ::= C

Le choix de la récursivité droite joue ici un rôle très important (et nous savons déjà que ce choix n’est pas
judicieux. . .). À présent il faut affecter aux variables syntaxiques quelques attributs sémantiques. Sans doute,
l’attribut principal est lavaleur numériqued’un nombre. Considérons que chaque symbole de la grammaire est
un record qui possède plusieurs «champs» – un pour chaque attribut. Ainsi,N0.v sera la valeur du nombre à
gauche de la production (1).

Nous avons vu que le poids d’un chiffre dépend – évidemment – de la position dans la chaîne, et donc
sa valeurrelative dépend de la longueur de la chaîne à sa droite. Cette constatation nous permet d’établir la
nécessité d’autres attributs : la longueur d’une chaîne, et la valeur relative d’un chiffre. Il devient alors évident,
que les identités suivantes, attachées à la production (1) ont lieu :

N0.v = C.v + N1.v
C.v = C.c · 10N1.l

N0.l = N1.l + 1
oùC.c est la valeur absolue du chiffre, soncodenumérique (ASCII-48 ou autre). La production (2) donne

N.v = C.v
C.v = C.c
N.l = 1

et si notre système de compilation est capable d’accepter de telles identités (ou instructions), il est également
capable de synthétiser automatiquement les instructions sémantiques qui seront ajoutés au parseur. Ceci est fait
parYacc (avec sa syntaxe spécifique, et ses contraintes).

Mais nous savons que les règles

(1) N 0 ::= N 1 C
(2) N ::= C

sont mieux adaptées à la construction de la valeur finale. Nous avons discuté la normalisation de Greibach,
etc., mais cette fois nous sommes intéressés uniquement par la sémantique. La règle (1) spécifie :N0.v =
10 · N1.v + C.c, et c’est tout, si le parseur (p. ex. ascendant LR) est capable de gérer la récursivité, il pourra
s’occupper de la sémantique également.

Les attributs hérités apparaissent quand on introduit la normalisation, et les règles changent de forme :

(1) N ::= C S
(2) S 0 ::= C S 1

(3) S ::= φ

et la sémantique devient
(1)N.v = S.v
(1)S.h = C.c
(2)S0.v = S1.v
(2)S1.h = C.c + 10 · S0.h
(3)S.v = S.h

oùS.h dénote son attribut hérité.

9.1.2 Constance

Si le parseur est capable de synthétiser les valeurs des nombres, il peut également se rendre compte que7 · 9 =
63, et pre-compiler cette expression sans être obligé de passer au générateur du code un arbre syntaxique
comportant la multiplication. Il peut «plier» (fold) toute expression considéréeconstanteà condition de pouvoir

9.1 Grammaires attribuées et décorées 107

effectuer les calculs. L’attribut de constance se propage depuis des feuilles vers la racine, et la propagation est
bloquée seulement par la présence des opérateurs inconnus, par exemple des fonctions définies par l’utilisateur
(ou autres fonctions extérieures), ou des opérateurs, dont le comportement dépend des données disponibles lors
de l’exécution du programme.

On voit ici que les langages fonctionnels qui interdisent la présence des effets de bord doivent permettre
une optimisation plus agressive. Mais on voit aussi que les langages paresseuxpar défautdoivent abandonner
une telle optimisation.

9.1.3 Temps de vie

Il s’agit d’optimiser les ressources, par exemple les registres rapides, ou la pile. Si le compilateur est capable
de prouver qu’après avoir exécuté une instruction concrète, une ou plusieurs variables ne sont plus accessibles,
il peut naturellement générer le code qui alloue les mêmes zones de mémoire à des variables différentes.

Dans le monde de la programmation fonctionnelle cette analyse peut avoir un autre «goût». Le langage
Clean spécifie des objets àaccès unique. Si x est un tel objet, et si le programme contient la création d’un
nouvel objety = f x, après cette créationx n’est plus accessible, son rôle prendy. Le compilateur peut donc
générer le code qui au lieu de créer un nouvel objet, modifie l’original.

9.1.4 Formatage 2-dimensionnelle des formules mathématiques

Présentons ici un exemple assez riche et instructif, mais un peu en dehors de notre vision de compilation comme
d’un processus qui génère un code exécutable. Ici le texte source contient une expression algébrique classique,
avec les 5 opérations arithmétiques traditionnelles, les parenthèses, et quelques fonctions comme la racine,
etc. Nous pouvons y ajouter quelques fonctionnelles (au sens symbolique du terme) comme les sommes ou les
intégrales.

Le «code-cible» de notre compilateur est une joli représentation graphique, bi-dimensionnelle de l’expression
lue, formatée selon les règles de l’imprimerie. Ce formatage sera dirigé par la syntaxe. L’analyseur reconstruira
à partir de la forme syntaxique lesattributs géométriques de la phrase et de ses éléments : les dimensions
des objets et leur position relative. La manipulation constitue une sorte de «anti-parsing». . . L’objectif de cet
exercice est de jouer un peu avec les attributs, et voir comment résoudre les problèmes de dépendance entre
eux. Comme nous avons déjà dit maintes fois, l’élément la plus important dans la construction d’un parseur
n’est pas la partie analytique, le module de reconnaissance (ils sont assez standardisés), mais lerésultat, le
«code» généré.

Ici, comme montre la Fig. (9.1), le résultat du parsing d’une expression, par exemple

a+b*(alpha/(beta-c*8^x) +f)

est une «boîte» géométrique, l’espace occupé par l’expression formatée. Le contenu de cette boîte est un

Fig. 9.1: Boîte de formatage des expressions

ensemble de boîtes imbriquées, qui finalement se terminent par des boîtes atomiques. Si nos ambitions avaient
été plus grandes, nous aurions pu demander le formatage de la formule ci-dessus comme sur la Fig. (9.2), mais
nous serons satisfaits aussi avec la version ASCII. . .

108 Sémantique

Fig. 9.2: Expression formatée professionalement, avec des boîtes

/ alpha \
a + b |----------- + f |

| x |
\beta - c 8 /

Rappelons que les détails du formatage ne nous intéressent pas vraiment. Nous allons donc utiliser une po-
lice de taille fixe, avec les parenthèses construites comme ci-dessus, etc. D’ailleurs, le parenthésageestune
affaire délicate : pendant le parsing «algébrique» les parenthèses servent uniquement pour l’analyse, elles spé-
cifient l’ordre des opérations, et c’est tout. Ici elles possèdent une forme visuelle, elles jouent un rôle aussi
dans la «génération du code», et de plus, leur interprétation n’est pas évidente, parfois elles sont redondantes,
comme dans(a+b)+c , parfois non, donc on ne peut pas toujours les considérer comme des éléments pure-
ment graphiques, si nous voulons que notre «compilateur» effectue un peu d’optimisation, et qu’il élimine des
redondances.

Par convention une boîte quelconque est coupée horizontalement par laligne de base. L’extrémité gauche de
cette ligne c’est lepoint de base, qui détermine la position de la boîte par rapport à un répère. Les boîtes
placées horizontalement à côté, alignent leurs lignes de base. On voit que en présence des fractions, une partie
de la formule doit se trouver en dessous de la ligne de base.

Les boîtes possèdent donc les attributs géométriques suivants :

• La largeurw. Pour un atôme c’est le nombre de caractères qui le composent. Sinon, c’est la somme des
largeurs des boîtes-composantes (horizontales).

• La hauteurh. Pour un identificateur, nombre, etc., la hauteur est égale à 1. La profondeur alors est égale
à zéro. Sinon, c’est la somme des dimensions verticales de toutes les boîtes intérieures, au dessus de la
ligne de base.

• La profondeurd. La dimension verticale sous la ligne de base est determinée par les dimensions du
dénominateur de la fraction.

Ces propriétés sont synthétisés. On voit que la juxtaposition linéaire (p. ex., dansa + b ajoute les largeurs
des boîtes composantes, et prend le maximum de la hauteur et de la profondeur, comme des attributs de la
boîte englobante. La puissancexy peut stocker les deux boîtes composantes sur la diagonale, et une fraction
x
y construit la hauteur de la nouvelle boîte à partir du numérateur, et la profondeur – du dénominateur. La
hauteur/profondeur des parenthèses s’adapte à la hauteur/profondeur de l’expression parenthésée.

On voit aussi quelques attributs hérités ! La position (d’affichage) des fragments dépend naturellement de
la position de la structure complète. Ainsi dansa + b la position «x»du b dépend de la largeur des éléments
précédants. Dans une fraction nous aurons le décalage vertical, la position «y» du numérateur et deu dénom-
inateur par rapport à la ligne de base, mais également, ce qui est normalement envisageable – le plus court de
deux doit être centré. Naturellement, la longueur de la barre correspond à la plus grande de deux largeurs.

Le parseur construit les boîtes avec tous les attributs géométriques, et pour afficher le résultat sur une feuille ou
sur l’écran, nous disposons de deux stratégies possibles ;

• Affichage «aléatoire», où chaque élément estdessiné, positionné sur la page comme ses attributs le
prévoient.

• Affichage séquentiel, par une imprimante ASCII. Dans ce contexte il fauttrier les boîtes verticalement
et ensuite horizontalement pour pouvoir placer les éléments une fois, dans l’ordre prévu, sans possibilité
de reculer.

9.2 Exercices 109

Si le paquetage peut opérer avec des polices arbitraires, modifier la taille des atomes, jouer avec la largeur
des espaces blancs entre les items, la situation est plus complexe. Il faudra alors tenir compte du fait que les
exposants et les indices utilisent la police plus petite, que le décalage vertical est assez complexe et il est basé
sur quelques règles de typographie non-algorithmiques, etc.

9.2 Exercices

Q1. Compléter l’exercice d’affichage des expressions.

R1. Cet exercice est pour les ambitieux. On peut apprendre beaucoup de choses en lisant les livre de Donald
Knuth consacré au TEX (The TEXbook, etTEX: the program).

Chapitre 10

Les types

10.1 Qu’est-ce qu’un type et quel est son rôle

Ce domaine est une exemplification paradigmatique de l’approche sémantique à l’analyse, et nous pourrions
placer cette section dans le chapitre précédent. En effet, letype d’une expression est un desattributs les plus
importants dans un langage algébrique. L’analyse des types est absolument indispensable pour pouvoir utiliser
les opérateurs surchargés, et pour pouvoir reconnaître la légalité de presque toute construction de données.

Nous verrons dans cette section comment l’attribut de type se propage, comment lesdéclarationsde types
influencent-elles les instructions du langage, quelle est la différence entre les langages typés statiquement et
dynamiquement, et comment réagir aux fautes de typage. D’abord il faut essayer de définir la notion de type.

Nous pouvons trivialiser la réponse en disant qu’un type est l’ensemble de toutes les valeurs qui peuvent être
affectées à la variable appartenant à ce type, ou mieux : valeurs qui peuvent être traitées par le même algorithme
détaillé, sans besoin de conversions, etc. Ceci est plus ou moins correct, mais conventionnel, ambigu, et pas
tellement constructif. Il faut savoir vérifier les types par une procédure finie, et dont la complexité est faible
(polynomiale, de préférence linéaire). Laissons donc la définition du mot comme quelque chose intuitive, mais
formalisable.

Toute valeur dans un langage évolué a – conventionnellement – un type. Les constantes «naturelles» (numériques)
peuvent être entières ou réelles, les constantes symboliques comme#t enScheme ouFalse enHaskell ap-
partiennent au type Booléen, et toute structure qui contient une balise particulière aurait dû être déclarée. Si le
type est attaché à une valeur de manière explicite, visible (p. ex. par balisage), on parle detypage dynamique.
On peut affecter une valeur (ou la référence à cette valeur) à une variable quelconque, et la variable elle-même
n’a aucun type. C’est le cas duScheme, Icon, Smalltalk, Python. . . La programmation est plus souple, mais
l’exécution est plus lente, car la discrimination du type des valeurs est effectuée par le noyau exécuteur (la
machine virtuelle). Les erreurs du typage sont donc reconnus pendant l’exécution du programme.

Par contre, les langages dont le typage est statique, cette discrimination est une affaire syntaxico-sémantique
effectuée par le compilateuravantl’exécution. Les variables (y compris les variables décrivant les objets fonc-
tionnels) sontdéclaréesou leur type estinféréautomatiquement. Ainsi toute erreur de typage est diagnostiquée
avant l’exécution. Ceci ne signifie pas que la suite enC

double x;
x=7;

soit erronée, seulement que l’incompatibilité des types force le compilateur à ajouter au code quelques instruc-
tions de conversion. En général la règle syntaxique

var = expr;

doit déclencher la procédure sémantique, disonscompatible (var.type, expr.type). La réponse peut être
plus forte : identique, ce qui fait générer le code d’affectation sans aucun code supplémentaire, mais aussi
affecte le type reconnu à l’instruction elle-même (rappelons qu’enC on peut écrirex = y = 2*z). Si les
types sont compatibles, mais différents, la conversion est ajoutée.

110

10.1 Qu’est-ce qu’un type et quel est son rôle 111

L’expression2*z (ou toute autre expression numérique contenant un opérateur) est analysée de manière
analogique. Si les types des opérandes sont identiques, l’environnement doit permettre de décoder l’objet
syntaxique(*) selon son type. Si les types sont mixtes, une conversion vers le type plus étendu est nécessaire.

En C++, avec toute la panoplie de constructeurs définissables par l’utilisateur la conversion peut être am-
biguë, et elle doit être pilotée consciemment. Voir la définition du langage.

10.1.1 Inférence automatique des types, système H-M

Notre expérience avecHaskell a prouvée qu’il est parfaitement possible d’avoir un langage typé statiquement,
mais sans déclarations (sauf dans des cas spéciaux). Rien d’exotique, la section précédente montre clairement
que le compilateur déduit le type des expressions et peut propager cet attribut en deux sens sans aucun problème.
On peut se poser la question pourquoi des langages commeC ou Pascal forcent l’utilisateur à écrire les
déclarations?

La réponse est historique. Ici nous présentons de manière superficielle le système de Hindley-Milner, le
protocole d’inférence automatique de types utilisé par exemple dans les langages de la familleML (CAML,
SML, Hope, Miranda, etc.) La propriété commune de ces langages est : ils sont fonctionnels, la transparence
référentielle est assurée, un symbole (variable) signifie une chose. Si on rejète tout polymorphisme, l’expression
2*x force l’objet x à être entier. Si la fonctionf possède le typea→ b, et elle est appliquée à un objet de type
a, le résultat possède le typeb. Mais si on écrity = f x où on connaît les types dex et dey , le système H-M
déduit le type de la fonctionf sans aucune déclaration.

Plusieurs fonctions sont polymorphes, par exemplehead (x:_) = x , applicables à toute liste non-vide.
Le système d’inférence déduit le type de cette fonction :a → a. L’argument et le résultat appartiennent au
même type.

En général, l’inférence des types des expressions et des fonctions ressemble beaucoup à un raisonnement
logique classique, où le flèche→ qui symbolise le type fonctionnel peut être assimilée à la déduction logique.
L’inférence qui gère une application fonctionnelle peut être lue : sia eta→ b, alorsb. Aussi,a et b (poura et
b concrets, «vrais») impliquenta→ b. Et ceci permet d’affirmer qu’il n’existeaucune fonction polymorphede
typea→ b, car ceci n’est pas une tautologie, une vérité logique indépendante de l’assignation dea et b.

10.1.2 Structures composites

Avec la «curryification» des fonctions on n’a pas besoin de les traiter séparemment, les fonctions de type
a→ b→ c→ d appartiennent à la même catégorie des entités «logiques». Le système de typage automatique
«sait» aussi que six,y appartiennent aux types légauxa et b, l’objet (x,y) , le tuple, appartient à un type
légal, disonsa× b.

Il existe un nombre de constructeurs standard, par exemple List, qui transforme un type légala en un autre :
List a. L’opérateurcons aura donc le typecons :: a -> List a -> List a . Les constructeurs
définis par l’utilisateur entrent dans le même jeu.

Ainsi, la vérification du typage d’un programme devientune démonstration logique. Les constantes possèdent
des types concrets, considérés «vrais». Aux variables dans le programme on affecte des variables logiques, et
on effectue l’unification entre la gauche et la droite d’une assignation. C’est ainsi que l’on découvre que
l’expression(x:x) est illégale, car implique quea ≡ List a, un regressus ad infinitum. Même si la program-
mation avec des listes nous a habitué à l’existence des structures «infinies» (p. ex. cycliques), les types infinis
restent une calamité. Au lieu de parler d’une «démonstration logique» on peut voir le processus comme la solu-
tion d’une collection d’équation dans le domaine de types (ou on cherche évidemment les solutions finies. . .).

10.1.3 Quelques généralisations possibles

Le système de Hindley-Milner est un peu rigide. Sa version «canonique» pose même des obstacles au polymor-
phisme arithmétique standard, la possibilité de mélanger les entiers et les flottants dans une expression comme
23 + 17.8. (Ainsi CAML prévoit des opérateurs arithmétiques flottants différents des opérateurs entiers. . .).

Il y a d’autres problèmes. La paire(3,True) est légale. Mais la compilation du programme

prog f = (f 3,f True)
res = prog id

112 Les types

échoue ! Cependant la forme suivante marche :

res = (let f = id in (f 3, f True))

ce qui montre que trop de liberté peut bloquer letypechecker. Cependant, le polymorphisme a été inventé pour
être commode et utilisable par des non-spécialistes. Ceci implique que les systèmes de typage continuent à
évoluer jusqu’aujourd’hui, et constituent un domaine de recherche très actif.

En Haskell nous avons lepolymorphisme restreintpar le système de classes de types (discuté ailleurs).
Clean introduit un peu de typage dynamique sur sa couche statique, pour éliminer quelques contraintes.

D’autre part un langage dynamique commeLisp peut être équipé d’un compilateur qui vérifie le typage
statiquement aussi. Dans le cas général ceci mène à rien, mais dans quelques cas ilpeutrésoudre un problème
de typage avant l’exécution, et générer un code beaucoup plus efficace. Le futur des compilateurs deScheme
appartient à cette catégorie.

Chapitre 11

Deux mots sur l’analyse lexicale

11.1 Qu’est-ce qu’un lexème

Techniques universelles, adaptables à tout problème d’analyse ne constituent pas la seule philosophie possible.
Une autre stratégie : moyens simples pour des buts simples, a également ses avantages. Selon cette philoso-
phie l’usage des techniques hautement récursives pour définir des structures régulières, itératives, comme les
nombres ou les identificateurs, pour éliminer les espaces du texte, etc., n’est pas idéal. Pour construire les
lexèmes simples comme des identificateurs ou des nombres entiers on n’a pas besoin des piles. L’analyse
est strictement itérative, le parseur consomme les caractères dans une boucle jusqu’à l’occurrence d’un carac-
tère inacceptable dans ce contexte. Il s’arrête, et la chaîne consommée forme le lexème en question (ou une
procédure de recouvrement est lancée en cas de besoin).

Il est évident que pour promouvoir la modularisation du compilateur, une séparation complète de la couche
lexicale et de la couche syntaxique pourrait être utile. Nous pourrions construire des scanneurs plus simples
que les parseurs génériques, et aussi nous pourrions découpler complètement la partie bas niveau du tableau des
symboles – le tableau des chaînes, de l’analyseur syntaxique, qui a besoin seulement des attributs des symboles,
et jamais de leur apparence extérieure. Mais il faut se rendre compte d’une vérité souvent négligée.

Credoreligieux no. 14 : Il est évident pour tous, que ce qui est évident pour les uns, ne l’est pas pour les autres
.

11.1.1 Catégories lexicales

Il faut d’abord régler les problèmes d’interfaçage du scanneur et de sa couche «magique» – la définition de
l’alphabet, et les catégories lexicales. Très souvent ces définitions peuvent être statiques, par exemple on
définit unelettrepar une primitive qui vérifie le code ASCI : le caractère doit se trouver entre 65 et 90, ou entre
97 et 122. Un chiffre : entre 48 et 57, etc.

Cependant le monde actuel est multi-lingue, et il serait préférable de pouvoir définir la catégorielettre de
manière plus régulière, etstatiqueet non pas par une procédure. Les démarches à suivre sont les suivantes.

• Définir l’alphabet : tous les codes et leur glyphes, c’est à direspécifier le codage. Ceci n’est pas trivial,
actuellement il existe plusieurs dizaines de codes qui convergent très lentement. Le standard ASCII pour
les premiers 128 codes de l’alphabet s’est stabilizé, mais l’Unicode est loin d’être accepté partout.

• Construire un tableauindexé par l’alphabet. Chaque élément doit contenir la description du caractère
correspondant – sa catégorie lexicale.

• Établir un nombre raisonnable de catégories lexicales : lettres, chiffres, chiffres étendus (p. ex. les
lettres qui peuvent former des chaînes hexadécimales), parenthèses, caractères opérationnels, caractères
d’échappement, etc. Déjà cette partie de la conceptualisation de l’analyse lexicale est loin d’être triviale :
on voit queBelle contient unelettreB, mais le même caractère peut être (ailleurs) un chiffre hex.

Il faut par exemplebiendéfinir les caractères – espaces blancs.

113

114 Deux mots sur l’analyse lexicale

• Décider ce qui est un identificateur, comment construire les opérateurs, etc. Si on décide de construire
un scanneur lexical manuellement, il esttrèsavantageux de ramasser tous les mots-clés (mots figés par
la syntaxe du langage) et de les placer dans la table de symboles du parseur, de les traiter comme les
identificateurs, et jamais par des procédures lexicales spécialisées. ceci economisera beaucoup de temps.

. . . et sans lever le pied, commencer à refléchir comment réagir aux fautes lexicales.

11.2 Expressions régulières

Cette section et la suivante décrivent leurs sujets de manière superficielle, les expressions régulières et les
automates appartiennent au cours sur les langages et automates. Notre but principal est de donner quelques
exemplespratiques, et d’élaborer une stratégie de construction des scanneurs.

Une expression régulièreesur un alphabetU est :

• la chaîne vide,

• un caractère (élément de l’alphabet)a ∈ U ,

• la concaténation des expressions régulièrese1e2,

• l’alternativee1|e2,

• et la fermeture de Kleene :e∗, qui est une abréviation

e∗ = φ | e | e e | e e e | . . .

ou
e∗ = φ | e e∗

où la concaténation et l’alternative sont associatives, et la chaîne vide est l’opérande neutre pour la concaténa-
tion. L’alternative est symétrique, et l’ensemble est distributif comme en arithmétique :

a (b | c) = a b | a c
(a | b) c = a c | b c

On peut introduire d’autres abréviations commee+ :

e+ = e e∗ ce qui implique

e∗ = φ | e+

e? = φ | e

etc. Elles sont utilisées parLex. Voici la description lexicale régulière des nombres sans signe (disons, en
Pascal) :

num ::= digit + (.digit +)? (E(+|-)? digit +)?

11.2.1 Automates

Cette expression correspond à l’automate fini présenté sur la Fig. (11.1).

Sur cette figure on a marqué seulement les états finaux légaux. Les transitions sont :d dénote un chiffre
(digit), eta – un «autre caractère», qui termine le parsing.

La construction d’un scanneur comme un parseur combinatoire, ou comme un automate piloté par la matrice
d’incidence de l’automate en question, tout ceci sont des questions secondaires sur le plan pratique. Il faut
surtout s’assurer que

• Le lexème accepté est le plus long possible. Seulement quand il n’y a plus rien à faire, l’automate passe
à son état terminal (dans le contexte discuté).

• Les trois issues possibles doivent immédiatemment discriminer le type du nombre reconnu.

11.2 Expressions régulières 115

Fig. 11.1: Reconnaissance des nombres sans signe

• Une «bombe», par exemple une séquence23.= qui viole évidemment la grammaire peut être gérée par
des procédures de recouvrement spécialisées. En général, après la découverte d’une faute lexicale, le
scanneur doit faire tout pour terminer la construction du lexème.

Il peut, ou même il doit considérer que le programme est erroné, et de ne plus générer aucun code, mais
il peut compléter le lexème en formant23.0 , et passer la main au parseur. Ainsi on pourra découvrir
plusieurs fautes lexicales pendant une passe du compilateur.

Chapitre 12

Gestion de mémoire dynamique

12.1 Allocation du tas

Pour l’efficacité d’exécution il serait idéale de pouvoir adresser les structures de données de manière la plus
directe, sans passer par les piles, tableaux d’indices, etc. Ceci en général est difficile (et moins portable). Mais
même si nous pouvons opérer dans le programme avec les variables qui contiennent des pointeurs directs,
un autre problème se pose : le dynamisme. Nous pouvons avoir besoin de quelques structures composites
intermédiaires qui vivent pendant l’exécution d’un segment du programme, et deviennent inutiles. Il est donc
souhaitable de pouvoir demander au système d’exploitation l’allocation d’un segment de mémoire et pouvoir
le retourner aupoolcommun, utilisable par d’autres applications ou threads.

Tous les langages de programmation modernes permettent lacréation dynamiquede structures de données.
EnC++ nous avons la commandenew, et nous pouvons aussi détruire les structures. Mais la gestion manuelle
est toujours un peu délicate. Qu’est-ce passe-t-il si nous détruisons la structure adressée par un pointeur, mais ce
pointeur avait été copié dans une autre structure, utilisée par un autre fragment du programme? Pour éviter cette
situation paradoxale, un des paradigmes de programmation moderne est :on ne retourne jamais au système des
structures inutiles. On les «oublie», et le système (la partie système duruntime, le support logiciel qui n’est
pas directement contrôlé par le programme) s’en charge pour récupérer la mémoire. Cette facilité est une des
raisons de la carrière du langageJava. Les protagonistes de l’efficacité brute et du langageC ne peuvent pas
nier que grâce à la gestion automatique de mémoire le nombre d’utilisateurs capables d’écrire des programmes
très complexes a visiblement augmenté.

La technique sur un plan très général est suivante. Chaque application peut demander au système qui est
le gestionnaire ultime de la mémoire, l’allocation d’une tranche deN octets. Le système – s’il est capable
de rendre ce service, retourne au programme l’adresse de la zone allouée (sinon il déclenche une exception,
ou, ce qui est plus commode – il retourne une valeur illégale, p. ex., zéro). Le système maintient la liste de
zones/pages allouées et libres, et si le programme demande une zone ou retourne une zone, ces tableaux sont
mis à jour. Les détails dépendent du langage, et d’autres détails.

Par exemple, quand le programme retourne au système une zone inutile, il passe aux procédures de récupéra-
tion son adresse. Mais le système doit savoircombiend’octets récupérer ! On peut donc choisir deux stratégies :

• La première est universelle. Chaquerecordalloué et attribué au programme possède un champ caché –
la longueur de la zone. Ce champ est utilisé pour la déallocation, le programme n’en a pas besoin.

• La deuxième est plus économique, mais beacoup plus difficile à implanter. Si le langage de program-
mation est typé, lecompilateurconnaît la longueur de toutes les structures. on peut donc (en principe)
prévoir plusieurs procédures de récupération de mémoire, chacune spécifiquement adaptée à un type
concret de données.

• On peut aussi envisager la variante orientée- objet de la stratégie précédente. Chaque classe de structures
possède sa méthode particulière, un destructeur adapté. La différence de cette technique par rapport
aux destructeurs enC++ est que dans ce langage les destructeurs sont exécutés quand la structure est
retournée au système par l’utilisateur, tandis qu’ici il n’y a pas de «delete» ou autre instruction équiva-
lente.

116

12.2 Compteurs de références 117

Il faut, indépendamment des détails, prévoir encore une procédure facile à implanter : le compactage de la
mémoire libre. Supposons que la mémoire est partiellement allouée, comme sur la Fig. (12.1). En retournant

Fig. 12.1: Mémoire partiellement allouée

quelques objets aupool on produit des «trous» – zones libres. Le système normalement construit une liste des
segments accessibles, qui peuvent être utilisées pour des allocations ultérieures. On voit que le lien rouge sur
le dessin est redondant : le système doit compacter deux zones libres voisines en une plus grande.

Un problèmebeaucoupplus compliqué serait : comment compacter les zones libres non-contiguës par la
relocation des structures allouées. Nous en allons parler plus tard.

12.2 Compteurs de références

Une technique classique, souvent enseignée avecC++, mais plutôt rarement implémentée correctement dans
un contexte pédagogique, c’est la méthode qui prévoit que chaque record alloué possède un champ entier
supplémentaire : un compteur des références. Ce compteur est initialisé à 1 au moment de la création de
l’objet.

Si la structureS est affectée à une variable-pointeurp : p=S; , le système fait trois choses :

1. Vérifie la valeur précédente dep. Si la variable pointait sur une autre structure de ce type (ou compatible),
son compteur de références est décrémenté. S’il devient égal à zéro, la structure est retournée aupool
système.

2. L’adresse deS est passée au récepteur.

3. Le compteur deS est incrémenté.

Apparemment la technique est simple, efficace et sure. Mais il en faut voir quelques défauts :

• Le premier, bien reconnu depuis longtemps c’est l’impossibilité de gérer les références cycliques. Si une
structure possède un champ-pointeur qui adresse elle même, l’affectation de ce pointeur incrémente le
compteur de la structure, et même si toutes les variables extérieures ont «oublié» la structure en question,
sa mémoire ne sera jamais récupérée.

• Un problème de discipline, qui, d’ailleurs, est commun, et frappe d’autres stratégies d’administration
automatique de mémoire : le clonage. En utilisant le compteur des références il faut éviter à tout prix
passer des structures compositespar valeurau procédures, ce qui risque normalement de recopier tous
les champs de l’objet. Le constructeur de recopie (enC++) ou une autre activité qui place la copie de la
structure sur la pile, peuvent produire des effets très indésirables : modification incongrue de plusieurs
exemplaires du compteur attaché à une structure. De préférence il faut passer tous les paramètres par
référence (adresse).

12.3 Ramasse-miettes «marquage et balayage»

La technique de compteurs permet de retourner au système un objet inutile au moment de sa libération. Mais
une autre stratégie devient à présent plus populaire : legarbage collection(GC), ou ramassage de miettes. La
mémoire est allouée jusqu’à l’épuisement des ressources, et les structures oubliées résident dans la mémoire
du programme. Quand le programme demande une nouvelle allocation et le système n’a plus de ressources, le
programme entre dans la phase de ramassage, où la mémoire est analysée, les structures «vivantes» localisées
et identifiées, et les structures mortes sont retournées aupoolde la mémoire. Ce domaine a éloboré une certaine

118 Gestion de mémoire dynamique

terminologie. La «vraie» application, le module qui effectue les calculs et qui créé les structures de données
s’appelle lemutateur, et le module GC – lecollecteur.

Il existe deux techniques traditionnelles de GC :

• Marquage-balayage (mark and sweep, et

• Recopie complète.

Commençons par la première méthode. la Fig. (12.2) montre ce qui peut arriver à la mémoire, la présence
d’un amas de structures liées avec les pointeurs, où chaque structure possède également d’autres informations
(chaînes, nombres, etc.) Chaque structure doit prévoir la présenced’un bit supplémentaire, qui est inutilisé

Fig. 12.2: Un «plex» dans la mémoire

pendant le fonctionnement normal du programme, et égal à zéro (par exemple). Quand la mémoire est épuisé
et le runtimedéclenche le GC, celui-ci doit avoir accès direct à un certain nombre d’objets, comme la pile
système, les variables statiques, et autres donnéesadressées directement dans le programme. Appelons cette
collection lenoyaudes structures accessibles.Toute autre structure doit être accessible à partir du noyau en
suivant les pointeurs.

Le GCmark-and-sweepfonctionne en deux phases. La première consiste à marquer (positionner le bit GC
à 1) toute structure accessible dans la mémoire. Ceci peut être facilement réalisé par la récursion : Le GC
accède à une structure, disons,A. Si elle a déjà été marquée, on ne fait rien et on retourne. Sinon, la structure
est marquée, et le GC récursivement traite toutes les structures accessibles depuisA : les recordsB, C etF sur
la Fig. (12.2).

En analysantB le GC n’a rien à faire avecA, il marque seulementC. Quand le contrôle retourne deB à
A, la structureC est déjà marquée, rien à faire. Ainsi, en exploitant le parcours de ce graphe en profondeur, on
marque toute structure vivante, accessible depuis le noyau.

La seconde phase est le balayage (sweeping). C’est une opération de bas niveau, qui ne respecte pas le
typage des structures, et traite la mémoire comme un tableau contigu. Ce tableau est parcourulinéairement, le
GC visite toutes les structures dans l’ordre des adresses. (Il doit donc savoir quelle est la longueur de chaque
structure ; on ne peut pas se permettre d’avoir dans la mémoire des zones étrangères, gérées par un autre
mécanisme ; ceci rend très difficile la co-existence dugarbage collector, et de procédures externes, p. ex. des
sous-programmes enC attachés à un programme enHaskell).

Pendant cette phase toute structure marquée est restaurée à son état d’origine (le bit GC est nettoyé). Les
structures qui n’ont pas été marquées sont mortes, et peuvent être liées ensemble, en formant la zone libre.

Cette technique possède un défaut majeur – l’usage de la pile à cause de la récursivité peut devenir dangereux.

12.3 Ramasse-miettes «marquage et balayage» 119

Le tas normalement est beaucoup plus volumineux que la pile système, et l’implantation naïve de cette tech-
nique de GC peut être défaillante.

12.3.1 Optimisation de Schorr-Waite

Un pseudo-code qui réalise le GC (la partie marquage) présenté ci-dessus serait

mark object =
if object.gc!=Marked then

object.gc=Marked
for_each x=address_field(object) do

mark x

et on peut envisager quelques optimisations, comme le remplacement de la récursivité par une pile privée, ou
un parcours en largeur du graphe. Cette dernière possibilité sera discutée dans le contexte du GC copieur, ici
nous présentons une très intéressante idée de Schorr et Waite, qui modifie temporairement le graphe de données
dans la mémoire, et utilise les données elles-mêmes pour implanter une pile temporaire.

La description intuitive de l’algorithme est la suivante. Le GC en marquant un objetX garde toujours
l’adresse de l’ancêtreA, l’objet qui contenait le champx adressant l’objet en train d’être marqué. À présent
nous devons descendre deX vers les fils de ce dernier, disons, àF adressé par le champf , comme montre la
Fig. (12.3).

Fig. 12.3:

On descend par une simple ré-affectation de l’argument dans une boucle, sans aucun appel récursif, mais en
descendant on mémoriseA dansf . Après le marquage complet deF on réinsère son adresse dansf , en
récupérant l’adresse deA. On peut alors marquer un autre champ, ou, si tous ont déjà été marqués, on remonte
versA. Voici un pseudo-code un peu plus discipliné.Il est conseillé de le lire et comprendre.

On organise très légerement différemment l’administration du marquage, la procédure supposetoujoursque
son argument n’a pas été marqué, la décision de ne rien faire dans le cas contraire est prise avant la «descente».

mark_SW object = msw object NIL where
msw obj anc =

obj.gc=Marked
for_each f=address_field(obj) do

if f.gc!=Marked then
f=anc
msw f obj

...

120 Gestion de mémoire dynamique

12.3.2 Problèmes avec le compactage de la mémoire

Un problème persistant de la stratégie de marquage-balayage est lafragmentation de mémoire. La fragmen-
tation extérieureest le résultat de l’allocation et libération répétées, ce qui peut provoquer la création d’un
grand nombre de petits trous dans la mémoire. La liste des segments libres risque de ne pas être contiguë,
mais composée de petits segments séparées dans la mémoire par les zones allouées. Si le programme demande
l’allocation d’un segment plus grand que le segment libre actuel, le système doit chercher plus loin. D’abord,
ceci ralentit l’allocation. Mais on risque finalement de ne rien trouver, même si la quantité totale de mémoire
libre est grande !

Il existe aussi un phénomène defragmentation interne. Si un segment libre contient 20 octets, mais nous
demandons, disons, 18 ou 19, il est hors de question d’allouer 18 octets de ce segment, et laisser 2 ou 1 octet
inutilisable, car on ne peut pas l’attacher à la mémoire libre, on n’a pas suffisamment de place pour y mettre
le pointeur sur le segment suivant. Donc, on alloue la totalité, 20 octets à la structure de données, même
si quelques octets à l’intérieur ne seront jamais utilisées. On doit éviter que ce phénomène gaspille trop de
mémoire.

Il existe toute une théorie d’allocation optimisée. On peut prendre le premier segment libre suffisamment
grand. Ou, chercher le plus petit, mais encore convenable. Ou, chercherle plus grandrestant, pour éviter
la fragmentation interne, etc. Tout ceci sont des moyens semi-heuristiques de prévenir ou de retarder les
problèmes causés par la fragmentation, mais le vrai rémède est le compactage de la mémoire. Il faut déplacer
les objets vivants, les «glisser» dans la mémoire vers le bas ou vers le haut (pendant la phase de balayage),
et – naturellement – ne pas oublier la mise à jour de tous les objets qui référencent la structure déplacée.
L’algorithme de compactage qui marche avec le GC marqueur est assez compliqué, et il ne sera pas discuté ici.
La technique de recopie nous donne le compactage gratuitement.

12.4 Ramasse-miettes copieur

Cette catégorie de ramasse-miettes est très différente, et est basée plutôt par un parcours du graphe de données
en largeur, avec une file qui est réalisée par les structures de données elles-mêmes, pendant le processus de
ré-arrangement. Elle a été inventée par Cheney.

On commence par la séparation de l’espace de travail en deux moitiés distinctes, dont une seule est utilisée
(nous l’appelerons traditionnellementfrom-space), et l’autre reste en jachère (qui deviendrato-space). Ceci
peut paraître un gaspillage inacceptable, mais, enfin, . . . la mémoire est devenue un article de consommation
courante. . . On peut aussi prévoir l’allocation de la jachère sur le disque, ce qui économise la mémoire centrale,
mais ralentit considérablement le processus GC.

La mémoire est allouée toujours depuis une tranche contiguë, il suffit de maintenir un pointeur sur la zone
libre (ainsi que sa longueur restante, bien sûr). Quand la mémoire est épuisée, le programme est suspendu, et
le GC transporte tous les objets vivants depuisfrom-spacedans la jachère (to-space), qui devient ainsi la zone
de travail. L’espace utilisé précédemment devient la jachère.

On commence par accéder aux objets accessibles directement (le noyau), par exemple l’objet A sur la Fig.
(12.2). Il est copié intégralement dans la mémoire de la nouvelle zone de travail, suivi par les copies d’autres
objets du noyau. Seulement la «surface» des objets est copiée, les pointeurs internes ne sont pas modifiés ! On
commence à traiter les champs internes par la suite. Le GC connaît la structure de l’objet A, donc il reconnaît
le champ qui adresse B. B est donc copié, et placé dans le nouvel espace, ici : suivant A. Après avoir terminé
cette copie, le champ correspondant de A est mis à jour. On fait la même chose avec C et F, et la nouvelle
zone de travail,to-spacepossède la structure comme sur la Fig. (12.4). Ayant épuisé les champs de A, on peut
passer aux champs de B. Mais le premier pointe sur une structure qui a déjà été déplacé, donc il ne suffit pas
de copier une structure, mais il faut mémoriser ce fait. Ainsi, au moment de la recopie, la structure interne de
l’original est détruite, et remplacée par l’adresse de la copie. L’original doit également être marqué comme
déplacé, ce qui suggère la présence d’au moins un bit de marquage (ou l’usage d’un tableau spécial extérieur,
où on sauvegarde les adresses de toutes les structures déplacées), mais en fait ceci est inutile : si un objet dans
from-spacecontient un pointeur appartenant àto-space, il a été déplacé et ce pointeur est sa nouvelle adresse,
le forwarding pointer. Dans aucune autre circonstance on ne peut trouver une telle configuration.

En suivant ceforwarding pointerstocké dans A, on peut construire la vraie valeur du premier champ de B
(la ligne pointillée).

12.4 Ramasse-miettes copieur 121

Fig. 12.4: Processus de recopie

On traite l’autre champ de B où le même phénomène se produit (record C qui a déjà été traité depuis A), et
on passe à C, ce qui déclenche la recopie de E devant F.

Après avoir copié toutes les structures, l’espace de travail et la jachère changent de rôles, leto-spacedevient
le from-spacepour la callection suivante. Il est évident que cette technique produit toujours l’occupation
contiguë de la mémoire. De plus, la complexité temporelle de cet algorithme est proportionnel au nombre de
structuresvivantes, tandis que la stratégie de balayage force le parcours par la totalité de la mémoire, et la
complexité devient donc proportionnelle au nombretotal d’objets.

12.4.1 Ramasse-miettes générationnel

Dans un programme réel suffisamment compliqué le «temps de vie» de structures dynamiques peut être très
dispersé. Quelques structures temporaires sont allouées pour disparaître presque immédiatemment, les autres,
hautement partagées deviennent permanentes, ou presque. Si on pouvait éliminer le traitement de ces don-
nées par le GC (ou au moins optimiser cette partie du ramassage), l’économie de temps pourrait être assez
significative.

L’idée du GCgénérationnelest donc la suivante. On divise le tas (la partie exploitée dans le cas de
l’algorithme de recopie) en quelques (2 - 5) zones de longueur variable, p. ex. G0 assez petite, G1 4 fois
plus grande, G2, quatre fois plus grande que G1, etc. Au début toutes les nouvelles allocations ont lieu dans
G0. Quand la mémoire doit être régénérée, on note dans les structures vivantes le fait qu’elles ont survécu
un ramassage (donc, chaque record est équipé d’un compteur). Après quelques ramassages on transporte les
structures toujours vivantes dans G1.

Le nettoyage de G0 est fréquent car la zone est petite. Il faut se rendre compte que les structures transportées
dans G1 peuvent adresser les objets dans G0 (etvice-versa). Pour nettoyer G0 il faut donc parcourir G1, pour
trouver les objets accessibles. Une fouille exhaustive de G1 serait mortelle, donc quand on déplace un objet
de G0 dans G1, et cet objet référence les structures dans G0, on place son adresse dans une liste/tableau
directement accessible. Normalement cecidoit être rare. Posséder la référence vers un objet plus stable, donc
de G0 vers G1 est normal, mais la situation inverse ne doit pas être fréquente (un vieillard ne retient pas dans
la mémoire les événements récents. . .).

De temps en temps il faut nettoyer G1, et – éventuellement – on fait la même chose, en transportant les
objets durs à détruire dans G2.

12.4.2 GC pour les données «binaires»

On peut en principe poser la question suivante : que faire si dans le record alloué il n’y a pas de place pour le bit
GC? Par exemple, si on alloue quelques octets qui seront remplis par un nombre flottant. Une solution serait de
restreindre l’intervalle des nombres, et de ne réserver qu 47 bits pour la mantisse au lieu de 48. Dans le cas des
entiers, utiliser seulement 31 bits et non pas 32. Le problèmeprincipal de cette stratégie n’est pas la perte de
précision/capacité, mais la nécessité de «décortiquer» ce bit inutilisable lors detouteopération arithmétique !

On peut allouer un octet entier supplémentaire, ceci ajouterait1/8 d’allocation de mémoire aux nombres
de typeDouble , mais une autre technique est possible aussi, surtout si toutes ces structures appartiennent au
même type (même longueur d’allocation), et peuvent être allouées depuis une zone libre dédiée : on réserve un
tableau externe, traité comme une suite de bits. Chaque bit correspond à un record, et ainsi on peut utiliser la

122 Gestion de mémoire dynamique

technique de marquage classique, seulement le bit GC n’est pas physiquement attaché à la donnée en question,
mais séparé.

Si on décide de stocker tous les nombres flottants (de précision double : 8 octets par nombre) dans un
tableau dédié, le tableau accessoire aura la taille 64 fois plus petite, ce qui est abordable.

12.4.3 GC en temps réel : ramassage incrémental

Parfois le fait que le ramassage arrête le programme, fige son action pendant un certain temps, est gênant.
Peut-on nettoyer la mémoire par unthreadparallèle (ou un processus lancé périodiquement par le programme
principal) pendant un travail normal? Le problème est délicat, car pendant le GC la mémoire se trouve dans un
état instable, parfois elle est «endommagée» (algorithme de Schorr-Waite qui renverse les pointeurs crée dans
la mémoire des structures qui n’ont rien à voir avec le programme. . . ; durant la phase de recopie qui insère les
forwarding pointersaucune partie de la mémoire n’est utilisable. . .).

Il est difficile d’imaginer que l’on puisse dans un tel contexte faire une partie du ramassage (marquer
partiellement les structures, par exemple). Cependant, si le modèle de marquage (bit : oui/non) est étendu àtrois
couleurs: blanc, gris et noir, où un noeud noir a été marqué (copié) entièrement, avec tous ces descendants,
et un noeud gris a été traité, mais ses descendants pas encore, alors le ramassage incrémental devient effectif.
Ceci est très important pour l’usage des langages évolués, qui exploitent l’allocation dynamique de mémoire
dans le contexte de programmation en temps réel.

Les détails de l’algorithme sont un peu compliqués. En fait, il existe déjà plusieurs algorithmes incré-
mentaux, classés en deux catégories, les («vrais») algorithmes incrémentaux, où le collecteur opère quand
l’application principale le demande, et le ramassage concurrentiel qui se déroule en «parallèle», en temps
partagé avec le consommateur de mémoire (le mutateur).

On commence par une description abstraite du processus GC. Pour les deux stratégies décrites ici, le marquage
et la recopie, on peut considérer que les nœuds possèdent une de deux couleurs, ils sont Blancs («normaux») et
Noirs (visités : marqués ou copiés). La régénération de mémoire consiste à trouver tous les nœuds qui peuvent
être «noircis» ; le marquage utilise une pile, et l’algorithme de Cheney – une file.

Ici les nœuds sont donc divisés en trois classes : les Blancs, les Noirs et les Gris.

• Les objets Blancs n’ont pas été encore visités, ni par l’algorithme de marquage, ni par la boucle de
recopie. Le GC démarre avec tous les nœuds Blancs.

• Les objets Gris ont été touchés (marqués ou copiés), mais leurs descendants non, pas encore. Dans
la stratégie de GC en profondeur (mark-and-sweep), ils sont accessibles par la pile de stockage des
descentes récursives. Pour la stratégie de recopie, ce sont des records copiés, mais dont les fils n’ont pas
encore subi le transfert.

• Les objets Noirs sont marqués avec tous les descendants immédiats. Ils ont quitté la pile, ou ils ont été
recopiés avec leur famille descendante (les ancêtres et les descendants lointains peuvent rester encore
Gris).

Un pseudo-code qui décrit le ramassage est très succint :

while(objets Gris existent)
p = le premier objet Gris accessible
for_each(champs f_i de l’objet p)

if(p.f_i est Blanc) p.f_i <- Gris
p <- Noir

La présence de la boucle intuitivement suggère que la stratégie décrite ici s’adapte mieux aux GC qui exploitent
la recopie, et, en effet, ceci est plus populaire. Nous constatont maintenant, que

• Quand il n’y a plus de nœuds Gris, tous les objets Blancs sont morts.

• Tous les objets Gris doivent être physiquement accessibles (pile, ou file. . .).

• Finalement, aucun objet Noir n’a le droit d’adresser un objet Blanc ! Ce «racisme» est contagieux,
comme nous le verrons dans quelques instants. Les objets changent de couleur en fonction de nœuds qui
le voient.

12.4 Ramasse-miettes copieur 123

Quand le collecteur travaille, me mutateur doit pouvoir créer de nouveaux objets. (De quelle couleur?1)
Quand la procédure utilisateur stocke un pointeur sur une structure «normale», ancienne, BlancheA dans

un champ d’un objet NoirB, il faut colorier GrisA etB. Le compilateur doit générer un code supplémentaire
pour chaque affectation d’un pointeur, afin d’assurer un bon déroulement de cette opération.

Quaand le mutateuraccèdeà un pointeur sur un objet Blanc, cet objet devient immédiatemment Gris. Le
mutateurne peutjamais opérer sur la référence à un objet Blanc ! Donc, les accès sont compilés aussi avec
quelques instructions supplémentaires, ce qui est coûteux.

Quelques autres procédures entrent en vigueur si le système utilise la mémoire paginée, mais nous allons
ommettre la discussion de ces problèmes.

C’est presque tout. À présent les deux «adversaires», le mutateur et le collecteur peuvent travailler ensem-
ble. Essayons quand même d’y ajouter quelques précisions.

12.4.4 Algorithme de Baker

Cet algorithme augmente la puissance (et ralentit) de l’algorithme de Cheney, et il est compatible avec le GC
générationnel.

Quand la mémoire est épuisée, lesfrom-spaceet to-spacebasculent, et les objets dans le noyau sont dé-
placés. Ensuite le mutateur peut reprendre le travail. Mais chaque fois quand le mutateur demande l’allocation
des nouvelles cellules, un processus quasi-parallèle force le scanning de quelques objets par le collecteur. Ils
sont déplacés, et le nouvel objet alloué prend sa place à la fin de la zone d’allocation dans leto-space. Bien
sûr, quand le nouvel objet est initialisé, les objets-cibles de ses champs sont (éventuellement) recopiés.Ainsi le
mutateur n’adresse que leto-space; tous les pointeurs stockés appartiennent à la nouvelle zone du travail.

Quand le mutateur accède à un objet, les instructions supplémentaires générées par le compilateur assurent
le système qu’on reste dans leto-space. La découverte d’un pointeur «ancien» provoque immédiatemment la
recopie de sa cible.

Le système GC est propre et lisible, mais son code est long. Nous n’allons pas le traiter plus, et on s’arrête ici.
Tout le domaine de GC n’a pas dit son dernier mot.

1Les étudiants répondent trop souvent «Blanche», ce qui est complètement faux !

Chapitre 13

Macros et pre-traitement

13.1 Transformations source – source

Ce chapitre est plus important que l’on n’y pense.Le pre-traitement (preprocessing) est une étape qui précède
d’habitude la compilation (translation en code intermédiaire/final) proprement dite. Pourquoi d’habitude? Sou-
vent dans les livres on trouve une discussion très simplifiée, qui réduit les macros à la substitution textuelle des
symboles par symboles ou séquences de symboles. Mais la vérité est infiniment plus riche.

La substitution textuelle des symboles est très utile, et l’usage des constantes et formes fonctionnelles sym-
boliques (par#define) est un des traits caractéristiques du langageC Il est évident qu’une pre-définition de
la constante PI=3.1415926536 économise le temps du programmeur et évite quelques fautes, et qu’une compi-
lation conditionnelle selon la valeur de la variableBIG_ENDIAN peut rendre le programme plus portable.

Cependant, la transformation générale source→ source est une technique de compilation universelle,
qui doit être connue.Elle peut réaliser plusieurs objectifs.

• Une possibilité de faire un compilateur vraiment portable, indépendant de la plate-forme cible. On
compile tout enC, ou un assembleur portable, dont un certain nombre existe sur le marché. Le résultat
peut être moins efficace que la compilation native, mais ceci servira à rendre le langage plus populaire.
Tels étaient les débuts deHaskell.

• Transformations des structures syntaxiques spécifiques à un langage, en formes universelles. Par exem-
ple : transformation des boucles en récursivité terminale, ou vice-versa (selon les structures des langages
source/cible). Nous allons commenter ceci plus soigneusement.

• Une possibilité debootstrapperun compilateur, écrit dans le même langage qui sera compilé. La pre-
mière phase consiste à écrire un compilateur simple, mais de le «compiler» (manuellement, ou par un
macro-processeur qui estbeaucoupmoins complexe qu’un vrai compilateur) enC, ou autre langage uni-
versel, et ensuite utiliser le premier compilateur pour traiter la seconde version. Dans la pratique il faut
prévoir plusieurs passes source-source.

La réalisation d’un macro-processeur intégré à un compilateur peut être plus ou moins facile selon la puis-
sance du macro-langage souhaité, et le caractère du compilateur : est-ce un compilateur/interprète qui donne à
l’utilisateur l’accès aux modules de compilation de l’intérieur du programme, comme enScheme ouSmalltalk,
ou c’est un compilateur «boîte-noire» comme le compilateurC?

La variante la plus simple, est la suivante :

• Le paquetage de compilation dispose d’undictionnaire de macros. Ceci peut être une table de symboles
indépendante de la table principale, mais il est possible, pour des raisons d’homogénéite, d’utiliser une
seule. Ainsi tout symbole, macro, ou autre chose, possède une seule référence, et une macro peut être
locale dans un bloc, comme tout autre symbole.

• Tout symbole – macro possède un attributmacro associé à une valeur qui est une liste de lexèmessans
interprétation, sans structuration. Autre possibilité : le système gère une liste d’associations séparée du
dictionnaire, et cherche les valeurs dans cette liste. Les systèmesScheme populaires utilisent soit un
soit l’autre variante, selon l’option choisie par les concepteurs.

124

13.1 Transformations source – source 125

• Le scanneur remplace le symbole-macro par sa définition. Ceci signifie que l’analyseur doit pouvoir
changer localement le flux d’entrée et de passer à la macro-définition, en sauvegardant le contexte précé-
dent.

• Il est naturel de ne pas considérer le flux secondaire comme un flux de caractères, mais de lexèmes déjà
construits avant, lors de la lecture de la macrodéfinition.

• En fait, nous avons menti encore une fois. Le préprocesseur duC permet qu’une macro soit réellement
une liste des lexèmes, mais enScheme le macro-développement estune transformation des expressions
en expressions. Si la forme (f x y) est reconnue comme une macro-expressions, c’est-à-dire sif
possède l’attribut de macro, la forme entière est transformée en une autre forme, mais qui constitue une
expressionScheme légale.

Dans la pratique la situation peut être encore plus complexe.

• Si les macros peuvent être récursives (par exemple, nous voulons précompiler quelques fonctions numériques,
ou de traitement des listes), la sauvegarde du flux d’entrée doit utiliser une pile, avec toute la complication
que cela implique.

• Macros récursives sont inutilisables, si le préprocesseur n’est pas capable de prendre des décisions de
développement conditionnel, pour arrêter le dépliage des macros.

• Les macros doivent alors être parametrées, et ceci signifie que les macro-définitions constituent un lan-
gage dans langage. Le préprocesseurconstitue un interprète, une machine virtuelle integrée au paquetage
de compilation.

Si, comme enC le macro-développement est une substitution textuelle (lexicale), le préprocesseur doit
être équipé avec un petit parseur, et un «générateur de code» dont le résultat est le flux constituant la
macrodéfinition. Le parseur doit au moins pouvoir reconnaître des formes fonctionnelles de type

#define abs(x) ((x<0)?(-(x)):(x))

pour pouvoir remplacerx par l’expression appropriée lors du développement deabs(a-2/x) , et de ne pas
confondre les «x».

Les macros comme leabs ci-dessus ont l’avantage de profiter de la surcharge des opérateurs de relation
et du signe ; on n’est pas obligé de définir une macro pour les entiers, l’autre pour les complexes, etc. D’autre
part, si l’argument d’une macro est une expression composite, il serait mieux de disposer d’un bon optimisateur
de code, et en particulier d’un éliminateur des expressions communes. (Sinon, imaginez enC l’expression
abs(XX) , oùXXest une expression vraiment très large (plusieurs pages). . .

Les macros restent une technique ambiguë. Les méthodologues des langages évolués modernes commeC++,
où les macros ont été héritées duC, préconisent plutôt l’usage des fonctionsinline que des macros, et leur
usage habituel se restreint aux constantes symboliques et des fonctions très simples. En fait, dansClean les
macros sont des procéduresin-line, les macro-définitions doivent être desexpressionslégales et bien typées.
Les templates enC++ sont également une sorte de macros structurées et typées. D’ailleurs, dans les deux cas
(Clean et C++), l’intégration du système de types rend impossible leur développement par un module séparé
du compilateur.

La substitution textuelle est une source de plusieurs problèmes concernant la portée et le statut des identificateurs-
noms des macros. Est-ce qu’une macrodéfinition doit être locale ou globale? Comment éviter le conflit
des noms, sachant que le macro-développement est une transformation de lasource? Peut-on dynamique-
ment assembler et créer des identificateurs nouveaux à partir des fragments : imaginez une macro-boucle
for i=... x$i ... , qui crée les variablesx1 , x2 , etc. Est-ce raisonable?

D’autre part, il existe des langages interprétés qui sont par excellence des macroprocesseurs, où il n’y a
aucune, ou presqu’aucune différence entre les procédures et les macros. Tel est le cas du TEX et deMetaPost.
Le langageJavaScript est aussi un macro-langage, les navigateurs comme Netscape ne génèrent pas de code
intermédiaire, mais développentin-line les définitions des fonctions présentes dans le document.

126 Macros et pre-traitement

13.2 Macros et langages-amibes

Des macros universelles peuvent en principe changer complètement l’apparence extérieure d’un langage. L’exemple
le plus saugrenu vu par l’auteur de ces notes était la réalisation d’un langage de programmationBALM pour les
machines CDC série Cyber.BALM était un langage relativement classique, fonctionnel, mais son compilateur-
interprète était une merveille d’éclectisme : il avait l’apparence d’un programme enLisp avec des listes, la
récursivité, etc., et en vérité il a été écrit en assembleur. Chaque expression styleLisp, parenthésée, était une
macro-instruction qui dynamiquement optimisait l’allocation des registres, préparait des étiquettes pourgoto,
gérait la pile des blocs lexicaux, etc. La puissance du macro-assembleur CDC était telle, que l’assemblage était
dix fois plus lent que la compilation d’un programme enPascal. . .

Cependant le langage qui peut être modifié à volonté manque tout simplement de stabilité. Il est très difficile
à apprendre, et les programmes ne sont pas lisibles, ce qui va à l’encontre de l’idée même des macros.

Voici quelques exemples-type de l’enrichissement d’un langage par des macros. Les macro-formes enScheme
grâce auxquelles on définit de nouvelles formes spéciales (syntaxiques), par exemple des nouvelles structures
de contrôle. Grâce à la couche macro enScheme on peut simplifier la notation, ajouter des mécanismes de
destructuration automatique des paramètres, ou même optimise le programme au niveau source. On ne sait pas
comment compiler

(cond (a b c)
(d e f)
(else h i))

alors on commence par la réduction de cette forme en une cascade deif . Concrètement,DrScheme produit

(#%if a (#%begin b c)
(#%if d (#%begin e f) (#%begin h i)))

Ainsi on peut réduirelet à une forme contenantlambda, while à let nommé récursif-terminal, et celui-là, à des
primitives de genreletrec, comme ici :

(let f ((a b))
(g a) (if (p a) a (f (r a)))

==>>
((#%letrec-values

(((f) (#%lambda (a) (g a) (#%if (p a) a (f (r a))))))
f)

b)

Ainsi le «vrai» compilateur, c’est-à-dire le générateur du code n’aura à traiter qu’un nombre limité de primi-
tives.

Le compilateur deScheme ayant découvert qu’un symbolef possède l’attribut macro, lance la procé-
dureexpand-defmacrode la forme entière(f ...) . On peut attacher àf une procédure de transformation
quelconque, écrite enScheme par l’utilisateur.

13.3 Exercices

Q1. Chercher (et trouver), ou construire la macro-procédurewhen, qui transforme enScheme la forme

(when (a b) c d e f)

en

(#%if (a b) (#%begin c d e f))

R1. La voici :

(define-macro when
(lambda (test . body)

‘(if ,test (begin ,@body))))

13.3 Exercices 127

Notez, que la forme-cible contientif dans la définition, les primitives#%if etc., sont construites au-
tomatiquement.

Q2. CommentScheme développe la formedefine? On sait par exemple que

(define (a b) c d)

se transforme en

(#%define-values (a)
(#%lambda (b) c d))

mais comment gérer lesdefine locaux à une fonction, ou les définitions des fonctions à nombre variable
d’arguments?

R2. Cherchez la réponse vous-même. La deuxième question n’a pas de réponse unique. On peut prévoir
des opérateurs, ou des formes lambda n-aires, mais on peut aussi – dans quelques cas – faire des macro-
transformations du genre :

(* a b c d) ==>> (* a (* b (* c d)))

Chapitre 14

Modèles de code plus sophistiqués

14.1 Évaluateur eval-apply

Cette section est entièrement consacrée à la discussion de quelques machines virtuelles réelles, plus complexes
que notre machine à pile, ou notre interprète arborescent. C’est un joli jeu de mots : machines virtuelles réelles,
mais le sujet est très pratique et incontournable pour tous ceux qui veulentvraimentconstruire des compilateurs.

Il n’est pas difficile de trouver dans la littérature (par exemple sur l’Internet) la définition et l’implantation
d’unevraiemachine virtuelle pourLisp ou autre langage fonctionnel. On les enseigne comme outils d’implantation,
définitions de la sémantique des langages, et comme un terrain pratique por apprendre optimiser les algo-
rithmes. Un de ces modèles, la machine SECD de Landin, qui est toujours un bon modèle de machine fonc-
tionnelle stricte, a été élargie à maintes reprises : il existe une variante paresseuse (CASE), une machine avec
des objets persistants, etc. Ces modèles servent également à implanter les langages à objets.

La première machine virtuelle, récursive arborescente, ressemble à un évaluateurLisp classique conçu par
MacCarthy autour de l’année 1960. Les modifications indispensables pour qu’elle s’approche de l’interprète
réaliste de ce langage sont les suivantes. (Décrivons le dialecteScheme pour au moins deux raisons dif-
férentes : le lecteur doit le connaître, et il est beaucoup plus simple et plus homogène queCommon Lisp). Le
passage ci-dessous est une répétition du modèle déjà discuté !

• Les opérateurs sontn-aires. Tout nœud (expression) intermédiaire (non-feuille) a la forme d’uneliste
d’expressions, dont la première joue le rôle d’opérateur. Le cas terminal est un atome, ou une forme
lambda explicite.

• Si l’opérateur est un atome, il doit être associé (possède la valeur) à une forme primitive – une référence
au code-machine, ou une formelambda (déjà compilée, bien sûr).

• Si c’est une autre chose, la machine évalue cette expression jusqu’à sa réduction à un objet fonctionnel
explicit. Est-ce que ceci peut être une macro? Évidemment,non, le système de réécriture des macros
aurait dû se débarasser de toutes les transformations de la source avant l’exécution.

• La machine évalue tous les arguments de l’opérateur : tous les éléments de la liste sauf le premier (qui a
été déjà réduit et attend ses arguments). Ils peuvent être mis dans une liste temporaire, ou stockés dans
un vecteur temporaire.

• Si l’opérateur est une primitive, la machine exécute la procédure magique correspondante.

• L’heure de vérité arrive. L’objet fonctionnel est une formelambda avec paramètres, et un corps, qui est
une expression. Les paramètres sont des atomes. (Les extensions syntaxiques possibles, qui déstructurent
automatiquement les arguments ne seront pas discutées ici ; ceci appartient à la couche macro).

– La machine construit des associations entre les paramètres (chacun des symboles), et les valeurs
des arguments stockées au préalable dans une structure temporaire.

128

14.2 Machine SECD 129

– Cette association n’est pas statique, destructrice, mais elle empile des nouvelles associations
sur celles déjà existantes !Si le paramètre d’une formelambda s’appellex , ceci n’a rien à voir
avec la variablex globale. Des associations hiérarchiques, empilées, implémentent la localité des
variables-paramètres.

– La machine évalue (récursivement, c’est-à-dire en empilant la continuation du contexte actuel) le
corps de la fonction, et ceci est le résultat de l’expression, passé au niveau appelant.

– Les associations locales sont détruites.

• Exception au protocole précédent : l’évaluation de l’opérateur résulte non pas en objet fonctionnel, mais
en une forme primitive, une structure de contrôle, par exemple enif . À ce moment là, la machine
peut déclarer son incompétence, et passer à l’opérateur spécial directement le reste de l’expression, par
exemple la liste

(<condition> <expression-then> <expression-else>)

et laisser tout le reste à l’opérateur.

• Le langage peut prévoir la possibilité de programmer les formes spéciales explicitement par le program-
meur. Ceci était jadis une technique populaire enLisp (les pseudofonctions de type FEXPR), mais est
tombé en désuétude, et a été remplacé par les macros (qui elles aussi sont des formes spéciales). Dans ce
cas les actions de la machine peuvent être les suivantes.

– L’interprète reconnaît que l’opérateur est une forme spéciale de haut niveau, une formeflambda ,
ou quelque chose de ce genre.

– Les éléments restants de l’expression sont associés aux paramètres de l’opérateur,mais sans être
évalués.

– Ceci implique quele codepeut être considéré comme unevaleur. Nous savons déjà comment le
réaliser.

– L’opérateur, et alors le programmeur et le langage dispose de la fonction primitiveeval qui relance
récursivement la machine, permettant d’évaluer une expression de l’intérieur du code.

– Sachant que cette évaluation se réduit dans la plupart des cas à l’application d’un opérateur «nor-
mal» à une collection de valeurs, le langage dispose d’une autre primitive :apply , qui applique
son premier argument aux éléments de son second argument qui est une liste.

Attention. Toutest là, décrit en français. Une demande de transformer ceci en codeHaskell est unexcellent
sujet d’examen.

En fait le mottout souligné ci-dessus ne correspond pas à la réalité. Plusieurs choses ont été «cachées sous la
moquette», et laissées à la discrétion durun-timedu langage d’implantation de l’interprète :

• La récursivité dueval , et donc tout le bagage de la gestion des piles système.

• La création des associations paramètre – valeur. On peut utiliser des listes normales, mais la gestion de
ces associations doit être primitive, malgré la simplicité des opérations.

14.2 Machine SECD

La machine SECD de Landin, publiée pour la première fois déjà en 1964, précise quelques détails de manière
plus disciplinée, et optimise légèrement le protocoleeval-apply , car c’est une machine de plus bas niveau,
plutôt proche de notre machine linéaire, mais moins intuitive, plus formelle. En tout cas, elle de plus bas
niveau que l’interprète ci-dessus, et elle compte sur la couche pre-compilation qui transforme toutevaleuren
instruction :charger la valeur, etc. SECD a été conçue pour décrire la sémantique opérationnelle des langages
fonctionnels, mais Landin lui-même s’est vite rendu compte qu’elle permet d’établir une correspondance entre
le calcul lambda et le langage Algol 60, impératif par excellence. La machine SECD est l’ancêtre d’un modèle
plus récent, CEK, qui exploite les continuations. (Voir aussi la machine FAM de Luca Cardelli, et plusieurs
exemples élaborés par ANdrew Appel).

Elle possède quatre registres globaux :

130 Modèles de code plus sophistiqués

1. S : (Stack) – la pile qui contient les résultats intermédiaires durant l’évaluation.

2. E : (Environment) – une pile desframes, qui contient les valeurs associées aux variables. Ceci combine
la liste temporaire et la liste des association mentionnées ci-dessus.

3. C (Control list) : le code – une structure dont l’élément directement accessible correspond à l’expression
évaluée, ou à l’instruction exécutée.

4. D (Dump) : zone de stockage d’autres registres utilisée quand la machine exécute une nouvelle procé-
dure. Ceci correspond à peu près à notre pile des retours, mais est un peu plus générale.

La machine de Landin est un automate qui exécute des transitions

S E C D −→ S’ E’ C’ D’

Par exemple, l’empilement d’une constante aura la forme décrite par la fonction(trans s e c d) en
Haskell

trans s e (LOAD (Const x) : c) d = ((x:s),e,c,d)
trans s e (LOAD (Var i) : c) d = ((assoc i e:s),e,c,d)

Simple, n’est-ce pas? Si l’on veut, on peut passer àtrans les 4-uples comme 1 argument, et non pas les 4
séparément («curryfiés»), mais ceci est une modification cosmétique. Nous ne décrivons pas ici la structure
du langageinterprété par la machine SECD et le lecteur doit regarder les exemples d’une certaine distance.
On peut, par exemple, éliminer le mot-clé LOAD, ou l’amalgamer avecConst ou var en construisant les
CodeItems : LoadConst , LoadVar , etc. La liberté de préciser les détails, c’est-à-dire de définirde
manière préciselestypesdes objets concernés, avec leurs balises de reconnaissance correspondantes reste à la
discrétion du programmeur.

Si le code contient une fonction, qui sera empilée pour être exécutée plus tard (p. ex. sousif-then-else, il
faut se rendre compte que celle-là n’est jamais autonome (sauf pour les opérateurs «purs», p. ex. primitifs),
mais peut être obligée de décoder ses paramètres et en général, le contexte de son empilement. Elle aura besoin
de l’environnementactuel.

trans s e (LOAD (Fun f) : c) d = ((FunEv f e):s,e,c,d

où FunEv est une constructeur de données (cela peut être une simple paire, sauf pour le type qui doit être une
valeur légale), qui stocke sur la pile la fonctionainsi que son environnement. Ce problème dans notre petite
machine du chapitre 3 a été a peine signalé sans détails, et nos exemples comme le cube ou la factorielle étaient
des fonctions pures

Les opérations primitives peuvent être traitées commetagsou balises, et interprétées comme suit :

trans (x:s) e (CAR :c) d = (car x :s,e,c,d)
trans (x:y:s) e (CONS : c) d = ((y:x):s,e,c,d)

etc. Le lecteur pourra sans problème reconstruire autres opérations primitives. Pour varier un peu, l’instruction
IF cette fois sera parametrée différemment. On la considère comme un opérateur unaire qui attend sur la pile la
valeur de la condition. Mais le code conditionnel à exécuterfait partie de l’opérateur, constitue son paramètre
(double), comme pour les opérateurs de chargement.

trans (cnd:s) e (IF cthen celse : c) d cxxxx (c:d) where
cxxxx = case cnd of True -> cthen

False -> celse

Bien sûr :

trans s e (RETIF : _) (c:d) = (s,e,c,d)

où RETIF (appelée parfois JOIN) est le retour du branchement conditionnel. Ceci est une version très simplifiée
d’un retour général d’une procédure.

L’application d’une fonction «non-magique» mérite une discussion approfondie. L’instruction APPL at-
tend sur la pile des données une fonction à exécuter , ou plutôt une fermetureFunEv qui a «attrapée»
l’environnement actif au moment de la création de cette fermeture.

Le code est un peu symbolique, la liste[a1, a2,...,an] symbolisen arguments stockés sur la pile,
oùn correspond à l’arité de la fonction

14.3 Exercices 131

trans (FunEv f e’ : [a1,a2,...,an] : s) e (APPL : c) d =
[] ([a1,a2,...,an] : e’) f (s:e:c:d)

Le lecteur notera des particularités suivantes.

• Le codef s’exécute dans un environnement enrichi par les valeurs des paramètres. (Ici mises dans une
liste, mais d’autres stratégies sont possibles).

• L’adressage des paramètres devient alors simple. Si la formelambda possédait trois paramètres formels :
x , y et z , la compilation du corps de cette fonction transforme la référence àx en variable 0,y en vari-
able 1, etc.Mais attention ! Et si la fonction faisait partie d’une forme englobante, et possédait des
variables globales?

Le protocole SECD donne la réponse à la question qui n’a pas été abordée lors de notre construction de
la machine virtuelle : la co-existence des environnements locaux, hiérarchiques. On introduit la notion
deframesou instances de’activation. Leframele plus proche, l’environnement local porte le numéro 0,
et z n’est plus identifié comme la variable avec indice 2, mais son indice est (0,2). L’accès à la variable
globale appartenant à l’environnement englobant immédiat utilisera l’indice (1,i), etc. La création de ces
références est la tâche du compilateur qui transformeLisp (ou autre langage) end code SECD.

Il faut donc modifier l’interprétation de l’instruction(LOAD (Var i)) !

• La pile de données est vidée. Ceci est différent de notre machine styleFORTH, où la pile ne changeait
pas. Dans notre machine une fonction pouvait faire absolument tout avec la pile de données : placer 6
valeurs, récupérer 15, bouleverser l’ordre dans toute la pile, etc. Ceci a ses avantages, et c’est grâce à
cette liberté que le compilateurFORTH ou PostScript est simple, mais la programmation manuelle est
une galère. La machine SECD est plus structurée. Pour les langages de typeLisp, chaque procédure doit
consommer exactement le nombre d’arguments qui correspond à son arité prédéfinie. Ainsi, l’exécution
de l’expression (symboliquement)(f a1 a2 ... an) procède de manière simple. La pile des
valeurs incomplètes n’est pas concernée, l’expression prend une pile toute fraîche, mais les valeurs des
arguments sont dûment stockées dans l’environnement. Un tel appel doit sauvegarder pas seulement la
continuation du code, mais aussi l’environnement et la pile du contexte.

• Le retour aura la forme suivante :

trans (x:s’) e’ (RET:_) (s:e:c:d) = (x:s,e,c,d)

La construction incrémentale des environnements hiérarchiques ne suffit pas pour construire des fonctions
récursives. En effet, sif appelle soi-même, où va-t-elle trouver le décodage de la variablef ? La machine
SECD en enrichissant l’environnement lors de l’appel def par f aura des difficultés pour attribuer un statut
à cette variable. En construisant notre machine nous avons résolu le problème par une indirection statique :
Le code accède à une variable, dont l’indice correspond à l’association contenant ce code. C’est une solution
correcte, mais pas très élégante et dangereuse. Le code récursif doit être autonome, de ne pas dépendre d’un
tableau d’associations des variables. Il doit alors être auto-référentiel.

De nombreux exposés de la machine SECD, notamment ceux qui présentent la construction de cette ma-
chine enScheme, proposent une solution qui utilise la modification physique de l’environnement. (Avec les
procédures de modification physique il est facile de faire des listes circulaires, et autres abominations.) La so-
lution purement fonctionnelle très intéressante existe, mais elle est un peu «magique», basée sur la sémantique
paresseuse, et elle ne sera pas discutée ici. Elle a été présente plusieurs fois intuitivement.

14.3 Exercices

Q1. Trouver sur l’Internet les définitions de quelques machines virtuelles théoriques et pratiques, comme
CEK, l’interprète de Reynolds, la spécification de la machine deJava, description du noyau du langage
Smalltalk, le sf Pascal de UCSD, le CASE, etc.

R1. Pas de réponse ici. Cet exercice n’a pas beaucoup d’utilité pour ceux qui veulent seulement passer
l’examen, mais peut être très enrichissant.

132 Modèles de code plus sophistiqués

Q2. Transformer les spécifications informelles de l’interprèteeval-applyen code réel. Coder enHaskell cet
interprète. Ajouter un nombre minimal de primitives et de fonctions d’interfaçage, et tester la machine.

R2. On ne peut priver le lecteur de son travail intellectuel en fournissant la réponse à cet exercice.

Chapitre 15

Omissions

15.1 Généralités

Aucun cours de compilation n’est complet. Les omissions peuvent être assez importantes, et elles peuvent être
classés en deux catégories :

1. Incompatibilité avec la philosophie du cours. Ainsi, nous ne pouvions discuter les techniques de très bas
niveau.

2. Priorités. On ne peut satisfaire tout le monde, et le temps est toujours limité.

Le seul moyen de pouvoir reconnaître les limitations de ce cours est de chercher ailleurs, suivre lesnewsgroups
consacrés à la compilation, lire livres et articles. Il est évident qu’il sera alors difficile de distinguer entre les
choses plus ou moins importantes.

La suggestion qui s’impose est alors : essayer de faire son propre compilateur. Pas trop ambitieux, mais
réalisé dès le début jusqu’à la fin. Il n’est pas judicieux de commencer par l’écriture d’un parseur, ni par
la construction d’une machine virtuelle. La technique la moins douloureuse est d’exploiter les paquetages
et les langages déjà existants, et de faire un compilateur-interprète qui utiliseScheme, ou Smalltalk, ou
Python – des langages qui offrent un bon support à la manipulation des structures de données représentant
des programmes, et un niveau d’intéractivité élévé. Toutes les lacunes d’aprentissage deviendront vite assez
visibles. Passons à quelques lacunes concrètes.

15.2 Grammaires et parsing

• Nous avons à peine glissé sur la surface de l’analyse lexicale, expressions régulières, automates finis. . .
Ceci fait partie d’un autre cours, mais un cours complet de compilation doit traiter ceci également, de
point de vue plus pratique.

• La construction des parseurs LR (p. ex. la construction LALR) doit un jour faire partie de ces notes.
Mais nous n’envisageons jamais traiter la théorie d’automates.

• Peut-être une introduction raisonnable à Lex et à Yacc serait utile, avec quelques exemples raisonnables
(même si ceci est très contraire à la philosophie de l’auteur. . .).

• Il faut plus d’exemples de la technique de transformation source-source.

• Nous n’avons pu traiter quelques dispositifs d’optimisation, notamment l’élimination des sous-expressions
identiques (communes). Aussi : élimination du «code mort» (dead code) inaccessible, qui peut être
généré par le développement automatique d’une macro non-optimisée. Aussi : élimination des variables
(registres) redondantes. Tut ceci ce sont des exercices en parcours des graphes.

• Nous n’avons pas traité sérieusement les erreurs du parsing, et les dispositifs permettant de «calmer»
le parseur qui se trouve dans un état inextricable, et de reprendre la compilation. Un compilateur qui
panique après la première faute découverte, est un jeu académique.

133

134 Omissions

• Finalement, nous n’avons pas traité lesnamespacesni les modules, pratiquement incontournables d’une
façon ou autre si on veut compiler des programmes relativement volumineux.

15.3 Sémantique et génération du code

• Nous n’avons pas discuté le filtrage – la compilation des définitions fonctionnelles où la reconnaissance
des arguments se fait parpattern-matching. C’est un petit fragment de la compilation, mais vraiment
fascinant. Il constitue d’ailleurs un formidable champ d’entraînement de la technique des continuations.

• La création et la compilation des fermetures n’ont pas été décrites suffisamment bien. En particulier le
«lambda-lifting» et/ou la liaison entre les blocs lexicaux dans un programme méritent un peu plus de
place.

• Parfois un changement de la grammaire permet de remplacer les attributs hérités par des attributs syn-
thétisés, ce qui est plus commode pour le parsing ascendant (à l’envers, nous avons insisté sur l’opération
de normalisation quiintroduit les attributs hérités). En général, le langage des attributs est très riche et
varié, une bonne maîtrise de ce domaine distingue un vrai expert en compilation des gens qui «ont en-
tendu parler de». . .

• Notre discussion des types estloin d’être satisfaisante, et la version suivante de ces notes verra le chapitre
correspondant beaucoup plus épais. Nous présenterons un vérificateur de types concret et relativement
complet (sauf si nous décidons de proposer cela comme le devoir obligatoire ; dans ce cas tous les
ingrédients seront dûment discutés).

• Il faudra également dire quelques mots sur lacompilation modulaire, séparée. Comment préparer
l’information pour un éditeur des liens (et qu’est-ce que c’est, cet éditeur des liens), comment gérer
les relocations des adresses, etc. Malheureusement les détails sont ici très dépendants de l’architecture-
cible, et les solutions portables sont peu nombreuses (mais elles existent,Scheme Smalltalk etPython
en sont des exemples).

Il serait bien de pouvoir dire quelques mots concernant lacompilation des librairies, statiques et dy-
namiques.

15.4 Modèles d’exécution

• Programmation logique et la machine de Warren (WAM). Peut-être aussi la «machine de continuations
binaires» de Paul Tarau, le noyau du BIN-Prolog. La programmation logique malgré l’échec du projet
Japonais de «V-ème génération» continue à progresser, et l’unification, ainsi que le non-déterminisme
trouvent de plus en plus leur place dans les systèmes de solutions de contraintes, interfaces graphiques,
etc. Il est utile de savoir comment compiler de tels langages.

• Programmation par objets et fonctions virtuelles. Ceci a été évoqué plusieurs fois, mais jamais de
manière bien structuré. Un jour nous pourrons – peut-être – décrire la machine deSmalltalk, et une
partie essentielle de la machine deJava.

Le problème a deux «visages». Il faut savoir générer le code qui profite de l’héritage, qui évite toute
indirection qui peut être résolu statiquement, et d’éviter trop d’«arithmétique des pointeurs». Il faut aussi
optimiser les indirections dynamiques – l’accès aux méthodes virtuelles.

• Programmation paresseuse : la technique de réduction paresseuse des graphes doit être au moins men-
tionnée. Les modèles deHaskell etClean sont faciles à comprendre et bien documentés.

• Des machines fonctionnelles (ou presque) vraiment efficaces et pratiques, notamment le noyau du CAML,
et la machine FAM de Luca Cardelli.

15.5Run-timeet l’interfaçage 135

• Programmation événémentielle. En fait il ne s’agit pas d’une machine virtuelle proprement dite, mais
d’un protocole de collaboration entre les modules, qui peut être implanté enC, ou autre langage impératif.
Le code d’un programme piloté par les événements est un code «normal», impératif ou fonctionnel. Mais
c’est un code spécifique, qui insiste sur la synchronisation, qui gère les ressources partagées, qui est
adapté aux interruptions, etc.

Il y a au moins deux problèmes distinctes ici : l’interfaçage, la communication du programme avec le
système d’exploitation (gestionnaire des ressources) et ses gestionnaires d’événements, et la structure du
code.

15.5 Run-timeet l’interfaçage

• Démarrage et arrêt. Tout programme qui va s’exécuter doit être chargé dans la mémoire par un module
spécial du système d’exploitation. Ceci est une opération complexe. La gestion des processus, les
opérationsfork ou exec(sous Unix) sont discutées ailleurs, ce domaine n’appartient pas à un cours de
compilation. Mais le programme compilé doit y être préparé, surtout s’il contient des adresses accessibles
de l’extérieur (p. ex., s’il s’agit d’un module faisant partie d’une librairie dynamique : DLL ou SO, selon
le système).

Il faut donc dire quelques mots à propos destubsqui démarrent l’exécution, et sur la présence dans le
code de l’information symbolique, facilitant le débogage.

• Les exceptions et les dispositifs de débogage font la différence entre un langage utilisable et un pro-
jet strictement académique. Ceci n’a pas été traité en détail, mais évoqué plusieurs fois. Il faut plus
d’exemples et la discussion approfondie de la sécurité de programmation. Concrètement, il faut qu’aucune
erreur ne soit capable de mettre en danger la sécurité ni la logique de l’allocation de mémoire, les fichiers
et le système d’interruptions.

• Nous n’avons pas parlé ni des systèmes de fichiers, leur bufferisation, leur sécurité, etc., ni de la gestion
des «pseudo-fichiers» liés aux événements extérieurs, comme la lecture de la console. Ceci évidemment
ne fait pas partie de la compilation proprement dite, mais il faut savoir générer le code qui accomplit de
telles tâches, qui est capable de collaborer avec la couche-système du langage.

15.6 Varia

• Plus d’exercices ! (Et plus de solutions, n’est-ce pas?)

• Éliminer au moins 25% de bavardage.

Annexe A

Introduction à la véritable
programmation fonctionnelle et à Haskell

A.1 Pratique de la programmation en Haskell

Ceci n’est pas un manuel ! Pour apprivoiser ce langage il faudra lire la documentation. Cette section est
pour votre pratique, pour pouvoir commencer à écrire des programmes relativement compliqués. Bien sûr, les
exemples seront très nombreux, et leurs sujets seront choisis en fonction de leur utilité pour la compilation et la
construction des interprètes, mais aussi pour montrer quel est le véritable sens du concept de«programmation
fonctionnelle».

Nous allons utiliser un compilateur :Glasgow Haskell Compiler– GHC, et deux interprètes deHaskell
– Hugs (écrit par Mark Jones, actuellement à Oregon), et GHCI (Glasgow Interpreter, plus compatible avec
GHC) installés sur les plates-formes Linux. Il faut que las binairies se trouvent sur le PATH, et il faut lire la
documentation. Les interprètes se lancent depuis la ligne de commande (hugs oughci), et on peut leur passer
quelques options d’exécution. Nos exemples (avec quelques rares exceptions) ont été exécutés sousHugs.

On peut intéractivement entrer les expressions, etHugs affiche le résultat. Voici le transcript d’une courte
session :

Hugs mode: Restart with command line option +98 for Haskell 98 mode

Reading file "\Lang\Hugs\lib\/Prelude.hs":

Hugs session for:
\Lang\Hugs\lib\/Prelude.hs
Type :? for help
Prelude> [1,2,4,5] ++ [2 .. 9]
[1,2,4,5,2,3,4,5,6,7,8,9] :: [Integer]
(292 reductions, 521 cells)
Prelude> ch x where
ERROR: Undefined variable "x"
Prelude> ch x where x=1.5; ch y = (exp y + exp (-y))/2
2.35240962 :: Double
(35 reductions, 132 cells)
Prelude> product [1 .. 120]
66895029134491270575881180540903725867527463331380298102956
71352301633557244962989366874165271984981308157637893214090
55253440858940812185989848111438965000596496052125696000000
0000000000000000000000 :: Integer
(2552 reductions, 6660 cells)
Prelude>

On note l’usage de l’opérateur de concaténation(++) et la forme abrégée de l’intervalle :[a .. b] . La
totalité de l’expression doit être placée sur une ligne, les expressions incomplètes ne sont pas admises. On peut
séparer les parties d’une définition par les points-virgules. On peut aussi utiliser les accolades pour définir des

136

A.1 Pratique de la programmation en Haskell 137

«blocs», mais nous allons éviter ce style. Notons également le fait queHugs peut opérer sur les entiers de
longueur quelconque.

On peut entrer une définition fonctionnelle, mais elle doit faire partie d’une expression, comme ci-dessus.
On ne peut pas écrirech x = ... et espérer queHugs accepte ceci comme une définition fonctionnelle ! Si
nous voulons définir des fonctions persistantes, ou simplement écrire des définitions longues, il faut les mettre
dans un fichier extérieur, et le charger.Hugs veut avoir la possibilité de liretoutesles définitions courantes,
afin de pouvoir effectuer leur analyse globale. (Il faut admettre que ceci n’est pas commode).

Les commandes de chargement sont ::l ... pourload, ce qui annule les définitions précédentes (sauf le
Prélude), ou:a ... (add), ce qui augmente l’environnement par des nouvelles définitions. Il existe aussi un
système de modules en Hugs (et enHaskell en général), mais pour l’instant nous allons l’ignorer. La directive
:? affiche la liste de toutes les directives :

Prelude> :?
LIST OF COMMANDS: Any command may be abbreviated to :c where
c is the first character in the full name.

:load <filenames> load modules from specified files
:load clear all files except prelude
:also <filenames> read additional modules
:reload repeat last load command
:project <filename> use project file
:edit <filename> edit file
:edit edit last module
:module <module> set module for evaluating expressions
<expr> evaluate expression
:type <expr> print type of expression
:? display this list of commands
:set <options> set command line options
:set help on command line options
:names [pat] list names currently in scope
:info <names> describe named objects
:browse <modules> browse names defined in <modules>
:find <name> edit module containing definition of name
:!command shell escape
:cd dir change directory
:gc force garbage collection
:version print Hugs version
:quit exit Hugs interpreter
Prelude>

et la directive:set permet de voir/changer plusieurs options d’exécution de l’interprète :

Prelude> :set
TOGGLES: groups begin with +/- to turn options on/off resp.
s Print no. reductions/cells after eval
t Print type after evaluation
f Terminate evaluation on first error
g Print no. cells recovered after gc
l Literate modules as default
e Warn about errors in literate modules
. Print dots to show progress
q Print nothing to show progress
w Always show which modules are loaded
k Show kind errors in full
o Allow overlapping instances
u Use "show" to display results
i Chase imports while loading modules
m Use multi instance resolution

OTHER OPTIONS: (leading + or - makes no difference)
hnum Set heap size (cannot be changed within Hugs)

138 Introduction à la véritableprogrammation fonctionnelle et à Haskell

pstr Set prompt string to str
rstr Set repeat last expression string to str
Pstr Set search path for modules to str
Estr Use editor setting given by str
cnum Set constraint cutoff limit
Fstr Set preprocessor filter to str

Current settings: +stfewui -gl.qkom -h3000000 -p"%s> " -r$$ -c40
Search path : -PD:\Lang\Hugs98 --- etc. ---
Editor setting : -E
Preprocessor : -F
Compatibility : Hugs Extensions (-98)
Prelude>

Les fichiers extérieurs comportant les définitions des fonctions (et des types, etc.) normalement doivent avoir
le suffixe .hs . Si le fichier a été accepté et chargé, et si vous voulez le modifier, pour le recharger il suffit
d’écrire:r (commereload).

Les techniques présentées ci-dessous sontfonctionnelles et pures(sans effets de bord). Programmation dans
un style impératif, avec deseffets, qui «font» quelque chose, et non pas seulement évaluent une expression, est
aussi possible, mais elle est assez particulière et difficile à maîtriser. Il faudra d’abord maîtriser bien le concept
de typage enHaskell.

A.2 L’essentiel

Dans le style fonctionnel les notions d’un objet et de sa valeur se confondent. Il n’y a pas demodifications
de valeurs (affectation : «:= »), et dans le même environnement la variablex signifie toujoursla même chose.
Il est évident, que pour pouvoir construire des nouvelles valeurs il faut savoir appliquer des opérations aux
arguments, mais toute affectation, toute opération de genrex:=x+1 est strictement interdite. EnHaskell la
définitionx = y est une identification.

Cette propriété est essentielle pour latransparence référentielledes programmes fonctionnels. Le fait
qu’une variable signifie (dans son contexte)unechose, permet une optimisation assez agressive da la compila-
tion.

La même syntaxe, un peu généralisée sert à définir les fonctions, on n’a pas besoin de mots-clés, comme
function , SUBROUTINE, etc. Pour définir le cube d’un nombre nous écrivons

cube x = x*x*x

Absence d’affectations n’empêche pas l’usage de variables locales qui s’identifient avec les expressions qu’elles
représentent. Voici la définition du sinus hyperbolique enHaskell :

sh x = (y-1.0/y)/2.0
where y=exp x

ou, alternativement

sh x = let y=exp x
in (y-1.0/y)/2.0

où where ou let sont de rares mots réservés. Il faudra s’habituer à une particularité syntaxique deHaskell
(existant dans quelques autres langages, commeClean ou Python : l’indentation remplace le parenthésage
– si la ligne suivante est plus indentée que la précédente, ceci signifie la continuation. La même indentation
dénote une définition collatérale, au même niveau, et une indentation plus courte termine la structure syntaxique
précédente, sans besoin de parenthèses. On peut aussi utiliser les accolades pour construire les blocs, et les
points-virgule pour séparer les entités syntaxiques, mais nous allons éviter leur usage.

La même définition enScheme serait, bien sûr

(define (sh x)
(let ((y (exp x)))

(/ (- y (recip y)) 2)))

A.2 L’essentiel 139

Dans les deux cas conceptuellement important est le fait que ces définitions de fonctions sont des abréviations
des opérations plus primitives :

• Création d’unobjet fonctionnel, d’une valeur qui représente la fonction, et

• Assignation de cet objet fonctionnel à une variable.

Des fonctions anonymes existent aussi, la formelambda enScheme

(lambda (x) (let ((y (exp x))) (/ (- y (recip y)) 2)))

se traduit enHaskell par

\x -> (y-1.0/y)/2.0 where y=exp x

ou, si vous voulez :

\x -> let y=exp x in (y-1.0/y)/2.0

Si la variable définie danslet n’est pas utilisée de manière récursive, cette structure peut être remplacée –
comme nous le savons déjà – par l’usage d’une fonction anonyme. Voici donc encore une autre variante de la
fonction ci-dessus :

\x ->
(\y -> (y-1.0/y)/2.0) (exp x)

La définition

f x = g x

est équivalente à

f = \x -> g x

ce qui peut être réduit à

f = g

mais attention,toutela vérité de cette simplification :\x->g x ≡ g est un peu complexe à cause du typage,
et sera discutée ailleurs. La dernière forme (f=g) peut ne pas être acceptée par le compilateur, tandis que la
première si.

On peut aisément passer la valeur fonctionnelle d’une variable à une autre, par exemplemonsh = sh , et
appliquermonsh à une valeur. Alors une fonction est une donnée comme toute autre, avec quelques particu-
larités :

• D’habitude il n’est pas possible de comparer deux fonctions. Nous ne pouvons dire si deux fonctions
sont égales.

• Nous pouvonsappliquerune fonction, et cette application est une opération «magique», primitive de la
machine. En fait la définition de l’application fonctionnelle est la partie la plus importante de ladéfinition
d’une machine virtuelle. Rappelons que le mot «magique» sera utilisé très souvent et sa signification est
très concrète : une action magique signifie que sa sémantique et sa réalisation appartiennent à la couche
plus basse que celle qui est actuellement discutée.

La partie la plus importante du code d’un langage fonctionnel est la possibilité de construire des procédures
parametrées, et de pouvoirnommerles arguments. Mais les noms existent uniquement dans le programme-
source, pour la machine virtuelle qui exécute le programme, ceci n’a pas d’importance. Par contre, la possibilité
de construire dynamiquement un objet fonctionnel (une fermeture) pendant l’exécution du programme, est très
important et délicat pour toutes les couches d’exécution. Cette possibilité n’existe pas enC.

Mais attention ! La construction dynamique des fermetures n’implique nullement leurcompilation dy-
namique! Les morceaux de code «pur» (sans références extérieures) doivent être compilés statiquement, se
qui se forme dynamiquement, lors de l’exécution du programme, c’est la liason de ce code aux valeurs de
variables non-locales.

Le trait syntaxique le plus caractéristique deHaskell est la présence desapplications partielles(qui, d’ailleurs,
constituent la manière la plus simple de création des fermetures).

Si la fonctionf accepte deux arguments, etf x y est une expression correcte, la formef x en est correcte
également, et définit unobjet fonctionnelqui peut s’appliquer à l’argument manquant. À quelques détails
près,f x ≡ \y -> f x y . En généralHaskell obéit à l’ordre normald’évaluation des fragments d’une
expression, de gauche à droite, et il est toujours possible d’instaurer ou d’effacer les parenthèses à gauche :

140 Introduction à la véritableprogrammation fonctionnelle et à Haskell

f x y z = (f x) y z = (f x y) z = ((f x) y) z

EnScheme la forme\y -> f x y est la seule syntaxe possible (concrètement :(lambda (y) (f x y))).
Mais enHaskell nous pouvons même écrire(* 2) , définissant ainsi une fonction d’un argument, qui le mul-
tiplie par 2. La forme(2 *) est légale aussi. La forme(*) parfaitement correcte aussi, est une variante
fonctionnelle de l’opérateur de multiplication, appliquée de gauche comme toute fonction typique, avec le nom
alphanumérique. On peut écrire(*) x y .

A.2.1 Récursivité et processus itératifs

L’algorithme de Newton permettant de calculer la racine carré d’un nombrey a la forme itérative suivante :

x0 = 1, xn+1 =
1
2

(
xn +

y

xn

)
. (A.1)

La réalisation fonctionnelle d’un tel processus n’est pas évidente pour ceux qui ont été conditionnés par le
langageC. La solution, très classique, exploite au maximum les propriétés d’abstraction offertes par un bon
langage fonctionnel. Nous aurons

1. Une fonction qui génère la valeur suivante, ici

nxt y x = (x + y/x)/2.0

où la valeury doit constituer un paramètre supplémentaire, car nous voulons éviter l’usage de variables
globales spécifiques à un problème.

2. Un prédicat (fonction Booléenne) qui vérifie la convergence.

cnv x xnx = abs(x-xnx) < epsilon

oùepsilon peut être une constante ou une variable globale.

3. Un itérateur qui à partir de deux valeurs, la précédente et l’actuelle, construit une séquence qui se termine
quand la convergence est atteinte.

iterf x_prec x_nouv fun condit =
if condit x_prec x_nouv then x_nouv

else iterf x_nouv (fun x_nouv) fun condit

La solution est donnée par l’expression

racine y = iterf 1.0 (nxt y 1.0) (nxt y) cnv

Il suffit de lancerracine 2.0 pour obtenir 1.4142. . . Notez l’usage de l’application partielle(nxt
y) passée comme le paramètrefun . On peut éliminer l’un des deux appels ànxt y :

racine y = let fun = nxt y in
iterf 1.0 (fun 1.0) fun cnv

Nous devrons savoir implanter effectivement larécursivité, ce qui implique non seulement l’usage non-trivial
despiles (des données et de contrôle), mais aussi l’optimisation de larécursivité terminale et lesexceptions
dans la gestion de la pile. Par contre, il faut éviter le piège d’implanter la récursivité en utilisant la récursivité,
ce qui parfois est exploité pour modéliser l’interprète deLisp enLisp.

Il est à retenir également le fait que dans le monde fonctionnel on écrittrès souventdes fonctions qui
prennent d’autres fonctions comme paramètres, et les appliquent, comme notre itérateur. Mais à part cela la
machine virtuelle fonctionnelle sous-jacente est la simplicité même. Elle doit savoir

1. décoder les valeurs des variables dans l’environnement ;

2. exécuter l’opération primitive «application» ;

3. posséder au moins une structure de contrôle primitive typeif-then-else: application def ou g selon la
valeur d’un troisième objet, la condition;

4. gérer la mémoire, posséder un système des entrées/sorties, etc., tout ce qui appartient à la couche «sys-
tème».

A.2 L’essentiel 141

A.2.2 Évaluation paresseuse

Quel est le résultat de l’application fonctionnellef(1/0) ? (Supposons que le compilateur n’est pas très intel-
ligent et que la singularité n’a pas été découverte avant son apparition lors de l’appel incriminé. Typiquement
le programme déclenche une exception. Mais si la fonctionf n’a pas besoin de son argument, par exemple

f x xtra = if xtra<0 then sqrt x else xtra

f (1/0) 7

le résultat peut être égal à 7, à condition que la fonction «avale» l’expression singulière sans déclencher une
erreur.

Le protocole d’évaluation qui le permet, s’appelleévaluation paresseuse, ounon-stricte. Plus précisément,
un langage est strict, sitoute fonction f appliquée à l’expression⊥ qui symbolise un calcul qui ne peut se
terminer, rend aussi⊥. La façon pratique de réaliser le protocole paresseux est lepassage de paramètres par
nom, et non pas par valeur. Quand l’application fonctionnelle(f x) est compilée, une partie du code est le
résultat de la compilation dex . Ensuite. . .

• Dans un langage strict ce code est exécuté d’abord, et la valeur retournée ou sa référence est transmise
au code qui exécutef .

• Le protocole paresseux demande que le code représentantx ne soit pas exécuté tout de suite. Il est
transformé en une procédure anonyme et sans arguments qui traditionnellement porte le nom dethunk.
Ce thunk est transmis à la fonction qui peut l’exécuter ou non. Il est exécuté quand la fonction utilise
explicitement cet argument, quand sa valeur devient indispensable.

L’utilité de l’évaluation paresseuse repose sur le fait queles fonctions paresseuses peuvent représenter des
structures de contrôle. Par exemple, l’expressionif c then A else B peut être considérée comme l’application
fonctionnelle de l’opérateurifelse : (ifelse c A B) . Mais il est évident queA etB ne peuvent être éval-
uées avant de passer le contrôle à la fonctionifelse . Seulement une de ces expressions sera évaluée, selon
la valeur de la condition. Donc, c’est la fonctionifelse qui doit «consciemment» demander l’évaluation soit
deA, soit deB.

Ensuite, comme nous verrons plus tard, les listes paresseuses constituent une méthode très lisible et intuitive
de représenter un flux (stream) – de caractères, de mots, etc., ce qui permet d’établir la communication entre
plusieurs modules du compilateur. La transformation (outransduction) des flux de données est devenu si
paradigmatique, que même des langages fonctionnels stricts commeML (notammentCAML) définissent des
flux paresseux. Et les langages classiques commeC? Ici ce concept est réalisé par lespipes(Unix), mais les
pipessont des dispositifs purement techniques, sans trop de théorie sous-jacente. Les flux paresseux peuvent
aussi modéliser avec une grande souplesse et clartédes processus itératifs, et ceci jouera un rôle très important
dans notre cours.

Exemple. EnHaskell le caractère(:) est l’opérateur connu enLisp commecons – le constructeur des
listes. L’expression1 : 2 : [] signifie le même que1 : [2] et [1,2] . Voici la construction d’une
liste infinie 1, 2, 3, 4, ... , qui peut être utilisée comme telle dans un langage paresseux : il suffit de
ne pas regarderla queue de la liste pour qu’elle soit cachée dans son thunk, un «démon» procédural fini. Si on
demande la valeur du second élément de la liste, le démon le génère et se cache derrière, etc. La construction
de la liste a la forme suivante :

infint = intseq 1
where
intseq n = n : intseq (n+1)

Notez une propriété sémantiquement pratiquement illégale enC : la fonction récursiveintseq n’a pas de
clause terminale !

(Notez aussiune fois pour toutesqu’en Haskell la construction(1 : 2) est absolumentillégale à
cause du typage. Le second argument doit être une liste, non pas un objet quelconque. Pour former des tuples
on utilise la notation(1,2) .)

L’évaluation paresseuse, surtout cascadée peur encombrer la mémoire avec desthunksce qui peut être très
indésirable. En général la paresse introduit une certaine pénalité d’exécution, et si on pouvait dans quelques
cas critiques forcer l’évluation stricte desarguments d’une fonction, ceci augmenterait la vitesse d’exécution du
programme. Ceciest possible grâce à la constructionseq :: a -> b -> b .

142 Introduction à la véritableprogrammation fonctionnelle et à Haskell

La sémantique de cette construction est simple :seq a b ≡ b, si a 6= ⊥. Le Prélude définit la fonction
$! , l’opérateur d’application stricte:

f $! x = x ‘seq‘ f x

associatif à droite, et de faible précédence.

A.2.3 Déstructuration automatique des arguments

En C, Pascal ou Lisp classique, y comprisScheme, les paramètres formels d’une procédure sont toujours
des noms simples. Si l’argument actuel lors de l’appel est une expression composite : une liste, un record, etc.,
il faut lancer manuellement un sélecteur d’accès : CAR, CADDR,argum.champ , etc., pour pouvoir voir
l’intérieur de l’argument.

Les langages fonctionnels de nouvelle génération (ainsi que quelques langages logiques, notamment la
famille Prolog, et les nouvelles implantations duLisp) offrent à l’utilisateur la possibilité de déstructurer les
paramètres automatiquement via «pattern-matching» (filtrage). Si le paramètre formel dans la définition d’une
fonction n’est pas un nom, mais une structure, par exemple(x:q) (enHaskell) ceci signifie que l’argument
actuel sera une liste dont la tête est accessible dans la fonction par le nomx , et la queue s’appelleraq. Le
caractère_ dénote une variable anonyme, toujours différente des autres, et qui ne nous intéresse pas (elle ne
sera pas utilisée par la fonction).

La constructionnom@struc signifie : le paramètre s’appellenomet il possède la structurestruc . Voici
la fonction qui duplique la tête d’une liste, p. ex.[5, 3, 4, 6]→ [5, 5, 3, 4, 6] :

dtete l@(x:_) = x:l

A.2.4 Quelques exemples de programmes enHaskell

Le but de ces exemples est principalement pédagogique, il nous faut maîtriser ce langage.
Voici le tri par insertion d’une liste numérique. Le lecteur doitbien connaître la versionScheme de cet

algorithme. Notez comment au lieu de proliférer les conditionsif-then-else , le programme est décom-
posé en clauses. Notez aussi comment les alternatives sont représentées par les clauses internes, séparées par
les barres verticales.

instri [] = []
instri (x:q) = inserer x (instri q) where

inserer x [] = [x]
inserer x l@(y:r) | x<y = x:l --(Nouvelle tête, sinon

| otherwise = y : (inserer x r) -- garde l’ancienne)

Le deuxième exemple sépare une liste en deux morceaux : lesn premiers éléments, et le reste. La valeur
retournée est unepaire (prm,rst) , une structure primitive deHaskell, très commode. Il existent aussi des
triplets(x,y,z) , etc., qui sont implantées de manière plus efficaces que les listes.

La première ligne de l’exemple (qui est une fonction prédéfinie) est sadéclaration de type. Elle est redon-
dante, mais le typage explicite peut nous être utile plus tard, pour restreindre le polymorphisme, ou simplement
pour la documentation. La notation est plus compacte qu’enC.

splitAt :: Int -> [a] -> ([a], [a])

splitAt 0 xs = ([],xs) -- tête vide
splitAt _ [] = ([],[]) -- tout vide
splitAt n (x:xs)

| n>0 = (x:xs’,xs’’) -- récursive
where (xs’,xs’’) = splitAt (n-1) xs -- sinon. . .

splitAt _ _ = erreur "neg. arg."

A.3 Langage de base 143

Le dernier exemple est l’usage d’une fonctionnelle de réduction des listes. Comment calculer la somme de tous
les éléments de la liste[x1, x2, x3, ... xN] ? La technique apprise à l’école maternelle est simple
on ajoute le premier élément à la somme des éléments restants. Mais avec le produit nous ferons le même,
seulement l’opérateur changera. La structure récursive du code reste la même, et il est de rigueur dans le
monde fonctionnel de profiter de toute généricité, et de définir les fonctions permettant leur généralisation
facile. Alors dans notre cas la somme est le résultat de laréduction(folding : «pliage») de l’opérateur(+) sur
la liste.

somme l = foldl (+) 0 l

où le réducteur a la forme

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl op z [] = z
foldl op z (x:xs) = foldl op (op z x) xs

Naturellement le produit des éléments sera donné parfoldl (*) 1 l .

A.3 Langage de base

A.3.1 Opérations

Après un avant-goût syntaxique et quelques exemples, soyons un peu plus formels. Récapitulons les ingrédients
syntaxiques de base. Les expressions peuvent être des constantes (numériques ou autres), variables comme
alpha_23j , etc. On peut utiliser la notation fonctionnelle :fun arg1 15 arg3 etc., ou opérationnelle :
(p ‘mod‘ 23)*12 + 7^u , etc., avec les précédences des opérateurs arithmétiques similaires à d’autres
langages.

Toute fonction binaire, p. ex.funct peut être utilisée comme opérateur infixe par la notation :a ’fun’ b ,
et tout opérateur infixe peut être utilisé comme une fonction préfixe en l’entourant par les parenthèses :
(*) a b . On peut définir les opérateurs utilisateur, et leur donner les précédences et l’associativité (gauche
ou droite) grâce aux commandesinfixl, infixr et infix (aucune associativité). Voici un fragment du
Prélude :

infixr 9 .
infixl 9 !!
infixr 8 ^, ^^, **
infixl 7 *, /, ’quot’, ’rem’, ’div’, ’mod’, :%, %
infixl 6 +, -
-- infixr 5 : -- Cette déclaration est figée dans le noyau du Hugs
infixr 5 ++
infix 4 ==, /=, <, <=, >=, >, ’elem’, ’notElem’
infixr 3 &&
infixr 2 ||
infixl 1 >>, >>=
infixr 1 =<<
infixr 0 $, $!, ’seq’

Le nombre plus élévé signifie la précédence (la «force» de l’opérateur) plus grande. L’application fonctionnelle
a par défaut la plus grande précédence de tous les opérateurs.

Pour définir un objet il suffit de le faire suivre par le caractère= (ce n’est pas un opérateur), et par sa
définition. Si à gauche de l’affectation on trouve une forme plus complexe qu’une simple variable, c’est une
définition fonctionnelle. Exemples :

pi = 3.1415926536

tg x = sin x/cos x
ff x y = sqrt (x*x+y*y)

Notons l’absence de parenthèses redondantes autour de paramètres.Haskell dispose de toute la panoplie de
fonctions et d’opérateurs numériques standard. Les fonctions commesqrt , exp etc. acceptent les arguments

144 Introduction à la véritableprogrammation fonctionnelle et à Haskell

flottants, etsqrt x où x est égal à 4, est illégal. Cependant l’expressionsqrt 4 est correcte et donne
2.0. Haskell automatiquement compile les constantes numériques, p. ex. 4 commefromInteger 4 , où
frominteger est une fonction surchargée, qui effectue une conversion de son argument vers un autre type
quelconque – le type qui est attendu par le contexte. Puisque la fontion√

. . . attend un argument flottant, le
résultat de la conversion sera flottant.

A.3.2 Types de données prédéfinis

En Haskell nous pouvons utiliser les nombres entiers de précision illimité : le typeInteger , (les entiers
courts standard existent aussi :Int), les flotants (Float etDouble), les Booléens,Bool : True etFalse ,
et les caractèresChar : ’c’ comme les données atomiques standard. Il existe aussi un objet «vide» :() (de
type()).

Les objets composites standard sont :

• les «tuples» :(a,b) , (a,b,c) , etc., où les éléments peuvent être de type quelconque (aussi les tuples).
Donc, les tuples constituent une collection infinie de types possibles. Sia, etb designent un type, alors
(a,b) ainsi que(a,b,c) etc., sont des types légaux.

• Les listes : [a,b,c,d] , etc. Cette liste est équivalente àa:b:c:d:[] ; (l’opérateur(:) est
l’équivalent du «cons» enLisp). Tous les éléments d’une liste doivent appartenir au même type, p.
ex. a – alors le type de la liste est[a] .

Les chaînes alphanumériques :"Belle Marquise" sont équivalentes à des listes de caractères :
[’B’,’e’,’l’,’l’,’e’,’ ’,’M’,’a’,’r’,’q’,’u’,’i’,’s’,’e’] . Leur type est[Char] ,
mais souvent on utilise une abbréviationString .

Plus tard nous verrons encore les «records», et les tableaux, mais nous allons utiliser de préférence les listes, et
les structures «algébriques» définies par l’utilisateur.

Le langage dispose d’un outil syntaxique très élégant – les compréhensions. Pour transformer une liste de
nombres en une liste de leur cubes on peut naturellement utiliser la fonctionnellemap

l = [1, 3, 5, 2, 4]
r = map cube l where cube x = x*x*x

Ceci est la syntaxe standard. Avec les compréhensions nous écrirons

r = [cube x | x<-l]

Donc, les compréhensions remplacent le générateurmappar une syntaxe plus lisible, mais elles peuvent égale-
ment filtrer les éléments d’une liste. L’expression ci-dessous renvoie la liste des entiers qui ne soient pas
divisible par 3 :

l=1 .. 20
r=[x | x<-l, x ’mod’ 3 /= 0]

Le résultat affiché est

[1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20]

Normalement on n’a pas besoin de déclarer les types des variables, fonctions, etc., mais ceci peut être utile
pour la documentation, ou pour supprimer les ambiguïtés qui parfois peuvent se produire. Voici deux styles de
déclaration de variables avec leur types :

x :: [Double]
x = [1.2, 2.6]

y = "Belle Marquise" :: String

Un type dérivé très important c’est le type fonctionnel. Sia et b sont deux types, la fonction qui prend un
argument de typea et renvoie le résultat de typeb, possède le typea -> b . Si la fonctionf prend deux
arguments, de typea etb, et son résultat est de typec , on écrira :

A.3 Langage de base 145

f :: a -> b -> c

La flèche peut être considérée comme unopérateur associatif à droite.On peut placer explicitement les paren-
thèses :f :: a -> (b -> c) . Cette convention est en accord avec le protocole de«curryification», selon
lequel l’expressionf x y est équivalente à(f x) y . Une «application partielle» d’une fonction binaire à
son premier argument est légale, et dénote une fonctionunairequi attend le second argument. Concrètement,
nous avons (presque) l’équivalence

f x ≡ \y -> f x y

Important ! Analysez pourquoi l’associativité à gauche des applications fonctionnelles produit l’associativité
à droite de la flèche qui dénote les types fonctionnels.(D’ailleurs, pour les débutants la flèche enHaskell est
une source de confusion. Elle est utilisée aussi pourdéfinir les fonctions– comme ci-dessus (et non pas
seulement pour spécifier leur type), et pour la structure de contrôlecase).

Les opérateurs infixes peuvent faire partie des «sections» :(* 8) ou (8 /) .

A.3.3 L’utilisation de l’évaluation paresseuse

La puissance de la paresse est visible quand la fonction en question est unconstructeur de données, par
exemple l’opérateur(:) . On peut construire facilement une liste infinie (cyclique) d’un ou plusieurs éléments.
Voici comment construire des listes comme[2,2,2,...] , ou [2,3,1,2,3,1,2,...] :

repeat c = w where
w = c : w

deuxs = repeat 2

cycle l = w where
w = l ++ w

ccl = cycle [2,3,1]

où on aurait pu définir :repeat c = c : repeat c , mais cette dernière définition malgré sa simplicité
est moins efficace. La raison est très simple. La première variante génère une liste cyclique, l’objetwest auto-
reférentiel, et la représentation de cette liste dans la mémoire est très compacte. La deuxième variante construit
une paire dont la tête est égale àc , mais la queue est une fonction dont l’appel génère la même liste.

Voici un autre exemple, la liste[1,2,3,...] :

entiers = ent_de 1 where
ent_de n = n : ent_de (n+1)

Le trait caractéristique des fonctions récursives paresseuses est la présence de récursivitéouverte, sans la clause
terminale. Ceci n’est pas gênant, car une consommation incrémentale d’une liste infinie «voit» uniquement le
segment initial, et la queue infinie est «virtuelle», représentée par un thunk qui se «dé-virtualise» au fur et à
mesure quand le programme progresse.

Les fonctions récursives ouvertes n’épuisent pas nos surprises. L’évaluation paresseuse permet également
de créer desdonnées récursives. Un exemple a déjà été vu : les listes cycliques. Mais regardons une autre
définition récursive de la liste des entiers :

entiers = 1 : (entiers <+> uns) where
uns = 1 : uns
(x : xq) <+> (y : yq) = (x+y) : (xq <+> yq)

Ici l’opérateur(<+>) sert à ajouter deux listes, élément par élément. Il peut d’ailleurs être défini par une
fonction prédéfiniezipWith qui applique un opérateur quelconque à deux listes, élément par élément :

zipWith _ [] [] = []
zipWith op (x:xq) (y:yq) = op x y : zipWith op xq yq

(<+>) = zipWith (+)

Cette définition desentiers est loin d’être triviale. C’est une liste dont la tête est égale à 1. La queue est
le résultat d’addition desentiers et la liste infinie des 1. Apparemment ceci n’est pas faisable, mais on sait
quelle est la tête du résultat:1 + 1 = 2. Donc, deux éléments sont définis :entiers = [1,2,...] . Si le

146 Introduction à la véritableprogrammation fonctionnelle et à Haskell

second élément de la liste est égale à 2, le second élément de sa queue est égal à 3, ce qui établit la valeur du
troisième élément, etc.

Nous voyons donc que l’évaluation paresseuse permet de remplacer un processus itératif par une struc-
ture de données «auto-génératrice».

Un autre usage des listes paresseuses est la consommation de flots qui modélisent les fichiers dans le
programme. On peut considérer qu’un fichier lu est une liste très longue de caractères. Ils sont «virtuellement»
tous présents dans le programme, et on peut consommer itérativement ce flot. Dans la réalité ils sont lus
incrémentallement. On n’a pas besoin de lire les items dans une boucle, onlit le fichier une seule fois, dans un
seul endroit dans le programme, et on traite le contenu comme s’il était une structure interne.

Attention ! La construction d’un tel programme peut être délicate. Si on consomme un flot paresseux par une
structure itérative, mais on oublie de «libérer» les éléments lus et traités, la liste entière se forme physiquement
dans la mémoire, et on risque le débordement du tas. C’est une de nombreuses raisons pour lesquelles dans
les modèles sérieux d’entrée/sortie enHaskell on procède différemment. Mais la fonctionnalité existe, et
elle est bonne pour l’entraînement. Il faut d’abord charger le fichierIOExts.hs qui réside dans la librairie
d’extensions duHugs. Ensuite la définition :

chaine = unsafePerformIO (readFile "nom_du_fichier")

place – paresseusement – danschaine la totalité du fichier lu.

A.4 Structures de contrôle

Ici Haskell est très austère. Nous disposons de fonctions et d’opérateurs infixes, et nous pouvons créer des
applications partielles, et fonctions anonymes, p. ex.,\x -> 6*x (ce qui est équivalent à la section(6*)).
Le nombre de dispositifs syntaxiques qui facilitent la création d’un programme complexe est limité.

• Il existe naturellement l’expression conditionnelleif α then β else γ. Elle n’est pas très souvent
utilisé, car les «gardes», et le filtrage des paramètres sont souvent plus commodes.

• On peut créer des variables (et les fonctions) locales à une fonction par le bloclet définitions locales
in expression. Les blocslet peuvent être imbriqués à volonté, et les définitions locales peuvent être
récursives (y compris indirectement). L’alternative àlet est, bien sûr, la constructionwhere . (Il faut
seulement souligner que la présence dewhere en cascade, à plusieurs niveaux, n’est pas lisible, et dans
les version précédentes deHugs ceci était interdit).

Les définitions locales donnent un autre moyen de créer des fermetures non-triviales. La forme

f x = let
g y = x+y

in g

utilisée dans le contexte :h = f 5.0 affecte àh une fonction qui ajoute 5.0 à son argument. La
constante 5.0 a été «attrappée». (En fait, cet exemple est trop simple, on peut le transformer en :
f x = (+ x) ou même enf = (+) . Mais vérifier le typage !

• Il existe une conditionnelle à choix multiples :

case expressionof
valeur1 -> resultat1
valeur2 -> resultat2
...

A.4.1 Clauses, gardes et filtrage

Comme nous avons déjà mentionné,Haskell partage avecProlog la possibilité defiltrer automatiquement les
valeurs et les formes des arguments des fonctions, ce qui permet d’éviter la prolifération des conditionnelles.
La factorielle récursive peut être définie ainsi :

A.4 Structures de contrôle 147

fac 0 = 1
fac n = n * fac (n-1)

au lieu d’expliciter :

fac n = if n==0 then 1 else n* fac (n-1)

On peut exploiter encore un autre style, avec des «gardes», formes conditionnelles qui ont la forme un peu
similaire aucase , mais où ce ne sont pas des valeurs, mais des conditions Booléennes qui déterminent les
branches à suivre. Exemple :

fac n | n==0 = 1
| n>0 = n * fac (n-1)
|otherwise = error "Factorielle ; argument négatif"

Le mototherwise est un synonyme deTrue .
Le filtrage des paramètres permet de déstructurer automatiquement un argument composite. Si dans une

définition fonctionnelle le paramètre n’est pas un identificateur, mais une forme composite, sa structure doit
correspondre à l’argument actuel, et les identificateurs présents dans cette forme sont instanciées avec les
éléments correspondants de l’argument. Voici la précédure qui renverse une liste (avec accumulateur) :

reverse l = rev l [] where
rev [] b = b
rev (x:xq) b = rev xq (x:b)

Le filtrage enHaskell n’est pas l’unification complète, comme enProlog. Il n’y a pas de «variables logiques»
non-instanciées. Chaque identificateur peut apparaître une seule fois dans lepattern (forme), et même une
seule fois dans la liste qui spécifie les patterns pour tous les paramètres d’une fonction.

Si on veutnommerle paramètre, comme dans d’autres langages de programmation, et avoir en même
temps sa structure, on utilise la notationnom@forme. Voici une fonction qui parcourt une liste de paires :
[(nom1,val1),(nom2,val2),...] , et qui retourne la paire dont le premier élément est égal àz . En
cas d’échec on renvoie un message d’erreur (plus tard nous apprendrons comment sortir d’une telle situation
de manière plus douce).

cherche _ [] = error "Échec de recherche"
cherche z (e@(x,_) : rst) | x==z = e

| otherwise = cherche z rst

Notons l’usage des variables anonymes (_) là, où leur instanciation est inutile.
Même si les sélecteurs des éléments des structures de données composites classiques :head et tail pour

les listes,fst , snd pour les paires, etc. sont prédéfinis, on les utilise rarement, grâce au filtrage structurel.

A.4.2 Fonctions d’ordre supérieur

Dans un langage fonctionnel sérieux, les fonctions sont des données comme les autres. Elles peuvent être
stockées, passées comme paramètres des autres fonctions, ou constituer le résultat d’une opération. L’usage
des fonctions qui opèrent sur d’autres fonctions est un trait très typique de la programmation fonctionnelle. Le
style fonctionnel préconise la définition et l’usage defonctions génériques, universelles : les itérateurs, filtres,
opérateurs de composition et autres combinateurs. Une partie obligatoire du cours deScheme est la définition
et l’usage de la fonctionnellemap. EnHaskell elle aura la forme

map fun [] = []
map fun (x:xq) = fun x : map fun xq

mais nous connaîtrons encore beaucoup d’autres. Dans un langage fonctionnelpur l’usage des fonctionnelles
remplace les structures de contrôle typiques comme les boucles avec l’accumulation, etc. Par exemple, pour
trouver la somme des éléments d’une liste on peut écrire

somme [] = 0
somme (x:xq) = x + somme xq

-- ou, avec l’accumulateur
somem l = sm l 0 where

sm [] n = n
sm (x:xq) n = sm xq (n+x)

148 Introduction à la véritableprogrammation fonctionnelle et à Haskell

mais pour les fondamentalistes fonctionnels il est de rigueur l’usage de la fonctionnelle universellefold (elle
existe en deux variantes prédéfinies :foldl (l – left) récursive terminale, etfoldr (r – right), incrémentale,
adaptée à la programmation paresseuse, et déjà présentée). Voici leur définitions et l’usage :

foldr f z [] = z
foldr f z (x:xq) = f x (foldr f z xq)

foldl f z [] = z
foldl f z (x:xq) = foldl f (f z x) xq

somme l = foldl (+) 0 l

Pour combiner élément par élément deux listes nous avonszipWith (définie précédemment).
Voici un «itérateur» typique, la fonctioniterate f x qui construit la liste infinie[x, f x, f(f

x), f(f(f x)),...] .

iterate f x = x : iterate f (f x)

Une telle liste peut être ensuite parcourue par un autre itérateur-filtre, qui – par exemple – cherche à satisfaire
une condition satisfaite par un élément, ou une convergence de cette suite. Voici comment chercher la solution
numérique, itérative de l’équationexp(x) = 3x.

eps = 0.000001
x0 = 1.0
fun x = (exp x)/3.0

converg (x:xq) = cvg x xq where
cvg x (y:yq) | abs(x-y)<eps = y

| otherwise = cvg y yq

solution = converg (iterate fun x0)

On peut utiliser aussi une fonction de filtrage universel, qui élimine de la liste tous les éléments qui ne satisfont
pas la condition Booléennep:

filter p [] = []
filter p (x:xq) | p x = x : filter p xq

| otherwise = filter p xq

Plus tard nous connaîtrons ecore plusieurs autres fonctionnelles. Rappelons encore qu’enHaskell la fonction-
nellemapet les filtres prennent souvent la forme decompréhensions, formes de genre[expr | gen_et_filtr] .
Au lieu d’écriremap f l nous pouvons coder la forme un peu moins compacte, mais très lisible :

[f x | x <- l]

Si accessoirement nous voulons filtrer le résultat par le prédicatp, nous écrirons

[f x | x <- l, p x]

On peut générer l’expression à gauche de la barre à partir de plusieurs listes, et utiliser plusieurs filtres. La forme
[(x,y)|x<-[1 .. 3],y<-[2 .. 4]] engendre[(1,2), (1,3), (1,4), (2,2), (2,3),
(2,4), (3,2), (3,3), (3,4)] . Hugs et GHC permettent aussi l’usage des compréhensions «par-
allèles» :

[(x,y)|x<-[1..3]|y<-[2..4]] → [(1,2),(2,3),(3,4)]

A.5 Types définis par l’utilisateur

On peut affirmer que la richesse du système de typage est le trait fondamental des langages de programma-
tion modernes, et en particulier des langages fonctionnels. Nous allons aborder ici la construction detypes
algébriques, équivalentes aux records (balisés) avec des variantes. Dans la notation qui sera désormais inten-
sément exploité le type prédéfiniBool est algébrique, défini par

A.5 Types définis par l’utilisateur 149

data Bool = True | False

Le mot-clédata introduit la définition d’un nouveau type. À droite du signe d’affectation on trouve l’énumération
desconstantes symboliquesqui représentent les valeurs appartenant à ce type. On peut définir d’autres types
de ce genre, p. ex. :

data Ordering = LT | EQ | GT
data Couleur = Rouge | Blanc | Bleu | Vert | Marron | Arc_enCiel

(Le premier est prédéfini dans la librairie standard). Les constructeurs des constantes doivent être distincts. Par
convention les constantes symboliques enHaskell commencent par la lettre majuscule.

Les types structurés sont parametrés par les types des composantes. Voici comment on peut définir les
nombres complexes comme des paires de deux réels :

data Complex = Complex Double Double

où l’identificateurComplex dénote simultanément le nom du type, et de son constructeur (le seul ici). Pour
construire un nombre complexe concret il suffit d’écrireComplex 1.3 8.7 etc. Les structures de ce genre
sont correctement traitées par le mécanisme de filtrage des entêtes. Voici la définition de la fonction qui
multiplie deux nombres complexes :

cmult (Complex a b) (Complex x y) = Complex (a*x-b*y) (a*y+b*x)

Les types enHaskell peuvent êtrepolymorphes, parametrés par des types «variables», inconnus. Le con-
structeur n’est pas forcément une constante alphanumérique, il peut être aussi un opérateur infixe. Voici la
création des fractionsnum/den. nous ne voulons pas figer le type des composantes. Il peut êtreInteger ,
mais aussiInt , ou, peut-être représenter le polynômes, pour qui l’arithmétique classique comme l’addition, la
multiplication et la division Euclidéenne avec reste, est définie comme pour les entiers. Nous écrirons donc

infix 7 :%

data Fraction a = a :% a

oùa dénote ce type inconnu. Plus tard nous apprendrons comment restreindre la catégorie de types «éligibles»
pour le numérateur et le dénominatur (pour éviter la formation de fractions composés de chaînes de caractères,
ou des chauve-souris). Une variable de type rationnel peut être défini par :

frct = x :% 8 :: Fraction Int

En fait, la vie est plus difficile. EnHugs l’utilisateurn’a pas le droit d’utiliser l’opérateur(:%) ! La raison est
très simple : ce constructeur permet de former impunément des fractions réductibles comme2 :% -4 . Donc
cet opérateur est «caché» (il n’est pasexportédu Prélude Standard), et l’utilisateur peut former les fractions
avec un autre opérateur, par exemple8 % 6. Ce dernier opérateur force la simplification de la fraction.

Dans un programme de type compilateur ou interprète il est souhaitable parfois d’opérer sur des objets de type
«donnée numérique» (éventuellement plus riche, comprenant les chaînes de caractères) de façon homogène :
une valeur est une valeur, pour l’analyse syntaxique il est souvent redondant de préciser si cette valeur est
entière ou réelle. On peut aisément introduire des types «multiples» grâce au balisage. Voici un exemple :

data Value = I Integer | F Double | S String | O Operator | Err String

où – par exemple – la varianteErr dénote une donnée illégale, avec le diagnostic d’erreur, etO – un objet
fonctionnel, désigné ici par l’abbréviationOperator .

On aura besoin de données structurales récursives, comme des listes ou des arbres. Voici leur possible
implantation/spécification, avec deux types d’arbres binaires – l’un stocke l’information dans les feuilles, et
l’autre dans des noeuds intermédiaires :

data List a = Nil | Cons a (List a)

data LTree a = Leaf a | Node (LTree a) (LTree a)
data NTree a = Empty | Nd a (NTree a) (NTree a)

Bien sûr, le typeList est redondant, nous avons déjà des listes standard. Les arbres N-aires peuvent être
construits à l’aide des listes, par exemple

150 Introduction à la véritableprogrammation fonctionnelle et à Haskell

data RTree a = Lf a | RNode [RTree a]

Voici le codage d’une procédure de tri arborescent qui utilise lesNTrees . On place les éléments de la liste
triée dans un arbre binaire, en suivant la branche gauche si l’élément est plus petit que la racine, et la branche
droite s’il est grand. On répète cette procédure récursivement, jusqu’au niveau des feuilles.

tsort l = flatten (instree l Empty) where
instree [] arb = arb
instree (x:xq) arb = instree xq (ins x arb)

ins x Empty = Nd x Empty Empty
ins x (Nd y g d) | x<=y = Nd y (ins x g) d

| otherwise = Nd y g (ins x d)

flatten Empty = []
flatten (Nd x g d) = flatten g ++ (x : flatten d)

A.5.1 Types-synonymes

Il existe enHaskell deux manières de spécifier un type qui est équivalent à un type existant, mais dont la
notation est différente (p. ex. constitue une abbréviation). La formetype définit un simple synonyme, p. ex.,

type String = [Char] -- Ceci est prédéfini
type Binop a = a -> a -> a

On peut aussi définir un type de données dont la représentationinterneestexactement la mêmeque de données
d’un autre type, mais qui est considéré comme vraiment distinct. Si nous déclarons

newtype Binop a = Op (a -> a -> a)

(notez la présence de la baliseOp), alors la représentation interne des objets de ce type sera identique aux
opérateurs binaires(a -> a -> a) , sans aucune perte de mémoire ou de temps pour la reconnaissance
de la balise, mais le compilateur traite une telle définition pratiquement commedata , c’est-à-dire comme la
définition d’un nouveau type distinct.

A.5.2 Introduction à l’inférence automatique des types

Nous avons déjà mentionné le fait queHaskell ne demande pas la présence des déclarations de type (sauf dans
des cas spéciaux, discutés ultérieurement). Normalement le compilateur découvre le type d’une fonction assez
facilement en regardant sa définition (et parfois son usage). Prenons la définition de la fonctiontsort , et
essayons de dériver son type, et les types de ses fonctions locales.

La fonctionflatten prend un argument de typeNtree a (avec a qui n’est pas spécifié), et qui retourne
une liste. Cette liste contient(x : ...) , alors c’est la liste des éléments du même type :[a] . Donc, la
déclaration explicite serait :

flatten :: (NTree a) -> [a]

De même, il est évident que

ins :: a -> NTree a -> NTree a

Mais la définition deinstree est un peu plus délicate. Le premier argument est une liste, mais le second
n’est pas spécifié du tout. Le compilateur doit regarder la définition deins pour trouver enfin que

instree :: [a] -> NTree a -> NTree a

Finalement :tsort :: [a] -> [a] . La vérité est plus complexe, le système nous dira :

tsort :: Ord a => [a] -> [a]

ce qui signifie que la fonction transforme des listes, mais ses éléments doivent obligatoirement appartenir à un
type qui admet la comparaison (l’applicabilité de l’opérateur(̌<)). Ces contraintes seront discutées plus tard.

Parfois les fonctions sont beaucoup plus polymorphes, et leur type est très difficile à découvrir «à l’oeil nu».
Prenons la fonctionfoldr dont la définition a la forme déjà bien connue

A.6 Intermezzo : exemples fonctionnels très spécifiques 151

foldr f z [] = z
foldr f z (x:xq) = f x (foldr f z xq)

On peut procéder de manière suivante. la fonction prend trois arguments, et renvoie un résultat, donc le type le
plus général sera

foldr :: a -> b -> c -> d

Mais il y a des contraintes. La première clause établit l’équivalence entre le type du second paramètre et le
résultat. Par ailleurs, le troisième paramètre est une liste. Donc, on peut écrire :

foldr :: a -> b -> [c] -> b

La deuxième clause montre quef est un opérateur binaire, dont le premier argument est du typec , et le second
est le type du résultat renvoyé parfoldr , ce qui est également le type de son résultat. Finalement

foldr :: (c -> b -> b) -> b -> [c] -> b

(Les noms actuels des variablesa, b etc. n’ont pas d’importance). On peut facilement découvrir que

map :: (a -> b) -> [a] -> [b]

et que le combinateursubs défini ci-dessous se présente comme

subs f g x = f x (g x)
subs :: (a -> b -> c) -> (a -> b) -> a -> c

Le type le plus général d’un objet polymorphe, découvert par ce procédé sera appelé sontype principal

A.6 Intermezzo : exemples fonctionnels très spécifiques

A.6.1 Combinateurs de Curry

L’importance de cette section sera reconnue un peu plus tard. Son objectif est de montrer comment définir
des fonctions en faisant l’abstraction des paramètres(dont la forme triviale se réduit à l’équivalence entre la
définition f x = g x et f = g .). La construction de programmes complexes de nature fonctionnelle peut
utiliser en fait un seul mécanisme principal : les compositions de fonctions. Les compositions deviendraient
plus simples à maîtriser, à comprendre et à implanter si nous pouvions éliminer au moins partiellement le
lest des données inertes – les paramètres présents dans les définitions. Il faut avouer que le résultat d’une
«optimisation combinatoire» peut ne pas être très lisible, mais ceci n’est pas grave, car elle peut être une
opération interne du compilateur, et son résultat ne sera jamais vu par un humain (sauf si on adore la «folie
combinatoire» ; un langage combinatoire concret,Unlambda a été conçu spécialement comme une blague.
C’est le plus illisible langage fonctionnel existant).

Un combinateur de Curry est une fonction pure dont le rôle est de «coller» d’autres fonctions ensemble,
ou de modifier leur comportement de manière universelle. Nous verrons comment les combinateurs facilitent
la construction des continuations.

Certains combinateurs, proposés déjà par le mathématicien Haskell Curry, sont considérés standard. Parmi
eux nous avons l’identité :

id x = x

qui dans le langage traditionnel des combinateurs s’appelleI , mais nous préférons utiliser ici le lexique de
Haskell pour pouvoir implanter les combinateurs sans problèmes.

Le combinateur suivant est la «constante» qui ignore son deuxième argument :

const x y = x

Ensuite il y a le combinateur qui échange les deux arguments d’une fonction :

flip f x y = f y x

Le combinateur qui duplique un argument :

dupl f x = f x x

152 Introduction à la véritableprogrammation fonctionnelle et à Haskell

Finalement, parmi les combinateurs très simples il y a le compositeur de fonctions :

comp f g x = f (g x)

Tous ces combinateurs sont prédéfinis enHaskell ; le dernier est un opérateur infixe :(.) . Nous aurons besoin
encore d’un autre combinateur de Curry :subs considéré standard, et très important.

Voici la définition combinatoire de la fonction qui calcule le carré de son argument :sqr x = x*x . Nous
réécrivons :

sqr x = (*) x x = dupl (*) x

et alorssqr = dupl (*) . Pas de paramètres ! Bien sûr, la vraie sémantique repose quand même sur la
présence d’une fonction concrète, la multiplication. Les combinateurs seulsne sont capables de réseoudre
aucun problème concret !Ils constituent à peine un outil de structuration.

Voici le cube exprimé de manière combinatoire :cube x = x*x*x = (*) x ((*) x x) :

(*) x ((*) x x) = ((*) x) (((*) x) x)
= comp ((*) x) ((*) x) x = dupl comp ((*) x) x
= comp (dupl comp) (*) x x
= dupl (comp (dupl comp) (*)) x

et il suffit d’abstraire lex pour obtenir une version combinatoire. Le lecteur ne doit pas craindre, des manip-
ulations de ce genre ne sont presque jamais effectuées par les humains (mais elles constituent des jolis sujets
d’examen).

Un combinateur très important, appartenant au «canon» de Curry est le «substituteur» :

subs f g x = f x (g x)

Il peut être réduit aux combinateurs introduits ci-dessus, mais il est préférable de le laisser comme primitif. Il
peut générer les autres, par exemple avecsubs etconst on peut générer l’identité :

(subs const const) x = const x (const x) = x

En fait, presque toute imaginable composition fonctionnelle peut se réduire à ces deux combinateurs (dans les
ouvrages théoriques ils s’appellentK (const), etS (const). Bien sûr, l’identité doit dans la pratique rester
primitive, pour des raisons d’efficacité.

Les combinateurs constituent une des techniques de compilation des langages fonctionnels ! Si on arrive à
transformer une expression arbitraire à l’enchaînement de combinateurs, ceci permet de définir une machine
virtuelle très simple qui réduit cette combinaison au résultat final. Cette machine est très compacte.

Credo religieux no. 15 : Depuis des siècles les théoriciens travaillent pour réduire toute complexité de la
Nature aux combinaisons de formes simples. Un jour on trouvera des combinateurs communs pour spécifier
le chant de Barbara Hendrics, la choucroute Alsacienne, et le débogueur de Microsoft Windows. Mais ceci
probablement ne rendra pas l’Humanité plus heureuse.

A.6.2 Arithmétique de Peano-Church

Nous sommes tous habitués à la présence des nombres dans des programmes. Les nombres sont considérés
comme des objets primitifs, internes, irréductibles, et pour des raisons d’efficacité implantés à un niveau très
bas. Mais sur le plan formel les langages fonctionnels sont capables de modéliser l’arithmétique complète et
minimaliste sans vraiment avoir besoin de connaître la représentation de nombres !

Construirons donc l’arithmétique des nombres entiers qui est basée sur quelques axiomes assez primitifs
de Peano – l’existence d’un objet spécifique, lezéro, et l’existence de la fonctionsuccesseurqui permet de
passer d’un nombre à . . . son successeur (quelle surprise). Ces objets seront considérés commecomplètement
abstraits et opaques. Aucune fonctionarithmétiquene doit demander à notrezérosa carte d’identité. Par
contre, pour tester le modèle et pour afficher quelques résultats, nous allons concrétiser ces abstractions.Le
deuxième but de cet exercice est de montrer que les constructions récursives dans un langage évolué ne
se réduisent pas à de simples appels d’une fonction par elle même !

Alors, le seul moyen de spécifier un nombre dans ce monde – unnuméral de Churchest de le paramétrer
par nos abstractions. Si, disons,nombre représente un nombre légal, il aura une définition de genre

A.6 Intermezzo : exemples fonctionnels très spécifiques 153

nombre s z = ...

oùz ets représentent lezéroet lesuccesseur.
La première définition concerne lemodèlede zéro dans notre espace de nombres, lenombre zéro. Bien

sûr, il ne doit pas dépendre d la fonctionsuccesseur, et nous pouvons écrire

zero s z = z Attention, on changera le nom zero en zer

Le nombreun (ou, de préférenceone pour ne pas mélanger l’Anglais et le Français) est le résultat de
l’application du successeur au zéro, donc la définition suivante est légale :

one s z = s z

et, en fait, nous pouvons «concrétiser» (en faire un objet tangible) un successeur universel, en définissant une
fonctionHaskell

succ n s z = n s (s z)

(Rappelons quesucc n s z peut et doit être lu :(succ n) s z , ou, si on préfère :

succ n = \s z -> n s (s z)

On peut définir d’autres instances concrètes de nombres :

two s z = s (s z)
three s z = s (s (s z))

etc., mais ceci est un peu ennuyeux. Mieux serait de définir

two = succ one
three = succ two
four = succ three

etc., mais cette solution n’est pas tellement plus intéressante. . .

Passons donc aux définitions des opérateurs arithmétiques comme l’addition, multiplication et l’exponentiation,
mais d’abord préciseront comment tester le système et afficher quelque chose. Il suffit de modéliser lezéroet
le successeurpar des objets directement visibles, par exemple

zz = 0
ss = (1 +)

shown n = n ss zz

mais ce n’est pas la seule possibilité. Nous pouvons utiliser le «système unaire» de manipulation des nombres,
comme chez les anciens. Le nombren sera affiché comme une suite den étoiles :

zzz = ""
sss = (’*’ :)
showx n = n sss zzz

(Un méta-commentaire est nécessaire. Le motzero dénote un objet prédéfini enHaskell, et pour tester le
modèle il est préférable de donner un autre nom au numéral de Church correspondant, p. ex.zer . Peut-être
un jour les processeurs de notre langage préféré vont accepter des lettres accentuées !)

L’addition est facile à trouver quand on réalise que la sémantique d’un numéral de Churchn est d’appliquer
n fois son premier argument à son second argument. Ceci implique (ou, au moins, suggère)

add n1 n2 s z = n1 s (n2 s z)

On applique d’abordn2 fois le successeur, et ensuite encoren1 fois, au résultat précédent. Il est trivial
de prouver queadd n zer est égal àn, et quesucc (add n1 n2) ≡ add n1 (succ n2) , ce qui
complète la démonstration.(Essayez de faire cette démonstration formellement).

À présent nous pouvons définir avec joie :three = add two one , four = add two two , five
= add two three etc., mais il est toujours difficile d’aller ainsi très loin. Définissons donc la multiplication
des numéraux de Church, et il nous sera utile de reconnaître que si le type duzéroabstrait esta, alors le type
du successeuresta -> a , et c’estexactementle type d’une application partiellenn succ , où nn est un
numéral quelconque, etsucc – un successeur quelconque.

Alors nn succ est un «super-successeur», un successeur appliquénn fois. À quoi? Bien sûr, à l’argument
manquant. Alors, pour multipliern1 par n2 , nous allons utilisern1 pour appliquer àzéron1 fois le super-
successeur lié àn2 :

154 Introduction à la véritableprogrammation fonctionnelle et à Haskell

mul n1 n2 s z = n1 (n2 s) s z

et nous pouvons définirsix = mul two three , eighteen = mul three six , etc. Notez que ni
l’addition ni la multiplication ne sont pas des fonctions primitivement récursives !Néanmoins l’addition est
définie par l’itération des successeurs, et la multiplication par l’itération des additions.

A.6.3 Nombres de Peano-Church et combinateurs de Curry

Les définitions des opérations introduites ci-dessus : le successeur (modèle), l’addition et la multiplication
peuvent être abrégées grâce au style combinatoire, simplifications des arguments à droite, et l’usage des com-
binateurs standard commeflip , const et la composition(.) . On voit que

zer s z = z ≡ (flip zer) z s = z ou
zer = flip const

Le modèle de 1 est encore plus simple :

(one s) z = s z ≡ one s = s ou
one = id

La simplification de l’addition ne va pas si loin :

add n1 n2 s z = n1 s (n2 s z) ≡ add n1 n2 s z = ((n1 s) . (n2 s)) z
ou
add n1 n2 s = n1 s . n2 s

et l’élimination des n’est pas très trivial (même si possible. Essayez, pensez au combinateursubs) La
simplification du successeur modèle est très simple également :

succ n s z = n s (s z) ≡ (n s) . s ou
succ n s = n s . s

mais une forme alternative :s . n s est vraie aussi, car nous pouvions partir de la définition

succ n s z = s (n s z)

Ces formes deviennent combinatoires instantanément, grâce au combinateursubs . Cependant, la simplifica-
tion de la multiplication est étonnante :

mul n1 n2 s z = n1 (n2 s) z ≡ (n1 . n2) s z ou
mul n1 n2 = n1 . n2

et dans un langage très soutenu nous dirions que dans le monoïde des fonctions la multiplication est la compo-
sition !

A.6.4 L’exponentiation

Pour calculer la puissancenm il faut itérerm fois la multiplication den par soi-même. Le niveau d’abstraction
monte, et, paradoxalement, la définition de simplifie :

pow n m s z = m n s z ou
pow n m = m n

Une dérivationab ovode cette définition n’est pas très difficile, mais elle ne sera pas donnée ici. Observons
seulement que dans la théorie des ensembles la notationAB dénotel’ensemble de toutes les fonctionsB → A.
Donc, le résultat n’est pas accidentel. Observons aussi que pour les ensembles finis le cardinal de cet ensemble
satisfait |B → A| = |A||B|. Ceci peut être prouvé comme suit. Pour tout élémentb de B il existe |A|
possibilités de trouver un élémenta deA et de former une instance de la fonctionB → A, à savoir :b → a.
Mais il y a |B| possibilités de choisirb, donc le nombre total d’instances devient|A||B|.

Si le lecteur a toujours des doutes, donnons une preuve inductive de notre résultat. Vérifions quen0 =
1, n1 = n, etn(m+1) = n · nm. La démonstration utilise la simplification combinatoire sans trop de commen-
taires :

A.7 Exercices 155

pow n zer s ≡ zer n s ≡ s

donc, son agissement surzérodonne 1.

pow n one ≡ pow n id ≡ id n ≡ n

et finalement

pow n (succ m) ≡ succ m n ≡ n . (m n)

Cet exercice montre clairement quelle est la puissance du raisonnement abstrait dans le domaine aussi concret
que l’arithmétique.

A.6.5 Soustraction

Comment décrémenter un numéral de Church? Le problème n’est pas trivial, et sa solution estforcément
inefficace. Notre «théorie» est close, et nous n’avons aucun moyen de passer au prédécesseur d’un nombre.
Mais nous pouvons construire une opération d’incrémentation spécifique qui agit sur despairesd’objets, et qui
sauvegarde l’original, comme ci-dessous :

s2 s (a,b) = (b, s b)

En agissant avec ce sucesseur spécialn fois sur (z,z) on obtient le le nombren concrétisé,avec son
prédécesseur. Voici la définition complète de la décrémentation, avec un peu de simplification des2 :

dec n s z = p where
s2 (_,b) = (b,s b)
(p,q) = n s2 (z,z)

Pour la soustraction il suffit d’itérer l’opérateurdec . Ainsi on doit reconnaître quedec (dec (dec ten))
donne un nombre équivalent àseven . Laissons les détails de la construction au lecteur. Analysez également sa
complexité ; il faut tenir compte que l’opérateurdec est onéreux : la forme(dec n) lancel’incrémentation
n fois.

A.7 Exercices

Q1. Optimiser la procéduretsort , ou au moins analyser en détail sa complexité, et découvrir toutes les
sources d’inefficacité.

R1. Des programmes comme ça sont très fréquents dans la littérature «pédagogique» consacrée à la program-
mation fonctionnelle. On découvre facilement la structure et le sens de l’algorithme. Mais tel quel, il
est très inefficace, même si nous avons déjà effectué une légère optimisation, en construisant la fonction
instree de manière récursive terminale. (La version encore pire aurait la forme

instree [] = Empty
instree (x:xq) = ins x (instree xq)

même si syntaxiquement elle est plus simple).

Une optimisationévidenteconsiste à supprimer la concaténation(++) du flatten . Rappelons que
la concaténation recopie son premier argument ! Avec une variable-tampon on élimine cette création de
copies éphémères, et de plus on transforme la fornction en itérative :

flatten Empty tmp = tmp
flatten (Nd x g d) tmp = flatten g (x : flatten d tmp)

(Il faut ajouter le tampon[] à l’appel deflatten partsort).

Malheureusement la source principale d’inefficacité est ailleurs : Chaque insertion d’un élément dans
l’arbre reconstruit complètement la branche concernée, de la racine, jusqu’à la feuille qui sera insérée.
Dans un langage impératif on aurait modifié physiquement l’arbre en remplaçant le pointeur surEmpty
par la référence de la nouvelle feuille, ce qui n’est pas possible directement ici.

Cependant une solution qui construit la structure d’un seul coup existe, mais elle est suffisamment com-
pliquée pour abandonner sa présentation. (Elle utilise la programmation paresseuse de manière assez
agressive ; trouver le programmearbmin dans le texte).

156 Introduction à la véritableprogrammation fonctionnelle et à Haskell

Q2. Démontrezformellementla validité des opérations arithmétiques sur les numéraux de Church, par exem-
ple la commutativité et l’associativité des additions et des multiplications.

R2. Ah, quel beau sujet d’examen.

Q3. Montrez qu’un véritable langage fonctionnel n’a pas besoin de structures de données, elles peuvent être
construites comme des fermetures.

R3. Présentons ici un exemple. Essayez d’en trouver autres. Voici une collection de définitions un peu
bizarres :

cons a b s = s a b

car x = x const
cdr x = x (flip const)

Définissons, par exemplex = cons 17.0 "Belle Marquise" . La valeur dex n’a aucune représen-
tation visuelle, c’est un objet fonctionnel, opaque. Mais l’information stockée à son intérieur est récupérable.
Voici la réduction de l’appel

car x → cons 17.0 "Belle..." const → const 17.0 "Belle..."
→ 17.0

Vérifiez quecdr marche également, et que structures plus complexes peuvent être composées parcons .

Q4. Quels sont les types principaux de fonctions standard (prédéfinies dans le Prélude Standard) ci-dessous :

flip f x y = f y x

until p f x = if p x then x else until p f (f x)

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

R4. L’analyse des types est importante pour le déboguage, alors considérez cet exercice comme important.
Et ce qui estvraimentimportant c’est le raisonnement, non pas la réponse.

(a) flip prend trois paramètres, et donc son type le plus universel, «amorphe» seraflip :: a
-> b -> c -> d . Mais le premier paramètre est une fonction qui s’applique aux deux autres,
et retourne le résultat qui sera également le résultat duflip . Nous aurons doncf :: c -> b
-> d . Ceci est équivalent àa. Finalement :flip :: (c->b->d)->b->c->d .

(b) Dansuntil la forme(p x) est une condition Booléenne. Surx nous ne savons rien, sauf qu’il
est argument dep et également def . Mais en regardant leformede la définition, sa cohérence, on
découvre que le résultat def x est le même que celui dex . Donc : until :: (a->Bool)
-> (a->a) -> a -> a .

(c) Le résultat retourné parfoldr est le résultat def , qui est une fonction de deux arguments. Mais
son second argument est de même type que son résultat, alorsf :: a -> b -> b .
Le premier argument def , le x appartient à la liste qui est le troisième argument defoldr , donc
foldr :: (a->b->b) -> b -> [a] -> b .

Q5. Quel est le type principal de la fonctionsd :

sd g x l@(y:q) = (g x : l) : map (g y :) (sd g x q)

R5. Toujours le même raisonnement. Trois paramètres, dont le premier est une fonction.sd :: (a->b)
-> a -> [c] -> [d] .

Le résultatg x a le même type quel (ouq). Surx nous ne savons rien, mais le type dey est identique.
Le résultat final doit être une liste, car il est le second argument dumap. On trouve facilement les
contraintes manquantes :c est égal àb, et donc aussi àa. En regardant l’argument gauche du(:) dans
le résultat, on découvre la réponse finalesd :: (a->a) -> a -> [a] -> [[a]] .

Annexe B

Introduction à la programmation en
Haskell (II)

B.1 Surcharge des types

Même des langages qui n’implémentent pas le polymorphisme permettent la surcharge des opérateurs. Par
exemple(+) enC et enPascal sert à ajouter les nombres réels et entiers, et le compilateur sait réagir conven-
ablement dans le cas d’une expression mixte : le fait est reconnu, et l’argument entier est converti en réel, soit
directement si c’est une constante, ou par la coercition : l’expressionn*x est (par exemple) compilée comme
toReal(n)*x . Ceci signifie que la reconnaissance des types est une partie très importante de l’analyse
effectuée par le compilateur.

Il ne faut pas confondre la surcharge, appelée parfois le «polymorphisme ad hoc», et le vrai polymorphisme
(paramétrique). Dans le dernier cas, une fonction est définie totalement indépendamment du type de son
argument, par exemple dans la définition

dupl f x = f x x

la fonctiondupl ignore jusqu’au bout le type dex , et elle «sait» seulement quef est un objet applicable àx .
un tel polymorphisme n’existe pas enC, il peut être simulé à l’aide des templates.

Par contre, la surcharge des opérateurs arithmétiques peut être considéré comme uneabréviation, nous
avons simplement le même nom pour plusieurs functions. Le compilateur transforme le(+) enaddInteger
ouaddReal , etc. Dans un langage typé statiquement commeC++ c’est presque tout. Il n’y a aucune pénalité
d’exécution, car le code compilé contient seulement des fonctions spécifiques (sauf si une fonction est virtuelle,
bien sûr).

En Haskell la situation est plus complexe, à cause de l’absence des déclarations du type. Nous pouvons
définir une fonction qui «hérite» la surcharge, par exemple la puissance :

cube x = x*x*x

Si l’utilisateur, après avoir chargé cette définition tape :cube , le système va naturellement protester, car
il ne sait pas afficher une fonction. Mais, il va dûment répertorier le type de cet objet «cube » comme
Integer -> Integer . PourquoiInteger ? Parce que les objets – non pas des fonctions, mais des
«choses» sans paramètres – qui existent sur le «top-level» de l’interprète – et c’est exactement ce qui a été
compris parHugs – doivent avoir un type précis. Cependant, si on demande le type decube par la directive
:t cube , la réponse sera

cube :: Num a => a->a

lu comme suit :cube est une fonction d’un paramètre qui rend le résultat appartenant au même type que le
paramètreà condition que ce typea appartienne à la classe des nombres(où la multiplication est spécifiée
comme un opérateur surchargé).Numet autres classes seront discutées en détail dans la section suivante, (B.2).
Une restriction particulière deHaskell actuel, fait que le compilateur prend une décision inopinée, et considère
qu’un argument numérique complètement inconnu soit entier. . .

157

158 Introduction à la programmation en Haskell (II)

B.1.1 Surcharge automatique des constantes numériques

Haskell ne prévoit pas de conversion automatique (ceci en général aurait généré des ambiguïtés), mais il existe
une exception. Les constantes numériques entières ou réelles, p. ex. 7 ou 3.1416 ne sont pas compilées
directement, maisforcéesà se comporter comme des données surchargées. Le nombre 7 sera compilé comme
fromInteger 7 , et s’il se trouve dans un contexte flottant, p. ex. si on tape :7*2.5 , on obtient 17.5 sans
problèmes.

Les constantes réellesX se transforment enfromDouble X . Ceci permet enHaskell existence de l’arith-
métique mixte, sans forcer l’utilisateur à placer explicitement les fonctions de conversion.

Il faut avouer que cette méthode n’est pas très efficace, la conversion automatique enC ou Fortran est plus
rapide. Cependant, ces langages ne sont pas polymorphes, et demandent toujours des déclarations explicites,
donc il y a toujours un prix a payer.

B.2 Classes de types

Haskell réalise – à sa manière – un de paradigmes de la programmation orientée-objet, à savoir une surcharge
dynamique, la possibilité de compiler des fonctions en (une certaine) indépendance des types des arguments.
Qu’est-ce le symbole «Num» découvert dans la section précédente? Il dénote le nom d’uneclasse.

Dans des langages à objets connus, commeC++ (ou Smalltalk) il y a une «collusion» entre les notions de
classeet type. EnHaskell ces deux notions sont très différentes.Haskell opère avec desclasses de types. Un
type et jamais une donnée, peut appartenir à une classe. Un type peut d’ailleurs appartenir à plusieurs classes
(et ceci n’a presque rien à voir avec l’héritage multiple classique ; on peut cependant trouver une affinité entre
cette propriété, et plusieurs «interfaces» d’un objet enJava).

Par exemple, les entiers et les flottants (et les rationnels, et les complexes, et tout ce qui vous pouvez définir
dans un cadre arithmétique) appartiennennt à la classe des «nombres»Num. La classe précise quelles sont
les «fonctions virtuelles» susceptibles à agir sur les objets de type qui appartient à la classe donnée. Si nous
voulons définir une méthode surchargée, p. ex.lg , applicable aux entiers et aux chaînes, et qui returne soit la
longueur de la chaîne, soit l’entier lui même, nous écrirons :

class Privée a where
lg :: a -> Integer

et ensuite nous précisons les implantations concrètes, définies dans lesinstancesde la classe définie :

instance Privée Integer where
lg x = x

instance Privée Int where
lg x = toInteger x

instance Privée [a] where
lg x = lng x where

lng [] = 0
lng (_:q) = 1+lng q

Bien sûr, l’exemple n’est pas très sérieux, normalement les fonctions surchargées qui portent le même nom
doivent faire des choses similaires.

Dans le Prélude standard nous trouverons :

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a
fromInt :: Int -> a

où on note la clause(Eq a, Show a) => qui préfixe la déclaration de la classeNum a. Elle signifie
que le type génériquea peut appartenir à la classNum, à condition, qu’il appartienne déjà aux classesShow
(l’existence des fonctions d’affichage ; c’est un accident historique cette restriction, elle n’a pas beaucoup
de sens mathématique) etEq, où on précise la fonction surchargée(==) – l’égalité entre deux structures de
données quelconques.

La classeEq est simple, mais intéressante :

B.2 Classes de types 159

class Eq a where
(==), (/=) :: a -> a -> Bool

x == y = not (x/=y)
x /= y = not (x==y)

On y trouve pas seulement la déclaration de l’égalité et d’inégalité :(/=) , mais aussi deux définitions «con-
crètes» de ces opérateurs, qui visiblement ne peuvent servir à rien, car elles sont cycliques. . .

Mais ellespeuventêtre utiles. Si nous définissons une nouvelle structure de données, par exemple les
nombres complexes définis comme

data Complex = C Double Double

il suffit de préciser l’égalité :

instance Eq Complex where
C x y == C a b = x==a && y==b

et l’inégalité est définiepar défauten accord avec les définitionsdans la classe(plutôt que dans l’instance).
Ainsi, dans la classeNumnous retrouverons les définitions suivantes :

x - y = x + negate y
negate x = 0 - x

ce qui nous permet de définir soit la négation, soit la soustraction, et l’autre nous est fournie automatiquement.
Nous pouvons donc définir

instance Num Complex where
C x y + C a b = C (x+a) (y+b)
C x y * C a b = C (x*a-y*b) (x*b+y*a)

et la soustraction est définie aussi.

B.2.1 Restrictions sur les types

Définissons une autre structure de données, une «fraction rationnelle générique»

data Fract a = R a a

où – intuitivement – nous voudrions queR 7 9 représente la fraction7/9. Mais nous n’avons pas spécifié le
type des fractions commeR Integer Integer , car nous pouvons un jour essayer de construire des frac-
tions à partir des polynômes, sachant que les polynômes admettent l’arithmétique similaire à celle des entiers
(addition, multiplication, division Euclidéenne, PGCD, etc.). Donc, le type des composants reste générique.
Alors la définition des instances aura la forme suivante :

instance Num a => Num (Fract a) where
R x y + R a b = simplifie (R (x*b+y*a) (y*b))

La clauseNum a =>est nécessaire pour informer le compilateur que l’on ne peut assembler les fractions à
partir de n’importe quoi. Le numérateur et le dénominateur doivent être d’un type compatible avec la classe
Num.

Lisez le Prélude Standard de Hugs. Il contient plusieurs dizaines d’exemples de classes et d’instances qui
peuvent vous inspirer.

B.2.2 Classes de constructeurs

Le système de types dans un langage fonctionnel inclut naturellement les types fonctionnels. Si l’expression
f a b appartient au typeDouble , et si la variableb estInteger , l’expressionf a appartiendra au type
Integer->Double . Ceci nous savons déjà.

Mais ainsi les expressionsCouRqui sont lesconstructeursdes typesComplex ouFract appartiennent
aussi aux types spécifiques :

C :: Double -> Double -> Complex
R :: a -> a -> Fract a

160 Introduction à la programmation en Haskell (II)

(on peut les considérer comme des applications partielles) et nous pouvons nous poser la question : a-t-il un
sens préciser des classeset donc, des opérations surchargéespour ces constructeurs? En effet, il existe une
raison. On trouve parfois des opérations similaires au sens qu’elles font «des choses pareilles» pas seulement
indépendamment de type des arguments, mais égalementde leur structuration. Avec le typeComplex il n’y
a rien à faire, mais si le type est paramétré, commeFract – si. Nous pouvons préciser queFract tout court
appartienne à uneclasse de constructeurs.

Autre exemple. Nous connaissons la fonctionmap :

map f [] = []
map f (x:xq) = f x : map f xq

qui applique une fonction à tous les éléments d’une liste. Mais nous pouvons vouloir appliquer une fonctions à
tous les éléments d’un tableau ou d’un arbre, par exemple

data Arbre a = Nil | Noeud a (Arbre a) (Arbre a)

tmap f Nil = Nil
tmap f (Noeud x g d) = Noeud (f x) (tmap f g) (tmap f d)

et il serait utile de pouvoir appeler cette fonction «map» aussi. Ceci est possible enHaskell (avec une légère
modification du nom, une telle fonction est prdéfinie, et s’appellefmap). D’abord on définit la classe :

class Functor f where
fmap :: (a -> b) -> (f a -> f b)

Notez que le type – argument de la classe,f figure dans un contexte(f a) dans le type defmap . Ceci signifie
quef est unconstructeur de types, un moyen de structurer des types composites. Nous pouvons maintenant
déclarer :

instance Functor Arbre where
fmap = tmap

et nous trouvons dans le Prélude la déclaration

instance Functor [] where
fmap = map

Ici la forme[] n’a rien à voir avec une liste vide, la notation est un peu accidentelle !Ceci est unconstructeur
de listes, le type qui aurait pu s’appeler par exemple «List ». Le nom[] est historique, il faut s’habituer, et
de ne pas le confondre avec ladonnée[]

Nous pouvons construire d’autres instances de cette fonctionnelle. Par exemple il est utile de prévoir un type
«peut-être» qui spécifie (avec un balisage) les objets résultants de l’appel d’une fonction qui peut «échouer»,
et rendre «rien». Dans le Prélude nous trouverons :

data Maybe a = Nothing | Just a
deriving (Eq, Ord, Read, Show)

(Pour l’instant acceptez l’existence de la clausederiving . Elle est très utile et elle sera discutée ultérieure-
ment.) Si une fonction «normale» retournex , une fonction étendue, qui peut échouer, retourneJust x (en
cas de succès).

Si nous voulons qu’une fonction appliquée par lemapgénéralisée àNothing ne fait rien, et se comporte
«normalement» dans le cas contraire, nous définissons :

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

Pour le parsing nous aurons besoin d’une autre classe de constructeurs, la classeMonad, qui sera décrite plus
tard.

B.3 Modules 161

B.2.3 Fonctions d’affichage

Tout langage de programmation doit permettre la lecture des données et l’affichage des résultats. Les langages
fonctionnels évitent les effets de bord, traditionnellement associés aux procédures d’entrée et de sortie. Dans
cette section nous allons traiter seulement une partie du problème : la conversion entre des objets quelconques
et leur représentation extérieure, visuelle, concrètement : les chaînes de caractères.

En général le problème est difficile : comment afficher un objet quelconque? La procédureprintf enC
utilise des primitives qui reconstruisent les chaînes depuis des entiers ou des flottants, mais dans les cas plus
complexes, l’utilisateur doit savoir ce qu’il veut. La situation enHaskell est similaire.

Il existe une fonction universelle, surchargéeshow qui transforme son argument en chaîne. Une autre
fonction : shows x s , «affiche» (transforme en chaîne) l’argumentx , et concatène le résultat avec la chaîne
s , ce qui permet d’enchaîner l’affichage de manière plus efficace. Au lieu d’écrireshow x ++ show y
++ show z , on peut écrireshows x (shows y (shows z "")) , ou (shows x . shows y .
shows z) "" – construire descombinateurs d’affichageefficaces qui évitent de recopier les chaînes.

Quelques fonctions de base commeshow, showList , et showsPrec sont définies comme membres
de la classeShow, et les instances deShow pour les caractères, et les nombres sont prédéfinies. La fonction
showsPrec est capable de gérerl’affichage de structures hiérarchiques, avec quelques règles de précédences
et avec l’insertion de parenthèses. Le lecteur doit lire les définitions dans le Prélude.

La fonctionshowsPrec pour des types nouveaux doit être définie par l’utilisateur. Il faut déclarer au
compilateur deHaskell que le type de données soit «présentable» (qu’il appartient àShow, ainsi il profitera
pleinement du polymorphisme des opérations d’affichage.

Il existe également la classeRead, qui spécifie les fonctions de conversion entre les chaînes et des objets
quelconques. En fait la fonctionread constitue un parseur primitif integré dansHaskell. Il est suffisamment
général pour être pratiquement utilisé comme un scanneur lexical. Encore une fois, le lecteur est invité à lire la
documentation du langage.

B.3 Modules

Les langages respectables d’aujourd’hui doivent permettre la séparation de la source d’une grande application
en morceaux :modules, qui communiquent, et peuvent profiter des définitions présentes ailleurs, mais qui
gardent une certaine intégrité, et – par exemple – la possibilité de définir des fonctions privées, invisibles de
l’extérieur, ce qui évite la collision des noms. Bien sûr, pour langage compilé vers un code binaire avec la
génération des applications autonômes, le système doit assurer le traitement indépendant des modules. Chaque
module qui veut utiliser des fonctions, constantes ou types définis ailleurs, doit les explicitementimporter.
Chaque module qui veut rendre visible une partie de ses définitions, lesexporte.

Haskell demande que tout fichier contenant une librairie-source d’entités exportables (fonctions, types. . .)
commence par le mot-clémodule suivi par le nom et la liste de modules/entités exportés, par exemple

module Prelude (
map, (++), concat, filter, head, last, tail, init, null,
length, (!!), foldl, foldl1, scanl, scanl1, foldr, foldr1,
scanr, scanr1, iterate, repeat, replicate, cycle,
...
)

Si la liste est vide, par défaut cela signifie quetous les noms(et leurs définitions) sont exportés. (Un module
qui n’exporte rien ne sert à rien). Par défaut un module ne ré-exporte pas des entités qu’il a importé.

Ensuite nous avons la liste d’importation et les définitions locales. On peut importer un module partielle-
ment, précisant par exemple que quelques définitions sont «cachées». Voici l’entête d’un tel module (en fait
c’est un module utilitaire réel écrit pour gérer differemment les nombres ; toute la classeNumdisparaît et les
opérateurs arithmétiques sont rédéfinis) :

module Math where
import Prelude as Pp hiding ((+),(-),(*),Num,(/),(^),Fractional,
fromDouble,negate,abs,signum,recip,fromInt,fromInteger,Floating,
sin,cos,exp,log
...
)

162 Introduction à la programmation en Haskell (II)

infixr 8 ^
infixl 7 *, /, #, >/
...

En cas de besoin on peut toujours accéder à un objetxxx appartenant au Prélude par la notationPp.xxx .
Le nom du module doit correspondre au nom du fichier dans lequel il se trouve. Les modules peuvent être

réciproquement récursifs.
Nous ne pouvons pas donner l’information complète sur les modules. Il est possible de changer de nom

d’entités importés ou de «qualifier» quelques noms à l’aide du mot-cléqualified , ce qui permet de gérer
mieux les espaces contenant les noms conflictuels.

Il est possible d’exporter partiellement une structure de données : seulement son nom (et les fonctions qui
manipulent ces données), mais sans constructeurs. Ainsi, dans le module qui importe cela, ce type de données
devientabstrait. On ne connaît pas sa structure, on ne peut pas «manuellement» construire ses instances,
seulement utiliser les fonctions importées. Ceci augmente la sécurité de programmation.

Ainsi les fractions rationnelles définies dans le Prélude à l’aide de l’opérateur(:%) : 7:%9 est la fraction
7/9 – peuvent être manipulées, mais l’utilisateur n’a pas le droit de construire, disons,4:%8 ou 3:%(-7) ,
car de telles fractions sont mal simplifiées. Le constructeur(:%) n’est pas exporté, par contre, le Prélude
exporte un autre opérateur,%qui force toujours la simplification de la fraction, qui vérifie que le dénominateur
est différent de zéro, etc.

B.3.1 Clausederiving

Pour quelques procédures surchargées relativement universelles comme l’affichage, l’égalité, ou l’ordre,Haskell
permet d’ajouter un peu d’automatisme, ce qui évite un travail pénible de définition de toutes les instances. Si
nous avons une structure de donnée composite, par exemple

data Value a = Rien | D Double a | A (Value a) | T (Value a) (Value a)

on peut attendre que l’égalité soit définié «naturellement» :Rien==Rien et à rien d’autre, queA x==Ay si
x==y , etc. Les structures comparées doivent être homologues. La clause

data ... deriving Eq

demande à compilateur la construction des fonctions d’égalité et inégalité correspondantes.
On peut aussi dériverShow, Ord , et Read. L’affichage dérivé utilise les noms des constructeurs. Ceci

peut «dévoiler» les constructeurs que nous avons voulu cacher dans un module !
La classeRead est la réalisation d’un petit parseur dans la couche standard deHaskell : elle permet la

lecture de structures de données définies par l’utilisateur.

B.4 Continuations: du fonctionnel à l’impératif

Le lecteur peut – à juste titre – avoir l’impression, que si on élimine des langages impératifs l’évaluation des
expressions, ce qui constitue la couche fonctionnelle, et si on reste avec le flux de contrôle, les branchements,
les boucles, etc., ceci n’a plus rien à voir avec le monde fonctionnel, et que les techniques de compilation
deviennent très asymétriques : un programme impératif estréel, correspond au code assembleur exécuté par le
processeur, tandis que le code fonctionnel, la réduction et l’évaluation d’un graphe qui représente une expres-
sion, force satranslationen code linéaire, impératif.

Cependant le progrès récent dans le domaine de compilation et l’arrivée de nouveaux compilateurs est
partiellement le résultat du progrès dans la compilationfonctionnellequi est beaucoup plus statique, mathéma-
tiquement précise, et facile à comprendre.

Nous avons déjà mentionné le fait qu’une fonction paresseuse peut réaliser une structure de contrôle, un module
de code qui pilote localement l’évaluation d’une ou plusieurs sous-expressions, et ainsi permet de prendre des
décisions sélectives (on n’évalue pas la clauseelsesi la conditionif était vraie et la clausethen reste la seule
en vigueur ; pour la structurecaseune seule branche peut et doit être évaluée).

Or, la sérialisation du code, la notion de séquence, possède sa forme fonctionnelle aussi, et s’appelle lacon-
tinuation . Brièvement, la continuation d’une expression (rappelons que dans le monde fonctionnel l’espression
c’est leseulobjet intéressant) est le «futur» du calcul, ou l’opération qui sera exécutée immédiatement après.
dans l’expressionf(g(x), h(y, x)) qui enHaskell sera écrite comme

B.4 Continuations: du fonctionnel à l’impératif 163

f (g x) (h y x)

La continuation de l’expressiong(x) est l’évaluation deh(y, x) (si l’évaluation des arguments procède de
gauche vers la droite ; enScheme cet ordre n’est pas spécifié) car il faut évaluer le second argument def , et
finalement la continuation deh estf . Ainsi le code sera linéarisé.

La réalisation concrète et détaillée des continuations par le compilateur sera discutée ultérieurement. Ici il
suffit de préciser qu’une telle opération peut être, etestautomatique, et suggérer l’approche suivante :toute
fonction est modifiée, etprend un paramètre supplémentaire. Ce paramètre est justement la continuation,
une fonction d’un argument. Si la fonction originale retournait simplement une valeur, la fonction «continuée»
passe cette valeur à sa continuation. Plus concrètement, au lieu de discuter l’évaluation de(f x) , nous allons
transmuterf en une «fonction continuée»f_cont , telle, que

f_cont x cnt = cnt (f x)

où la fonctioncnt représente la continuation, le futur d’évaluation de(f x) . On peut abstraire «la continua-
tion d’une fonction normale» en définissant :

f_cont = clift1 f

clift1 f x cnt = cnt (f x)

Nous affirmons que

• le processus de construction de fonctions «continuées» : transformation dite CPS :continuation passing
style, peut être automatisé dans la plupart de cas, et

• le code résultant ressemble plutôt à l’assembleur qu’à l’arborescence représentant une expression com-
posite, hiérarchique.

• Son optimisation est beaucoup plus facile.

• Grâce aux continuations on pourra de manière fonctionnelle,et alors simple, lisible et statiquedéfinir
les branchements, structures itératives, voire même des structures de contrôle non-déterministes.

Prenons comme exemple l’évaluation de l’expression
√

x2 + y2. Une définition fonctionnelle classique d’une
fonction qui effectue ce calcul serait

fn x y = sqrt (x*x + y*y)

Rien à ajouter, même si nous pouvons manuellement convertir ce code en postfixe. Supposons néanmoins que
la fonctionsqrt a été transmutée parclift1 en sa forme continuée :sqc = clift1 sqrt , et que nous
avons défini les opérateurs binaires continués également :

clift2 op x y cnt = cnt (op x y)
add = clift2 (+)
mul = clift2 (*)

La fonction continuéefnc peut être définie comme

fnc x y cnt =
mul x x (\a ->
mul y y (\b ->
add a b (\c ->
sqc c cnt)))

La continuation de la première multiplication est le calcul dey*y . Cette opération n’a pas besoin du résultat
a de la multiplication précédente, mais on le garde pour l’avenir. Il sera utilisé paradd . On doit noter une
ressemblance entre l’exemple ci-dessus et les instructions impératives :

a = x*x
b = y*y
c = a+b
resultat = sqrt c

164 Introduction à la programmation en Haskell (II)

En fait, les continuations permettent d’établir un pont entre la programmation fonctionnelle et une machine
à registres. Grâce à elles on peut établir l’ordre d’exécution des opérations (évaluations) dans le programme,
sans imposer cet ordre au niveau du méta-langage. Nous définissons un langage de manière dénotationnelle,
précisons sa syntaxe et sa sémantiquestatiquement, sans jamais aborder le problème du «temps». Mais la
construction des relations «X est la continuation de Y» permet d’enchaîner l’exécution des instructions, et ainsi
nous pouvons créer (partiellement) un langage impératif sans quitter le style fonctionnel.

Les continuations peuvent naturellement être utilisées dans un programme quelconque. Tout enchaînement
d’applications fonctionnelles dans un module peut exploiter cette stratégie. Mais attention : si une expression
normale se transforme en «continuée», c’est-à-dire en fonction qui attend un argument – la continuation, et
si cette continuation est une fonction continuée commemul , le résultat est encore une fois une expression
continuée, un objet fonctionnel. Quand est’ce que le résultatfinal sera enfin récupéré?

La réponse est : à la fin du programme (module ou son fragment) ainsi sérialisé. Il faudra appliquer unecon-
tinuation terminale , par exemple la fonctionid , définie parid x = x , qui récupère le résultat. Naturelle-
ment cet appel de la fonctionid possède aussi une continuation, mais cette continuationpour le programmeur
est implicite : elle peut appartenir à la boucle principale de l’interprète (le dialogue avec l’utilisateur), où le
résultat est affiché. Ou bien, ceci peut être la fin logique du programme qui s’arrête, et sa continuation est une
des procédures du système d’exploitation, par exemple leshellqui fait avec le résultat ce qu’il veut. En tout
cas la chaîne de continuations explicites doit être «cassée» pour voir le résultat (p. ex. numérique), sinontous
les objets crées sont des fonctions.

Ceci n’est pas notre dernière rencontre avec les continuations (sauf si le lecteur lit cet annexe après avoir
assimilé le reste de ces notes).

B.5 Les tableaux

Tout langage sérieux doit permettre la construction de structures composites adressables rapidement : les
vecteurs, même si souvent les listes sont plus commodes pour coder les algorithmes récursifs. Pour pouvoir
utiliser les tableaux enHugs il faut préfixer le fichier contenant le programme parimport Array .

Les tableaux enHaskell sont un peu plus abstraits que dans d’autres langages, et leur usage demande une
certaine expérience. On ne peut pas facilement modifier un élément d’un tableau, et ceci souvent décourage
les débutants.Haskell définit un type génériqueArray a b où a est le type des indices, etb – le type des
valeurs stockées dans le tableau. Les indices peuvent être des entiers, caractères, un type énuméré, etc., – tout
type qui appartient à la classeIx (qui ne sera pas discutée ici).Important : les paires(n, m) sont des indices
légaux, sin etm sont des indices. Ainsi on peut construir des tableaux multi-dimensionnels.

Un tableau normalement est construit d’un coup, à partir d’une liste d’associations par la fonctionarray
:: (a,a) -> [(a,b)] -> Array a b : , par exemple

v = array (1,100) ((1,1) : [(i, i * a!(i-1)) | i <- [2..100]])

ce qui montre l’usage des compréhensions et de la paresse pour construire des tableaux da façon incrémentale.
Bien sûr, à droite, dans la liste des association chaque indice doit apparaître une et une seule fois. On voit aussi
que l’opérateur(!) est utilisé pour indéxer les éléments. La fonctionlistArray demande uniquement
l’intervalle des indices et une liste des éléments, et construit les associations elle-même.

L’absence d’une «instruction» de genreA[k]:=A[k]+1 etc. devient moins gênente si on apprend quelques
astuces du métier, p. ex. l’usage des tableaux cumulatifs. Un tableau enHaskell est stocké avec son paramé-
trage, en utilisant les fonctions commebounds , indices , elems ouassocs on peut récupérer l’intervale
des indices, ou les listes : des indices, des éléments, ou des associations, et de reconstruire avec ces informations
un autre tableau.

L’opérateur infixe(//) :: Array a b -> [(a,b)] -> Array a b prend un tableau et une liste
des associations, et construit un autre tableau, avec les éléments modifiés selon le second argument.

Comme il a été mentionné ci-dessus, la liste des associations qui définit les éléments du tableau ne doit pas
avoir des indices répétés. Mais on peut relaxer cette contrainte. Il faudra donc répondre à la question : qu’est-
ce que l’on met dans l’élément concerné, dont l’indice figure plusieurs fois? La réponse est : oncombineces
éléments en utilisant lafonction d’accumulation.

La fonctionaccumArray :: (b->c->b) -> b -> (a,a) -> [(a,c)] -> Array a b com-
bine (p. ex. ajoute) toutes les contributions venant des indices répétés, en utilisant l’opérateur – le premier

B.6 Exercices 165

argument deaccumArray . Le second argument est la valeur initiale utilisée dans la combinaison. Cette
fonction utilise un opérateur plus simpleaccum qui est une sorte defold pour les tableaux. EnHaskell nous
avons aussi des fonctionnellesmapet ixmap applicables aux tableaux, mais les détails doivent être cherchés
dans la documentation.

B.6 Exercices

Q1. Quelle est la différence entre ces deux définitions :

cube x = x*x*x
cub = \x -> x*x*x

R1. cub a été défini sans paramètres, comme un objet lambda. La restriction monomorphique duHaskell
précise quecub est une fonction du typeInteger->Integer . Le type decube a été discuté en
détails : Num a => a -> a . Mais si on demande le type de\x->x*x*x on obtient de nouveau
Num a => a -> a . Pourquoi?

Q2. Quelle est la réponse du système si après avoir chargé la définition de la classePrivée et de ses in-
stances, on demandelg 67 .

R2. Vérifiez, et analysez la réponse.

Q3. Définir une «file abstraite», une entité qui se comporte comme une file, avec les procédures typiques :
ajouter un élément, enlever un élément (en retournant l’élément et la file restante), et la vérification si la
file est vide. La file doit être générique (ses éléments sont de type quelconque), et la définition se trouve
dans un module qui cache son implantation, p. ex. par une paire de listes, comme discuté dans la section
(4.4).

R3. Ceci apparemment n’a rien de particulièrement intéressant, mais regardez la définition de l’égalité.Elle
est mauvaise !Si pour implanter les files on utilise une liste double, la paire([a,b,c],[d,e]) est
équivalente à([a,b],[d,e,c]) , et à([],[d,e,c,b,a]) etc.

module Queuedef(Queue, qadd, qinit, qvide, qdel)
where

data Queue a = Q [a] [a] deriving (Eq, Show)

qinit () = Q [] []

qvide (Q [] []) = True
qvide _ = False

qadd x (Q a b) = Q (x:a) b

qdel (Q a (x:b)) = (x,Q a b)
qdel (Q [] _) = error "File vide"
qdel (Q l _) = qdel (Q [] (reverse l))

La construction de la vraie opération d’égalité est un joli sujet d’examen.

Q4. La gestion des arbres est bien adapté au codage fonctionnel, les algorithmes typiques sont récursifs.
Malheureusement parfois il faut parcourir plusieurs fois la même structure, ce qui n’est jamais très effi-
cace. Un exemple de ceci est le suivant. Commentparcourant un arbre binaire une seule foisconstruire
un autre arbre binaire dont la structure est identique, mais où les valeurs stockées sur les feuilles sont
replacées toutes par le minimum des valeurs présentes dans l’arbre original.

Apparemment ceci est impossible. Il faut parcourir l’arbre une fois pour récupérer le minimum, et ensuite
lancer lemapgénéralisé pour reconstruir la réponse structurellement.

(Cet exercice est plutôt une devinette, car les chances que les lecteurs trouventseulsla réponse, sont
plutôt dérisoires, même si l’auteur de ces notes rêve qu’un jourun étudiant aura la volonté de lire la
littérature consacrée aux techniques fonctionnelles. . .)

166 Introduction à la programmation en Haskell (II)

R4. La réponse existe grâce à la programmation paresseuse, qui permet de créer des programmes «circu-
laires», avec des références réciproques (croisées) des données. Les références croisées des fonctions
n’ont rien d’inhabituel, il s’agit de la récursivité indirecte. Mais si une donnéeA a besoin deB et
vice-versa, la situation semble inextricable. Pourtant, la solution ci-dessous marche :

data Arb a = Feuille a | Noeud (Arb a) (Arb a)

arbmin arbre = res where
(res,x) = abm arbre x -- dépendance circulaire. Qu’est’ce que le "x"?

abm (Feuille y) x = (Feuille x,y)
abm (Noeud ga dr) x = (Noeud tg td, min xg xd) where

(tg,xg) = abm ga x
(td,xd) = abm dr x

La fonction auxiliaireabmsimultanément calcule le minimum (le second membre du tuple qui deviendra
le «x»), et construit l’arbre, en propageantx jusqu’au niveau des feuilles. Ensuite cex est inseré. Mais
dans la programmation paresseuse l’arbre n’est pas vraiment construit physiquement, le résultatres
contient le générateur de cet arbre, unthunkqui contient la référence àx . Quand nousdemandonsla
valeur deres (p. ex. son affichage), c’est à ce moment-là que lethunkest exécuté, et l’arbre est formé,
avecx correct.

Cet algorithme, publié par Richard Bird, est un exemple canonique de l’usage de la programmation pa-
resseuse pour éviter de traverser plusieurs fois la même structure. Mais il ne faut pas avoir des illusions :
en termes d’usage de mémoire cet algorithme est très onéreux (prolifération desthunks; ceci introduit
également une visible surcharge temporelle).

Q5. Une fonction produit une liste très longue de nombres apparemment aléatoires entre 0 et 1. Écrire un
programme qui calcule l’histogramme de cette liste : un tableaua de 100 éléments dont chaque élément
a!k contient le nombre d’occurrences des nombresx appartenant à l’intervalle entrek/100 et(k+1)/100

R5. Par exemple :

x0=0.17
f x = 4.0*x*(1.0-x)
lst = take 20000 (iterate f x0)

a = accumArray (+) 0 (0,99) [(k,1)|k<-[floor(100.0*x)|x<-lst]]

Annexe C

Intermezzo monadique

C.1 Introduction

Cette section est une digression de nature un peu plus générale, qui touche quelques problèmes universels de
la sémantique des langages de programmation. Son but immédiat est d’expliquer encore une fois l’opérateur
(>>=) , et d’établir un pont entre lui, les continuations, et le non-déterminisme, mais elle estbeaucoup plus
générale et plus importante. Peut-être cette section est la plus importante de tout le cours, pour la cul-
ture générale d’un futur informaticien, indépendamment de la compilation elle même. (c’est pourquoi nous
l’avons mis dans les annexes). Elle référence la section consacrée aux parseurs combinatoires ; en particulier
l’opérateurbind (>>=) est considéré déjà un peu famillier.

Les stratégies de composition fonctionnelle à l’aide de l’opérateur(>>=) sont des exemples desmonades.
Leur discussion sera très superficielle, mais ce concept est une petite révolution paradigmatique dans le monde
de programmation fonctionnelle, et il a influencée énormément le domaine de la programmation logique, et les
stratégies de compilation. Selon l’opinion personnelle de l’auteur de ces notes, les personnes qui ignorent les
monades n’ont pas le droit d’affirmer qu’elles connaissent (ou qu’elles enseignent) la programmationfonction-
nelle.

Superficiellement la programmation fonctionnelle est très proche des mathématiques : on a quelques objets
formels (les valeurs appartenant à des types spécifiques), et on en construit d’autres, en appliquant des fonc-
tions. Mais un ordinateur est une créature moins mathématique. Ilfait quelque chose, et nous voulons à présent
formaliser ce «travail».

Introduisons donc un concept très général, celui de l’activité, ou – si on le veut – duprogrammeabstrait. En
anglais on emploie le mot “computation” dans ce contexte, et nous pouvons essayer d’utiliser le mot «calcul».
Unemonadeest un constructeur de types de données, qui transforme unevaleurquelconque en calcul. Le cas
le plus simple des monades est la Monade Identité, quine fait rienavec la valeur, qui la retourne telle quelle.
Unedonnée quelconque, ou plutôt untype(c’est à dire un ensemble de données) quelconque appartient à ce
monde monadique trivial.

Si le lecteur ne sait toujours pas du tout ce que c’est une monade (dans le contexte trivial), il voudra lire le
Bourgeois gentilhommede Molière, et en particulier la discussion du concept deprose.

Oui, la programmation fonctionnelle est prosaïque. . . Un programme fonctionnel est une fonction qui
s’applique à une valeur (elle peut être multiple), et qui est formée par la composition, ou l’enchaînement des
fonctions plus simples. Les fonctions s’enchaînent comme d’habitude,x → f(x) → g(f(x)) ≡ (f.g)(x) →
. . .. Il n’y a rien d’autre. Même les structures de contrôle, typeif-then-elseconceptuellement sont des fonc-
tions1, mais paresseuses, comme il a été déjà dit :

ifThenElse True oui _ = oui
ifThenElse False _ non = non

Pour finaliser la partie triviale de l’exposé du monde monadique :

• Un calcul est une valeur. Une valeur est un calcul.

1enClean if est implémenté comme une fonction, ce qui implique que l’usage des «gardes» est plus efficace !

167

168 Intermezzo monadique

• Donc, la création d’un calcul à partir d’une valeur, est une fonction «normale», qui transforme valeurs
en valeurs. Le seul «travail» est l’application fonctionnelle. Donc –

• Le manipulateur qui permet d’enchaîner les calculs est cette l’application fonctionnelle («normale»), et
les compositions des fonctions permettent de présenter l’enchaînement des applications de manière un
peu plus abstraite :f(g(x))→ (f.g)(x).

C.1.1 Et les monades moins triviales?

En voici une liste qui est loin d’épuiser le sujet :

1. Un calcul peut déclencher des exceptions (ou erreurs), par exemple on peut diviser par zéro. Qu’est-ce
passe-t-il alors? En tout cas, si le «résultat» d’un tel calcul est l’argument d’une autre fonction arithmé-
tique, celle-ci ne peut faire rien de raisonnable, elle peut éventuellement propager l’erreur.

On peut dire : cette fonction ne sera jamais appelée, car «le système» quand il découvre une erreur il
abandonne l’expression arithmétique, et branche sur un chemin de récupération. Mais comment? Pour un
constructeur de compilateurs il n’ya pas da magie, nousdevonspouvoir gérér un tel contexte nous mêmes.
Un calcul sera ici une expression «conditionnelle», soit «normale», soit «anormale», exceptionnelle (ne
pas confondre avec la conditionnelle standard !).

2. Nous voulons tracer l’exécution, forcer le compilateur à ajouter à une expression un message diagnos-
tique qui contient le nom de fonction appelée, les arguments et le résultat. Le calcul doit combiner les
valeurs et les messages.

3. Nous voulons faire lebenchmarkingdu programme. Pour chaque opérateur appelé, un compteur global
est incréménté, et à la fin nous pouvons savoir combien d’opérations ont eu lieu. Le calcul est la valeur
combinée avecl’opération de changement d’état (incrémentation d’un compteur).

Cette monade – la transformation d’état – est très importante et aborde plusieurs questions d’interfaçage.
Les fenêtres, buffers, etc., tout ceci a besoin de la notion d’état qui n’existe pas en mathématiques pures.

4. Nous voulons implanter et exploiter la stratégie/style CPS. Un calcul n’est pas une valeur, mais une
«valeur continuée», un objet fonctionnel dont l’argument est la fonction – continuation qui récupère la
valeur en question.

5. Si notre programme lit ou écrit des informations sur les flots extérieurs (fichiers), ces opérations con-
stituent des «effets de bord» dans les langages impératifs. Nous définirons un calcul approprié qui per-
met de parler de I/O sans quitter le monde pur de la programmation fonctionnelle. Lamonade I/O est
prédéfinie, et elle est très intimement liée avec la monade (générale) de transformateurs des états.

6. Dans la programmation logique une expression peut retourner plusieurs valeurs (plusieurs réponses à
une question). Nous pouvons utiliser les listes paresseuses pour stocker ces réponses. Un calcul ici
– la monade non-déterministe – est un moyen de récupérer ces réponses et de combiner ensemble des
procédures non-déterministes.

C.1.2 Monades arbitraires et combinateurs

Cette section est générique, universelle, indépendante des détails. Nous avons dit qu’une monade est un con-
structeur de types de données, équipé, bien sûr, d’un certain nombre de fonctions de traitement.Mais ces
fonctions sont très générales. Les monades ne permettront de résoudre aucun problème concret, seule-
ment de le structurer. Imaginons donc, que pour les valeurs de typea il existe un moyen de construire un
nouveau typeT a, parametré para, qui représente lecalcul qui peut fournir une valeur de typea.

La lettreT est ici purement symbolique ; nous auronsplusieurs types monadiques différents, parametrés
par plusieurs types de base. Il y aura des monades privées, construites par nous même, comme la monade du
parsing, et les monades-système, comme la monade I/O (entrées et sorties).

La fonction générique fondamentale qui «injecte» une valeur dans un calcul, c’est-à-dire qui définit un
calcul susceptible de rendre cette valeur, est la fonctionreturn . Pour la monade trivialereturn x = x ,
ou return = id . Dans le cas général le type de cette fonction est

C.1 Introduction 169

return :: a -> T a

Il est utile d’ajouter à l’ensemble d’opérations primitives qui concernent les monades aussi la fonctionfail
de typefail :: String -> T a qui symbolise l’échec d’un calcul. L’argument-chaîne peut servir à
transmettre un message diagnostique.

Le combinateur principal permettant d’enchaîner les calculs est l’opérateurbind : (>>=) . Son type prin-
cipal est :

(>>=) :: T a -> (a -> T b) -> T b

c’est-à-dire, quem >>= f possède l’interprétation suivante :

• Le calculmest effectué. Il rend (normalement) une valeur, disonsx . (Dans le cas nondéterministe «une»
valeur ici signifieune valeur quelconque; le bind doit les récupérer toutes).

• La fonctionf est appliquée àx , et produit – non pas une valeur, maisun autre calcul. les calculs mènent
aux calculs, qui mènent aux calculs, qui. . . On ne sort pas si facilement du monde monadique quand on
y entre une fois.

(Pour la monade triviale :m >>= f ≡ f m .) En général, si on «plonge» dans le monde des objets et fonctions
monadiques, on y reste,tout est monadique, et pour sortir de la chaîne composée parbind il faut faire une
opération spéciale, qui pour chaque monade peut être très différente. Pour la monade triviale on ne fait rien ;
pour les parseurs on les applique à un flot. Pour la monade IO qui décrit le système des entrées/sorties en
Haskell il n’y a pas d’issue ! (sauf quelques extensions sémi-légales, déconseillées aux débutants. Ceci ne
doit pas empêcher le lecteur de dormir. La monade I/O représente un «programme principal», et personne n’est
malheureux à cause du fait que l’on ne sort pas du programme principal). Pour la monade non-déterministe la
sortie est ambiguë. . . Nous y reviendrons.

Pour un type monadiqueT a il sera souvent utile de disposer d’une fonction surchargéefmap qui applique
une fonction «normale» à tous les éléments d’une structure, et reconstruit une structure conforme. Rappelons
que fmap généralise la fonctionmap définie pour les listes, et que la surcharge est spécifiée par la classe
Functor .

La forme syntaxique souvent présente dans des programmes monadiques est

m >>= \x -> ... faire qqchose avec x return uneValeur

Parfois on n’a pas besoin dex . Il existe une version tronquée debind, l’opérateur(>>) que nous allons appeler
suite (ou ensuite; en anglais il est parfois appelé :then, mais ce nom risque de provoquer des malentendus.
Son type est

(>>) :: T a -> T b -> T b

c’est-à-dire : prendre deux calculs, un après l’autre, et les combiner en un seul calcul composite. Le type du
résultat est le type du second argument.

Les monades sont universelles, surchargées, donc elles sont réalisées enHaskell par une classe, la classe
des constructeurs :Monad. Voici sa déclaration :

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
fail :: String -> m a

-- Minimum à impléménter : (>>=), return. Le reste, par défaut :
p >> q = p >>= \ _ -> q
fail s = error s

À présent nous pouvons construire quelques instances, implémenterbind etc., et définir aussi desfonctions
spécifiquespour chaque type monadique, les «vrais» acteurs dans le programme, ceux qui «font» quelque
chose d’intéressant.

170 Intermezzo monadique

C.2 Exemples de monades non-triviales

Voici encore une fois une collection de monades populaires, qui représentent des «calculs» très divers. Les
détails seront élaborés dans des sous-sections.

Il faut d’abord avouer que les monadessont spécifiquesà la programmation fonctionnelle. EnC++ on
peut les implanter – en principe, mais elles seront redondantes. MaisC++ est un langage «impur», avec une
sémantique qui est plus intuitive que formelle, avec beaucoup de «bricolage» de bas niveau.

Nous avons décidé de présenter ce cours dans le cadre fonctionnelparce que la programmation fonction-
nelle est simple, bien structurée, et formalisable. Les programmes sont faciles à analyser (et à déboguer), et
grâce aux fonctions d’ordre supérieur et le polymorphisme, ils sont très compacts. Mais on peut craindre, que
les langages fonctionnelles sont plutôt limités, les concepts comme affectation des variables ou les branche-
ments — tout ce qui appartient à la couche inéluctable de la programmation de bas niveau, et donc doit être
traité par un cours de compilation — restent en dehors. Ceci est une impression erronée. À l’envers, nous
pouvons dans le cadre fonctionnel découvrir le «sens» logique des concepts comme les branchements, ou les
effets de bord liés aux opérations d’entrée-sortie. Les monades sont ici très utiles.

Il y a des monades pour le parallélisme. Nous connaissons déjà les monades du parsing et dans une section
ultérieure nous allons décrire le système I/O monadique deHaskell. Les variables «mutables» (p. ex. les
tableaux modifiables) s’expriment aussi par les monades. La connaissance de cette partie de la sémantique des
langages de programation est devenue presque incontournable.

Enfin, nous pouvons avoir besoin d’une fonction d’«aplatissement» des structures monadiques. Si une
fonction construit l’objet monadique de typeT a d’une valeur appartenant au typea, on peut imaginer son
application à un objet quiest déjà monadique. On obtient quelque chose commeT (T a) pour son type,
et il faut réduire le résultat au typeT a de nouveau. Ceci sera très utile dans le cas de listes – la monade
non-déterministe.

C.2.1 Exceptions

Le premier cas non-trivial de monades est la monade – disons –Peut-êtrequi permet de définir les erreurs, ou
les exceptions. (Présentées de manière très simpliste ! Les vraies exceptions sont plus riches.)

La programmation fonctionnelle classique semble triviale si tout va bien, mais si on demande1/0, ou
sqrt(-4.6) (dans le domaine des réels), ou la tête d’une liste vide, etc. – qu’est-ce passe-t-il? On peut
toujours dire : «Ça bombe», mais ceci est une non-réponse. Il est évident, qu’en construisant un compilateur il
faut savoir répondre constructivement à une telle question. Que cela bombe, pourquoi pas, mais c’est à nous de
définir l’explosif, sa portée, et les moyens de désamorçage. Un code qui n’est pas capable de gérer les erreurs
est mortellement dangereux !

Credo religieux no. 16 : Un programmeur lambda peut croire en démons ou dieux qui se mêlent dans ses
affaires et qui prennent les décisions dans des situations inextricables. Un concepteur et réalisateur des compi-
lateurs et/ou des interprètes doit être 99.9% athée. Pourquoi pas à 100%? Parce que la «magie» des opérations
primitives, et l’architecture physique du processeur restent toujours là. Mais ces opérations doivent être vrai-
ment primitives, et sûres.

Notre «calcul» sera défini par le typeMaybe (prédéfini) :

data Maybe a = Just a | Nothing
deriving (Eq, Ord, Read, Show)

La transformation d’une valeur en calcul a la forme

return x = Just x

N’oublions pas, que cette définition doit avoir lieu dans une instance de la classeMonad :

instance Monad Maybe where
return = Just
...

L’enchaînement, c’est à dire la généralisation de l’application, est plus élaborée :

Just x >>= k = k x
Nothing >>= k = Nothing
fail s = Nothing

C.2 Exemples de monades non-triviales 171

et il nous reste d’ajouter l’amorceur qui sera déclenché en cas de besoin. On ne permettra jamais que la couche
magique, celle de la machine de plus bas niveau, prenne cette décision, doncnotreopérateur de division doit
vérifier le diviseur avant d’essayer la division primitive. Six et y sont des calculs, etprimDiv – l’opération
de division primitive (magique), la division sera (par exemple) définie comme

x / y = x >>= \a ->
y >>= \b ->
if b/=0 then return (a/b)

else fail

Bien sûr, on peut imaginer l’élargissement de ce système, par exemple l’introduction des paramètres qui
discriminent entre de différents cas de «rien», ce qui permettra d’enrichir les messages diagnostiques, ou
définir plusieurs classes d’exceptions. Ce système permet également de désamorcer la bombe, d’intercepter
l’exception et de la transformer en une autre valeur. C’est ainsi que les formes syntaxiques de genre

try
{ calcul dangereux }

with
excpt1 -> secours1
excpt2 -> secours2
...

peuvent être réalisées. (Ceci n’est pas un programmeHaskell valide !) Si le calcul se termine bien, la valeur
monadique(Just v) est retournée, sinontry neutralise la bombe en appelant les secouristes. L’opération
try est capable de briser le cercle enchanté d’enchaînement monadique.

Ce qui est le plus important ici est le remplacementde toute application fonctionnelle normale(f x) , sauf
– naturellement – dans le cas dutry – par(x >>= f) (si x est déjà un calcul ; au début on lancereturn
z pour créer le premier calcul depuis la valeur initialez).

En fait, le typeMaybe est aussi unFunctor . Voici la définition dans le Prélude :

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

Le bindet fmap sont très liés, et ceci n’est pas un accident. Cette monade est presque fonctionnelle pure, et la
suite(>>) n’a pas beaucoup de sens.

C.2.2 Monade non-déterministe

Cette fois le calcul correspond à un ensemble (ordonné !) de valeurs, qui intuitivement représente le choix
parmi eux. L’implantation réaliste dans des cas sérieux, où le programme peut générer des millions d’alternatives
(traitées incrémentalement) n’est possible qu’avec un langage paresseux, mais si on le choix entre 10 – 100 pos-
sibilités, un langage strict convient également. La monade en question peut être définie par

type Calcul a = [a]

L’enchaînement des calculs définies de cette manière nous est déjà connu. Chaque valeur alternative élémen-
taire soumise à une nouvelle transformation génère une nouvelle liste de possibilités. Donc, globalement, la
valeur monadique non-déterministe (la liste) est d’abord «mappée» par la fonction de transformation, et ensuite
la liste de listes est aplatie.

fail _ = []
return x = [x] – Une seule possibilité
[] >>= f = []
(x:q) >>= f = f x ++ (q >>= f)

ou, plus simplement :((>>=) = concat . map) , et le monde de la programmation non-déterministe
(au niveau des données) est à notre disposition. Cependant ni les monades ni la programmation paresseuse ne
peuvent nous enseigner àpenser de manière non-déterministe, de formuler nos problèmes calculatoires de cette
façon. N’oubliez pas de lire les exercices de ce chapitre.

Répétons : pour faire un programme qui «fait» quelque chose, il faut programmer cette action, définir des
fonctions spécifiques. Les monades apportent «de la colle» pour assembler des programmes plus grands. Dans

172 Intermezzo monadique

le contexte de nos opérations non-déterministes, là où un programme peut rendre une réponse parmi deux, nous
allons concaténer les deux résultats.

Exemple.
Le prédicat d’insertion non-déterministe enProlog, qui permet de mettre un objet dans une liste sur n’importe
quelle position, est défini comme

ndins(X,L,[X|L]).
ndins(X,[A|Q],[A|R]) :- ndins(X,Q,R).

L’appelndins(a,[b,c,d],R). doit engendrer :[R=[a,b,c,d]; R=[b,a,c,d]; R=[b,c,a,d];
R=[b,c,d,a]; . La traduction «aveugle» et complètement erronée deProlog enHaskell se réduit au change-
ment de syntaxe :

ndins x l = (x:l)
ndins x (a:q) = a : ndins x q

Mais les deux clauses ne s’excluent pas, elles sont réellement alternatives coexistantes. On doit donc
concaténer les résultats :

ndins x l@(a:q) = (x:l) ++ (a : ndins x q)

C’est toujours faux !

• La valeur(x:l) estune réponse, et non pas un objet monadique (réponse multiple). Il faut la remplacer
parreturn (x:l) .

• L’opération(a : arg2) est «normale», et demande que arg2 soit une valeur standard, et non pas un
objet monadique, ce qui est le cas ici, puisque c’est le résultat dundins . Il faut utiliserbind, et ne pas
oublier de «monadiser» le résultat.

Donc, enfin, on obtient :

ndins x l@(a:q) = return (x:l) ++ ((ndins x q) >>=(\g -> return (a:g)))
ndins x [] = return [x]

où nous avons complété la définition par la clause manquante. (EnProlog elle est redondante, car la première
et seulement la première clause produit un résultat. EnHaskell le filtrage échoue et provoque une erreur).

Le reste est l’optimisation. On sait que[a]++b ≡ a:b . On sait aussi que lebind peut être formulée par
map :

l >>= f = concat (map f l)

(Exercice :Prouvez-le). La fonctionconcat aplâti la liste :[[a,b], [c],[d,e,f]] → [a,b,c,d,e,f] .
Mais la construction

concat (map (\g -> [(a:g)]) (ndins x q))

d’abord ajoute les crochets internes, pour ensuite les enlever, ce qui est équivalent à

map (\g -> (a:g)) (ndins x q)

Et finalement

ndins x l@(a:q) = (x:l) : map (a:) (ndins x q)
ndins x [] = [[x]]

ou, si on veut :

ndins x l = (x:l) : case l of
[] -> []
(a:q) -> map (a:) (ndins x q)

Avec l’insertion non-déterministe nous pouvons générer la liste de toutes les permutations des éléments d’une
liste-source. l’algorithme est le suivant : on enlève la tête, on trouve toutes les permutations des éléments
restants, et pour chaque résultat on réinsère la tête sur toutes les positions possibles. EnProlog nous aurions

C.2 Exemples de monades non-triviales 173

perm([],[]).
perm([X|P],R):-perm(P,L),ndins(X,L,R).

Voici la traduction aveugle, syntaxique :

perm [] = []
perm (x:p) = ndins x (perm p)

Et la vérité :

perm l@(a:q) = (perm q) >>= ndins a
perm [] = return []

où il ne faut pas confondre[] et return[] !
Les exercices contiennent d’autres exemples, et il en reste encore beaucoup pour l’examen. . .

C.2.3 Monade du tracing

Nous avons proposé un exercice : ajouter à notre machine virtuelle à pile un débogueur qui dûment affiche les
opérations exécutées. Ceci est une technique assez simple a réaliser dans un programme impératif quelconque.
Après chaque instruction on ajoute une commande d’affichage qui peut répertorier les valeurs des variables
locales, arguments, etc. Cette technique est simple et utilisée, même s’il s’agit du bricolage.

Comment le réaliser dans un programme fonctionnel? Comment ajouter une option de déboguagedans une
expression? Les usagers duLisp etc. connaissent la réponse : le supportruntime (l’ensemble des primitifs
de gestion de mémoire et autres ressources pendant l’exécution du programme), peut brancher la magie de
déboguage. Par exemple on exécute(debug fun1 fun2 fun3) , et l’interprète change son mode interne
d’évaluation – chaque appel àfun1 , fun2 ou à fun3 est intercepté, et la machine déclenche une activité
accessoire, un effet de bord se produit – le message est affiché. On n’a pas besoin de changer le programme !

Mais alors comment ce dispositif a-t-il été réalisé? L’implantation la plus primitive consiste àrédéfinir les
fonctions tracées, ce qui peut être fait manuellement. Par exemple sifun1 est une fonction de deux arguments,
nous pouvons écrire enScheme

(define old_fun1 fun1)
(define (fun1 x y)

(display "Fun1 appelée avec arguments ")
(display x) (display " et ") (display y) (newline)
(let ((res (oldfun x y)))

(display "Résultat de Fun1 : ") (display res)
res)

))

Une telle manipulation peut être largement automatisée par quelques macros appropriées. Ceci est plus difficile
dans un langage typé, et semble impossible dans un langage fonctionnel pur ou aucune possibilité de mettre
(display ...) n’existe.

Les monades suggèrent une solution fonctionnelle et bien structurée. On définit

type Calcul a = (a,String)
return x = (x,"")

Le calcul est donc une paire qui contient la valeur, mais qui y associe une chaîne diagnostique. Toute fonction
conforme avec le protocole de l’évaluation tracée, peut ajouter sa contribution à la chaîne finale, si elle est
enchaînée par

(x,msg) >>= fun = (y,msg ++ suiv)
where (y,suiv) = fun x

et pour la bonheur totale nous pouvons ajouter une fonction qui transforme une simple chaîne diagnostique ou
autre en monade

out x = ((),x)

174 Intermezzo monadique

en injectant une valeur nulle. (Ceci doit rappeler le parseurposit qui construisait une valeur artificielle à
partir du flot d’entrée, mais sans le consommer – le parseur récupérait seulement l’information positionnelle).

Et, encore une fois :Les monades ne fournissent seules aucun mécanisme de traçage !elles permettent
à peine à l’utilisateur de structurer son programme de manière non-triviale, en exploitant la généricité des
fonctions d’ordre supérieur.

Bien sûr, il nous reste de faire le «lifting» des opérations «normales», qui au lieu de produire une simple
valeur, créent les paires monadiques, en ajoutant au résultat le message approprié. Par exemple

out (shows "J’applique la fonction FUN à " . show xx)
>>= return(fun xx)

Ce qui est fort intéressant et même étonnant, est la possibilité de construire la chaîne d’affichage à l’envers, en
concaténantsuiv ++ msg à la place de la construction ci-dessus. Essayez de le faire dans un programme
impératif. . .

Une remarque importante : une telle stratégie du tracing convient bien à la programmation paresseuse ;
si le «programme principal» n’est rien d’autre que l’affichage de la chaîne tracée, cette chaîne sera construite
de manière incrémentale, et affichée lors du déroulement du programme ; un programme strict aurait d’abord
empilé tout dans une zone interne de stockage, ce qui pourrait déborder la mémoire.Le traçage impératif est
vraiment différent.

Que cela a-t-il à voir avec la compilation?La réponse est immédiate : Notre compilateur peut être parametré
par des options de déboguage, et ces options modifieront les définitions monadiques de(>>=) effectueront le
lifting de quelques fonctions, etc., maisla structure du code compilé restera globalement la même.

D’autre part, ce mécanisme peut être utilisé aussi pour ajouter le traçage à une machine virtuelle. Une
autre solution monadique du problème de traçage serait d’imbriquer le programme dans la monade IO qui sera
dsicutée prochaînement.

C.2.4 États et transformateurs

Cette monade est d’une très grande importance, car elle nous approche de la programmation impérative, clas-
sique, avec les «effets de bord» et la sérialisation des instructions. Elle est également indispensable pour la
discussion des parseurs, générateurs du code, etc.

Rappelons-nous la définition de la machine virtuelle à pile, et la structure du code interprété. UnCodeItem
était un objet, une donnée qui cachait à l’intérieur un objet fonctionnel, qui agissait sur les piles de données
et des retours, et éventuellement sur l’environnement. Nous avons mentionné que la structure de la machine
virtuelle : la gestion des piles etc. resterait la même si on codait tout en un langage impératif, mais dans ce
cas les piles et le tableau-environnement feraient partie d’un étatglobal du système, et ces données globales
auraient été soumises aux modifications par des effets de bord.

Ceci suggère l’approche suivante à l’émulation de la programmation impérative par un programme fonc-
tionnel. Le calcul est untransformateur des états. Dans un programme impératif l’état est une notion globale,
implicite. Dans un programme fonctionnel il est unobjetexplicit, une donnée.

Attention ! Chacun peut faire ses propres monades et son modèle d’état, comme nous l’avons fait avec les
parseurs. Mais sur le plan pratique l’efficacité de quelques monades est basée sur le fait que l’état correspondant
est implémenté comme primitif, et optimisé par le compilateur. C’est le cas de la monade IO (entrées/sorties).

Chaque valeur est combinée avec l’état du système. Chaque fonction appliquée à une valeur fait quelque
chose avec l’état, et retourne la nouvelle valeur-résultat, ainsi que le nouvel état. En fait,le calcul lui-même fait
quelque chose avec l’état, la valeurde la monade triviale, une simple donnée, se transforme en un objet actif.
Notre «calcul» peut finalement «faire» quelque chose. Le type monadique correspondant peut être spécifié
comme

type T a = State -> (a,State)

oùState est un type qui symbolise l’état. (Il peut être très varié ; les états utiles pour le parsing : flot d’entrée,
éventuellement l’inrmation positionnelle, et les états-compteurs utilisés pour lebenchmarking: compteurs,
sont très différents.) Ce type monadique est assez loin de ce que nous considérons comme une «valeur». Même
en exécutant une opération arithmétique, par exemple l’addition de deux nombres, ceci est une construction
fonctionnelle : deux fonctions produisent une troisième – le résultat.Ce n’est qu’applicant ce résultat à un
état, que l’on récupère la valeur résultante et l’état final !

C.2 Exemples de monades non-triviales 175

La fonctionfail dans le cas général n’existe pas, c’est une exception. On peut – selon le cas – prévoir
un état «erreur» spécial, ou déclencher une erreur-système, ou, si cette monade est embarquée dans une autre,
comme nos parseurs qui combinent la transformation d’état (consommation du flux) avec le non-déterminisme
(réponses multiples) – on peut propager l’échec vers cette dernière.

La fonctionreturn est évidente, on retourne une valeur et on ne touche pas l’état :

return x = \st -> (x,st)

Le combinateurbind est fort intéressant. Ici l’état peut changer deux fois, d’abord comme le résultat du
premier argument de(>>=) , et ensuite par la fonction qui s’applique au premier résultat. Voici le combinateur
en question :

m >>= f = (\s_in -> let (x,s_int) = m s_in
(y,s_fin) = (f x) s_int

in (y,s_fin)

Le paramètres_in symbolise l’état initial, les autres sont : intermédiaire et final. Le combinateurbind
peut être un peu simplifié, la dernière clause danslet est redondante, nous voulions visualiser explicitement
l’enchaînement, en montrant la transmission des valeurs. Ceci doit être comparé avec le changement du flux
d’entrée par la composition des parseurs.

Pour donner un simple exemple, construisons un programme pour lebenchmarking. L’exécution (appli-
cation) de toute fonction incrémente un compteur spécial de 1. À la fin nous pouvons récupérer le compteur
et évaluer pratiquement la complexité d’un programme en termes du nombre d’opérations. L’état est donc un
entier – la valeur du compteur.

type State = Integer – Le compteur
type Calcul a = State -> (a,State)
return x = \t -> (x,t) – Ne change pas l’état
tick = \t -> ((),t+1) – "Tick !" sans retour de valeur

où la dernière fonction devra être incorporée dans l’ensemble des fonctions de base du système. La fonction
tick joue un rôle un peu similaire à la fonctionposit dans le monde des parseurs – elle récupère une
propriété de l’état. Mais ici cette propriété n’est pas transformée en valeur. Pour cela nous pouvons avoir un
autre combinateur :

time = \t -> (t,t)

Les fonctions de base, les opérateurs arithmétiques, manipulateurs des listes, et toute cette panoplie présente
dans un programme typique doit subir un «lifting», cartoute fonction typique doit maintenant gérer l’état.
L’opérateur(>>=) ne fait pas de miracles, il permet seulement d’enchaîner les calculs, et de «cacher» la
gestion du compteur. De même, l’opérateur(>>=) dans le domaine des parseurs cache la gestion du flux
d’entrée ; la définition du parseur devient plus abstraite et ressemble plus à une production syntaxique, c’est
tout.

Dans l’exemple ci-dessus, si dans le formalisme standard, une fonctionf agit surx et produity , le lifting
dey = f x est

y = tick >> return(f x)

si à cet instant-là on n’a pas besoin de la valeur du compteur.

C.2.5 Monade CPS

Dans cette section nous allons traiter leContinuation Passing Style. Nous avons déjà mentionné les continua-
tions – le concept qui permet de répondre à la question : «qu’est-ce qu’on fait après avoir terminé l’évaluation
en cours». L’affinité et la ressemblance entre les continuations CPS classiques – les relais des fonctions et la
passation des résultats, – et l’enchaînement typique pour les compositions monadiques, est très, très grande. Ce
problème est particulièrement important, car les continuations nous donnent le moyen de formaliser les struc-
tures de contrôle impératives (branchements) et permettent leur compilation sans sortir du cadre fonctionnel.

Mieux encore, dans quelques langages commeScheme, même si les continuations restent normalement in-
visibles (implicites), comme dans d’autres langages de programmation, il existe un objet fonctionnel :call/cc

176 Intermezzo monadique

(ou call-with-current-continuation), qui permet d’«attrapper» la continuation courante, le futur
contenanttoutesles actions qui devraient être exécutées par la suite (au moment de l’appel decall/cc), et
donner à l’utilisateur la possibilité de relancer le système à partir de ce «moment».

Ceci permet d’implémenter les co-procédures et le processus parallèles, et aussi lecontrol backtracking–
un autre visage du non-déterminisme logique : la possibilité de effectuer plusieurs actions alternatives, et non
pas seulement rendre une réponse (valeur) multiple. Mais cette problématique ne sera pas discutée en cours,
elle est trop complexe.

Le rapport entre le CPS et les monades est spécifié par les clauses suivantes.

• Pendant l’exécution du programme tout objet (valeur) généré par une fonction «attend son consomma-
teur». Nous pouvons noter cela comme

return x = \cnt -> (cnt x)

où la fonction dénotée ici par le paramètrecnt consomme la valeur, et produit uneRéponse . Ce qui
peut être uneRéponse sera commenté un peu plus tard (ceci peut être, bien sûr, une valeur quelconque.
La continuation finale peut être le combinateurid qui sort de la chaîne monadique.) Voici donc le type
monadique :

type Calcul a = (a -> Réponse) -> Réponse

Encore une fois : une valeur initiale est injectée dans le programme, et se transforme en Calcul quand on
lui attribue sa continuation. Donc, le typeCalcul est fonctionnel. Ce qui peut paraître un peu bizarre
est le fait quedansla section monadique du programme on ne récupère jamais une valeur de type injecté
par return , car toute fonction est continuée ! Les valeurs construites par des fonctions continuées
défilent à travers la chaîne de continuations, mais on ne récupère quelque chose que quand on sort de
cette chaîne.

Si le lecteur se sent mal à l’aise à cause de cela, il doit rester calme. Dans un programme enC quel-
conque, la situation est pire, car normalement on ne récupèreaucunrésultat, on peut seulement profiter
de quelques effets de bord liés aux instructions d’affichage (et l’affectation des variables).

• Nous pouvons donc attribuer à l’objet final un typeRéponse qui n’est pas réductibledans le pro-
gramme. Ceci peut être l’affichage final de la réponse, une chaîne. Bien sûr, on peut construire un
fragmentd’un programme réel de cette façon, on n’est pas obligé à suivre cette philosophie jusqu’au but.
La Réponse peut être un nombre ou une chaîne quelconque, ou tout autre objet qui peut être affiché, ou
traité par des fonctions en dehors de la chaîne des continuations.

Mais un compilateur peut appliquer cette stratégie au pied de la lettre dès le début jusqu’au codage de
l’arrêt du programme. LaRéponse est alors envoyée à l’application appelante, par exemple le système
d’exploitation. cette réponse peut être alors le code d’arrêt, ou une chaîne, éventuellement le descripteur
d’un fichier.

• Si nous voulons appliquer une fonction, son résultat doit être également «lifté» aux valeurs continuées,
comme toute fonction qui se trouve à droite de l’opérateurbind. Au lieu d’avoiry = f x , nous allons
opérer avec un objet plus compliqué quef , disonsg = lift f , g :: a -> Calcul b , où :

(lift f) x cnt = cnt (f x)

et si un objetmest déjà une «valeur continuée>, un calcul, etg est une fonction déjà «liftée», monadique,
alors elle sera appliquée parbindde manière suivante :

m >>= g = \cnt -> m (\r -> g r cnt)

D’abordmest lancé, et appliqué à une continuation intermédiaire, qui récupère la valeurr dem, et lui
applique la fonction monadiqueg. Si mest primitif (return x), etg est le résultat direct du lifting de
la fonction normalef , présenté ci-dessus, alorsbindse réduit a

C.3 Système I/O de Haskell 177

(return x) >>= (lift f) =
\cnt -> (\c -> c x) (\r -> cnt (f r)) =
\cnt -> (\c -> c x) (cnt . f) = \cnt -> (cnt . f) x =
\cnt -> cnt (f x)

comme il fallait espérer.

Credo religieux no. 17 : Ceux qui s’intéressent par la sémantique des langages de programmation, et qui
ignorent les monades, sont des dinosaures anté-diluviens. Ceux qui refusent de les enseigner en affirmant
qu’elles sont trop difficiles pour les étudiants, sont des dinosaures post-diluviens.

C.3 Système I/O de Haskell

Nous avons placé cette section dans le chapitre monadique, car le système des entrées/sorties deHaskell est la
quintessence de l’approche monadique à l’implantation d’un langage de programmation. Les monades IO de
Haskell sont un peu différentes des autres :elles sont internes, implantées par des primitives système, et très
bien optimisées.

Attention ! Cette section ne dispense pas les lecteurs de la lecture de la documentation deHaskell. Nous
ne pouvons pas traiter la totalité du sujet, et les ommissions peuvent devenir gênantes un jour (p.ex. le
jour d’examen. . .

Ceux qui veulentcomprendre(en non pas seulement utiliser) le système d’entrées/sorties deHaskell peuvent
imaginer qu’il existe une structure de données spéciale : le «Monde» (extérieur), qui appartient à unétat,
comme le flux d’entrée dans la construction des parseurs. Les fonctions IO deHaskell effectuent des opérations
sur cette structure et produisent l’effet combiné : le résultat qui appartient au programme utilisateur, et un
Monde modifié, qui va rester caché. Ce fait, de ne pas permettre au programme d’accéder directement au
Monde n’a rien de spécial – en C on n’accède pas aux descripteurs de fichiers ni au tampon d’écran (sauf si on
fait de la programmation système de bas niveau).

Mais dans un langage fonctionnel ce protocole possède une spécificité : on peut imaginer que le programme
manipule le Monde comme n’importe quelle autre structure, sans aucun effect destructeur. On prend le Monde0,
et on rend Monde1, une autre structure. Cependant le Monde existe en un seul exemplaire, et physiquement
aucune création du monde n’a lieu, on retourne l’original modifié (fichiers lus, positionnés, ou écrits, écran
rempli d’objets graphiques, etc.) Le protocole monadiqueempêche que le programme puisse accéder en même
temps à l’original et au Monde modifié, et aucune situation paradoxale ne peut avoir lieu.

La totalité des opérations d’entrée/sortie concerne un type monadique spécialIO a , où a est le type du
résultat (lu ; pour l’écriture souventa=() , l’écriture ne rend aucun résultat utilisable).

Le lecteur doit déjà être préparé à la spécificité des programmes qui effectuent les opérations de lec-
ture/écriture :la totalité du programme est imbriquée dans une chaîne monadique IO, car quand on entre
dans cette chaîne, on ne peut plus sortir. . .(Bien sûr, ceci n’est pas vrai si on fait des tests intéractifs sous
Hugs, cette restriction concerne les programmes enHaskell compilés, par exemple par le compilateur GHC).

Les opérationsreturn et (>>=) sont primitives. Mais, même si plusieurs autres opérations pour des
raisons d’efficacité sont primitives aussi, l’essentiel de la magie et limité, l’écriture d’une chaîne peut être
réalisé comme l’enchaînement des actions sur les caractères, etc.

C.3.1 Notation «do»

Haskell possède une extension syntaxique qui jusqu’à présent a été bien cachée des lecteurs : le bloc «do» qui
facilite la programmation monadique dans un style qui ressemble le codage impératif. Au lieu d’écrire

putStr "Entrez une chaîne : " >> getLine >>= \l ->
return (traitement l)

(oùputStr affiche une chaîne, etgetLine lit une ligne depuis le flot d’entrée standard), on peut se permettre
à formuler ceci comme ;

do putStr "Entrez une chaîne : "
l <- getLine
return (traitement l)

178 Intermezzo monadique

En général, la formedo { instructions} contient une séquence d’instructionsséparées par le point-virgule, où
chaque instruction est un appel fonctionnel parfaitement normal, ou unedéclarationlet (sans la partiein
... , ou une forme :variable <- expression .

Voici la traduction du blocdo enHaskell plus habituel.
do {e} ⇒ e
do {e; reste} ⇒ e >> do {reste}
do {p<-e; reste} ⇒ let tmpf p = do {reste}

tmpf _ = fail "..."
in tmpf

do {let declars; reste} ⇒ let declars in do {reste}

Les point-virgules et les

accolades sont redondants si on exploite correctement lelayout (indentation), mais ces lexèmes sont souvent
conseillés pour la lisibilité du programme.

C.3.2 Flots standard

Les opérations permettant d’écrire quelque chose sur la console standard sont les suivantes :

putChar :: Char -> IO () -- affiche un caractère
putStr :: String -> IO () -- ou une chaîne
putStrLn :: String -> IO () -- ajoute la fin de ligne
print :: Show a => a -> IO ()

Voici un programmeHaskell complet :

main = print ([(n, 2^n) | n <- [0..19]])

qui affiche (0,1), (1,2), (2,4), (3,8), etc. Si on travaille sous l’interprèteHugs on peut tester intéractivement les
commandes I/O. CependantHaskell est un langage compilé, et si on veut utiliser un compilateur comme GHC
ou NHC, il lui faut préparer un «programme principal». Ceci est la variablemain qui appartient au typeIO
() . Dans sa définition nous pouvons ouvrir les fichiers, les écrire, etc.

La fonctionprint utiliseshow pour convertir un objet quelconque en chaîne, et ensuite l’imprime.
La lecture du flot standard utilise les fonctions suivantes :

getChar :: IO Char -- lecture d’un caractère
getLine :: IO String -- ou d’une ligne
getContents :: IO String -- la totalité de l’entrée
interact :: (String->String)->IO ()
readIO :: Read a => String->IO a -- lecture d’une donnée quelconque
readLn :: Read a => IO a

La classeRead spécifie un petit parseur capable de lire les structures de donnéesHaskell, si – bien sûr –
l’utilisateur définit leur forme extérieure dans l’instance deRead correspondante.

L’opérationinteract est très intéressante, elle permet une conversation intéractive entre l’utilisateur et
le programme. Elle est très simple :

interact f = getContents >>= (putStr . f)

Son argument est une fonction qui transforme une chaîne en une autre chaîne. Ceci peut être une fonction très
complexe, par exemple un parseur. Mais comment on peut intéragir si le programme veut d’abord consommer
la totalité du flot d’entrée? L’astuce consiste à exploiter la paresse. La fonctiongetContents , comme
il a été dit, consommetout du flot d’entrée. Mais le résultat est une chaîne, donc une liste paresseuse. Si
l’utilisateur n’a momentanément besoin que d’un seul caractère, les autres ne seront pas lus (sauf si le système
d’exploitation précipite quelques manipulations, en forçant – par exemple – la lecture d’une ligne entière).

Le programme

main = interact (filter isAscii)

lit tout, mais supprime tous les caractères non-Ascii. la fonctiongetLine est définie comme suit :

getLine = do c <- getChar
if c == ’\n’ then return ""

else do s <- getLine
return (c:s)

C.4 Exercices 179

C.3.3 Fichiers

La généralisation de la lecture/écriture à d’autres fichiers n’est pas plus complexe que dans d’autres langages
de programmation. Il faut simplement passer aux fonctions correspondantes le nom du fichier (une chaîne,
souvent pour la lisibilité transformé en un synonyme, p. ex.,Path), ou – éventuellement – un descripteur
obtenu par l’opération d’ouverture. Les fonctions standard sont

type FilePath = String

writeFile :: FilePath -> String -> IO ()
appendFile :: FilePath -> String -> IO ()
readFile :: FilePath -> IO String

Pour lire un fichier et faire quelque chose avec son contenu, on écrira

readFile "mon_fichier.txt" >>= \s -> traitement s ...

il faut néanmoins garder toujours à l’esprit que le traitement ne peut sortir de la chaîne monadique. À la fin on
peut éventuellement mettrereturn "Au revoir" .

Ceci est tout dans ces notes, mais la description complète est plus longue. Pour des utilisations sérieuses il
faut maîtriser au moins

• la gestion d’erreurs ;

• la possibilité d’utiliser les fonctions écrites enC ;

• les sorties graphiques, les extensions spécifiques à Windows, à Unix, etc.

C.4 Exercices

Q1. Quel est le type principal de la fonctiontf :

tf f p = p >>= return . f

R1. Ayant seulement lereturn et le bind, nous ne pouvons pas savoir dans quelle monade se situe le
problème, mais il s’agit sans doute d’une monade qui spécifie le type du paramètrep. Peut-être on voit
un peu plus comme ça :

tf f p = p >>= \x -> return (f x)

car ici le type du résultat et de l’argument def deviennent plus lisibles. Soita le type dex (le type
de base de la Monade), etm– le type de constructeur monadique qui spécifiep. Alors la réponse est
immédiate :ft :: Monad m => (a->b) -> (m a) -> (m b) .

Q2. Construire explicitement une fonction qui joue le rôle de la structuretry ... with pour la mon-
adeMaybe généralisée un peu :Nothing sera parametré par une chaîne, en accord avec lefail
monadique standard.

R2. La programmation fonctionnelle paresseuse est ici indispensable. nous construisons la fonctiontryWith
m secours qui lance le calculmet le fournit au module appelant, mais qui neutralise la «bombe», en
exécutant la fonctionsecours qui prend un paramètre – le message envoyé par l’expression qui a dé-
couvert l’erreur. La fonction doit être définie à un niveau assez bas, le même que celui de l’opérateur
(>>=) .

tryWith m secours = case m of
c@(Just x) -> c
Nothing s -> secours s

180 Intermezzo monadique

Q3. Construire enHaskell une fonction qui calcule lepowerset: l’ensemble de tous les sous-ensembles,
d’une liste. La liste[a,b,c] doit générer :[[], [a], [b], [c], [a,b], [a,c], [b,c],
[a,b,c] , au total2n, oùn est la longueur de la liste. (Ceci est le cardinal de l’ensemble de fonctions :
Bool -> elemDeListe).

R3. La stratégie non-déterministe consiste à parcourir la liste, et pour chaque élément soit le retenir, soit jeter.
EnProlog la solution sera :

pset([],[]).

pset([X|L],[X|R]) :- pset(L,R).
pset([X|L],R) :- pset(L,R).

Les deux dernières clauses sont évidemment non-conflictuelles, et engendrent la solution multiple. En
Haskell nous pourrons tenter

pset [] = [[]] -- Il ne faut pas se tromper !
pset (x:l) = let r=pset l

in l ++ map (x:) l

où nous avons simplifié l’expression donnée par la traduction mécanique :

l ++ concat (map (\c->return (x:c)) l)

Q4. Construire une fonction qui génère toutes les combinaisons dem éléments d’une liste de longueurn.

R4. Ceci ressemble au problèmepowerset , mais le choix est restreint. La solutionProlog : comb(M,Liste,Res)
est légèrement plus complexe quepset :

comb(0,_ []):-!.
comb(M,[X|L],[X|R]):-M1 is M-1,comb(M1,L,R).
comb(M,[_|L],R):-comb(M,L,R).

Les deux dernières clauses sont naturellement non-exclusives, donc la solution fonctionnelle sera

comb 0 _ = [[]]
comb m p@(x:l) = map (x:) (comb (m-1) l) ++ comb m l

où les optimisations ont été effectuées presque sans réfléchir. Et d’ailleurs, cette manque de réflexion
génère ici une petite catastrophe.La définition n’est pas complète ! Essayez de la corriger avant
l’examen.

Index

LATEX, 59

accept, 101
accumArray, 165
accumulation, 147
action, 101
actions sémantiques, 100
affectation, 45, 55, 60, 138
affichage, 31, 38
Algol 60, 94
algorithme

de Newton, 140
allocation dynamique, 15
alternative, 79
alternatives, 99
analyse, 59

dirigée par la syntaxe, 90
lexicale, 59, 74, 83
syntaxique, 59
sémantique, 59, 63, 89

appels fonctionnels, 88, 92
application, 139, 167
application stricte, 142
applications partielles, 139
arbre syntaxique, 33, 51, 54, 62, 99
arbres, 81, 160
Array, 164
associations, 35, 38, 41, 66
associativité, 85, 87, 90, 91, 102
atomes, 87
attributs, 74, 89
automate

à pile, 101

backquotes, 91
backspace, 93
backtracing, 96
backtracking, 18, 27, 73, 75, 89, 95
balayage, 118
balisage, 149
benchmarking, 175
bind, 77, 167, 169
Bison, 63
BNF, 94
boucle, 53
boucles, 12, 64, 94
branchement, 12–14, 16

conditionnel, 56
bytecodes, 23, 37

calcul, 167
calcul formel, 9, 24
call/cc, 17, 176
case, 146
catégorie

lexicale, 62
catégories

lexicales, 60, 84, 113
syntaxiques, 84

chaînes, 161
classe

Functor, 160, 169
Monad, 169
Read, 162
Show, 161

classe de constructeurs, 159, 169
classes, 20, 158
clauses, 147
Clean, 21, 49, 62, 138
co-procédure, 13
co-procédures, 50, 66
code

postfixe, 8, 36, 88, 93
coercition, 157
combinaisons, 28, 180
combinateurs, 29, 54, 86, 151, 154

substitution, 152
commentaires, 9, 68
compactage, 117, 120
composition, 74, 152, 167, 168

fonctionnelle, 167
compréhensions, 30, 144, 148
compteur, 175
computation, 167
concaténation, 78
conditionnelles, 146
constantes, 60, 63, 67, 158
constructeur, 159
constructeurs, 145, 149
contexte

gauche, 89
Continuation passing style, 175
continuations, 16, 26, 37, 46, 54, 162, 175, 176
control backtracking, 176

181

182 INDEX

conversion, 158
conversion automatique, 144
conversion de types, 110
CPS, 37, 175
crible d’Eratosthène, 30
Curry, 151

dataflow, 22
dead code, 63, 64
delay, 16
deriving, 160, 162
diagrammes, 94
dictionnaires, 67
dinosaures, 177
directives, 137
directives Hugs, 137
déboguage, 174
déclarations, 111
décoration sémantique, 62
définitions locales, 146

effets de bord, 174
enchaînement, 169
entiers longs, 38, 137, 144
entrées/sorties, 177
environnement, 14, 34–36, 42, 66, 174
erreur, 175
error, 101
exceptions, 170, 179
exportation, 161
expressions

algébriques, 85
Booléennes, 85

expressions régulières, 72

factorielle, 42, 48, 53, 57, 146
factorisation, 85, 89, 96
fail, 77
fermeture, 15, 139
fermeture de Kleene, 114
fermeture positive, 79
fichiers, 179
files, 68, 165

abstraites, 165
files fonctionnelles, 69
filtrage, 142, 147
FIRST, 96
flot, 178
flot paresseux, 146
flux, 66, 74
flux de données, 141
FOLLOW, 96
fonction de recherche, 91
fonctionnelles, 32, 140, 147

filter, 30, 32, 148
fmap, 160, 169

fold, 27, 143
foldl, 32
map, 32, 147, 160
types, 150
zipWith, 30, 145

fonctions
paresseuses, 167

fonctions anonymes, 139
fonctions génériques, 46
fonctions virtuelles, 158
formes lambda, 139
formes let, 139
Fortran, 12, 60
fractions, 162
fragmentation, 120
fromDouble, 158
fromInt, 158
fromInteger, 158

gardes, 147
GHC, 136, 177, 178
GHCi, 136
GNU, 57
GOTO, 101
goto, 12, 46
grammaire

d’opérateurs, 90
grammaire d’opérateurs, 100
grammaires, 71
grammaires d’opérateurs, 99
graphes, 70

Hindley-Milner, 111
Hugs, 136
héritage, 20, 25

Icon, 14
identificateurs, 60, 67

qualifiés, 162
importation, 161
importation des modules, 38
in-lining, 125
indentation, 138
indices, 38
inlining, 64
insertion non-déterministe, 172
instances, 158
instruction, 24

retour, 37
instructions, 12
interface, 158
interfaçage, 22
inégalité, 158
item, 93
itérateurs, 81, 88, 90

à droite, 86

INDEX 183

à gauche, 87, 88
itérations, 12, 52, 140, 146, 148

Java, 7, 14, 21, 24, 40, 116, 158
jetons, 60
Just, 171

lambda-lifting, 70
langages de spécification, 24
layout, 61, 75, 138
lecture paresseuse, 146, 178
lettres, 72
Lex, 63, 72
lexème, 60
lexèmes, 83
linéarisation du code, 163
Lisp, 7, 15, 20, 21, 33, 140
listes, 27, 29, 71, 72, 75, 81, 83, 141, 142, 144

cycliques, 145
paresseuses, 141

longjump, 57
look-ahead, 96

machine virtuelle, 8, 12, 24, 33
machine à pile, 35, 36
machine à registres, 164
macros, 19
magie, 35, 139
Maple, 24, 26, 61
marquage, 118
marqueur, 91
Matlab, 61
matrice d’incidence, 70
Maybe, 171
Mercury, 9
messages, 21
Metafont, 19
MetaPost, 19, 60, 62
micro-programme, 23
ML

CAML, 9
modules, 161
Monad, 160
monade

IO, 177
monade non-déterministe, 171
monades, 160, 167
Monde, 177
mots, 79
méthodes virtuelles, 33

namespaces, 61
newtype, 77
NHC, 178
nombres, 80, 105
non-déterminisme, 16–18, 26, 75

normalisation de Greibach, 87, 88, 94
notation BNF, 73
notation do, 178
Nothing, 171
négation, 73, 85

objet fonctionnel, 156, 164
objets fonctionnels, 139
op, 73
optimisation, 63, 64, 86, 89, 92, 95, 155
options Hugs, 137
opérateur du retour, 42
opérateurs, 47, 48, 52, 60, 73, 90, 100, 143, 157

arithmétiques, 39, 161
associativité, 145
Booléens, 85
concaténation, 136
infixes, 72, 85
précédences, 143
relationnels, 40

opérateurs arithmétiques
numéraux de Church, 153

parallélisme, 14
parcours en largeur, 69
parenthèses, 108
parseur, 31
parseur atomique, 88
parseurs récursifs, 99
parsing, 71

prédictif, 95
Pascal, 94
pattern matching, 142
Perl, 14
permutations, 19, 26, 172
pile

de données, 37
des données, 91, 92
des opérateurs, 91, 92

pile des retours, 13, 42, 46, 50
pipes, 66, 68, 141
pointeurs sur les fonctions, 45
polymorphisme, 24, 46, 54, 111, 150, 157
position, 93
PostScript, 7, 40, 41, 56, 60, 76
powerset, 180
precedence grammars, 90
PREMIER, 96
processus itératifs, 141
procédures, 12, 139
programmation

fonctionnelle, 14
impérative, 11, 45, 174
logique, 17
non-déterministe, 18, 180
orientée-objet, 158

184 INDEX

par contraintes, 19
par objets, 20, 21
parallèle, 50
paresseuse, 15, 179
visuelle, 8, 22

programme circulaire, 166
Prolog, 9, 17, 26, 71, 74, 81, 83, 172, 180
prologue, 76
précédence, 72, 90
prédicat, 140
préfixe, 95

optionnel, 86
Prélude standard, 143, 158, 159, 161
Python, 7, 9, 21, 61, 138

ramasse-miettes, 49
Read, 83
records, 20
reduce, 74, 100, 101
registres, 65
relations, 17
repeat, 53, 145
resume, 13
retour conditionnel, 55
return, 77, 169
reverse, 147
récursivité, 13, 40–42, 51, 140

ouverte, 145
terminale, 15, 74

récursivité à gauche, 87
références cycliques, 117

scanneur, 60, 75, 93
Scheme, 7, 15, 21, 62, 138, 173, 176
Scicos, 23
Scilab, 23
script, 7, 14
sections, 145
seq, 142
shift, 74, 99, 101
Show, 82
show, 161
Simula, 21
Smalltalk, 9, 14, 20, 21, 25, 40, 57
structures de contrôle, 141, 167
style

fonctionnel, 164
suite monadique, 169
SUIVANT, 96
surcharge, 24, 25, 46, 157

automatique, 158
constantes numériques, 144

synthèse, 59
sémantique, 167
séparateurs, 60, 82
séquences, 78, 80

table des symboles, 66, 91
tableaux, 35, 38, 164
tableaux de pilotage, 96
techniques ascendantes, 90
techniques descendantes, 99
templates, 125
termes composites, 88
terminateurs, 60
threaded code, 37, 46
thunk, 16, 49, 141, 145
tokens, 60
tracing, 173
tri

arborescent, 150
insertion, 142
quicksort, 29

try-with, 179
tuples, 142, 144
type

Bool, 148
fonctionnel, 144
Maybe, 160, 170
Réponse, 176
Unit, 144

type principal, 151
types, 24, 62, 148

abstraits, 162, 165
déclarations, 142, 144
inférence automatique, 15, 150
prédéfinis, 144
récursifs, 149
structurés, 149
synonymes, 150
vide, 38
vérification, 28

unification, 18, 111
unsafePerformIO, 66, 146

valeurs, 167
variable logique, 17
variables, 12, 17, 36

anonymes, 147
locales, 138

VRML, 24

while, 48, 52

Yacc, 63, 101

échec, 18, 175
éditeur des liens, 59
égalité, 158
états, 174
étiquettes, 62
évaluation paresseuse, 27, 49, 141, 145

structure de contrôle, 162

INDEX 185

évaluation stricte, 49, 141
événements, 21

