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1. INTRODUCTION

A number of working groups have been established to
study and define command interpreters and their
interactions with operating systems. These groups have
reported on the standardization of command interpreters
available on existing operating systems,’ attempts to
define command languages that are portable across
different operating systems?® and reference models which
specify the interactions between components of command
and response languages.® Such groups have been suc-
cessful in producing natural language definitions of
command interpreters. Implementation of command
interpreters from these definitions alone is seen as a goal
of the working groups.

Command interpreters are seen as central tools linking
together independent programs. They perform two
important functions in an interactive environment.
Firstly, they permit a user to control their environment
by defining the type and availability of commands to
execute. Secondly, they permit the execution and control
of commands based upon the user’s environment and the
results of previous commands. In efforts towards
providing monolingual programming environments, fa-
cilities more traditionally associated with programming
languages have been added to command interpreters.® It
i1s now seen as a requirement of interactive command
interpreters that they support features such as conditional
execution, iteration and the definition of user-defined
commands.

Whereas there has been significant effort in defining
both the syntax and semantics of programming languages
using formal notations, there has been little corre-
sponding work in defining command interpreters.®
Madsen has described the Catalogue management
routines of the job control language for IBM’s OS/360.°
Despite the relatively small responsibility of the Cata-
logue routines, Madsen successfully demonstrates that
operating system facilities can be defined formally.
Formal specification of another aspect of operating
system facilities has been provided by Morgan in defining
the Unix filing system using set notation.? Currently the
IEEE P1003.2 POSIX Working Group is defining the
‘Shell and Tools Interface’ of a portable operating

system. The work of this group is expected to take two
years and produce a definition of a command interpreter
based on the UNix Bourne shell. Although this definition
will include a significant specification of the interpreter’s
syntax and semantics, no plans for the use of a formal
notation such as denotational semantics are known to
exist.

In this paper we define a significant subset of a UNix
command interpreter, or shell, in terms of its denotational
semantics. Our interpreter supports the traditional
environment structure, input and output (I/O) redirec-
tion, process creation and conditional and iterative
control flow mechanisms of the standard UNix command
interpreters. However, issues such as textual aliasing,
command revision and job control are not addressed. We
have also made no effort to define the concrete syntax of
our command interpreter, choosing only to define the
abstract syntax. Qur command interpreter is based on
the popular Bourne and C shells. There are concrete
syntax differences in these shells, such as the syntax for
setting environment variables, 1/O redirection and
conditional and iterative control flow. We ignore these
differences here, believing these structures to be reducible
to a common abstract syntax. Subsequently, we have
defined the denotational semantics of significant subsets
of both popular shells.

The notation used for our semantic definition is based
on the notation defined by Stoy.* Having defined the
denotational semantics of our interpreter we have
implemented the definition in a metalanguage. Rather
than using either Pascal or Algol as the metalanguage, as
demonstrated by Allison,® we have chosen the functional
language Standard ML (SML).!® The significant advan-
tages found with this approach will be described. Our
implementation both provides verification of the syn-
tactic specification of our semantics and enables direct
execution of these semantics.

2. DEFINITIONS

The definition of a programming language in terms of its
direct denotational semantics involves four distinct steps.
These are the “~finition of the language's syntactic
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domains, syntactic clauses, semantic domains and se-
mantic equations."' With few deviations, these steps may
be followed in defining a denotational semantics of a
UNix shell.

2.1. Definition of Syntactic Domains

The abstract syntax of a programming language usually
defines three syntactic categories: declarations, com-
mands and expressions. For each of these syntactic
categories a syntactic domain is defined for all possible
constructs of that category. We define our Unix shell
with three syntactic domains named Args, Redirection
and Command. The metavariables «, p and y and
subscripted instances of these are used to range over each
domain respectively.

2.2. Definition of Syntactic Clauses

Syntactic clauses form an abstract syntax defining all
valid components for each syntactic domain. Note that
the abstract syntax does not unambiguously define a
syntax on which a practical parser could be constructed.
For example, the relative binding strengths of the infix
operators are unspecified in the abstract syntax. Each i f
clause requires an else clause and each simple command
requires input/output redirection. Disambiguating rules
required to construct a practical parser need to be
defined with a concrete syntax.

pii=4, empty redirection
| <ap input redirection
| > ap output redirection
| ap append output
| > & ap error output
| & ap append error output
y =, empty command
lap simple
1) p subshell
|if p; then y, else y, conditional
|[while y, do y, iterative
Juntil y, do y, iterative
[ 715 Ve sequential
[ 7, && v, ‘and’ conditional
[y 1l 72 ‘or’ conditional
(Y1 &7, asynchronous
FAPA pipe

Equation 1. The Syntactic Clauses

2.3. Definition of Semantic Domains

We define the denotational semantics of our shell with
two semantic domains. The State domain represents the
interface between the shell and the operating system.
Each process under the UNIX operating system has
associated with it a number of attributes which describe
and constrain the process. These typically include
resource allocations and limits, the relationship of the
process to other processes and the current execution
status of the process. In defining the State domain for the
shell, it is only necessary to define attributes over which
the shell need have control.

Our State domain defines four input and output
streams through which the shell communicates with the
operating system. Each 1/O stream is represented by a
possibly infinite sequence of bytes. The shell also supports

user-defined variables which are maintained in an
association list of string values referred to as the
environment. The use of the word ‘environment’ should
not be confused with the concept of the declaration
environment in a traditional programming language.
Elements of the shell’s environment are tagged as either
exported, which are made available to subprocesses, not
exported, which are available only within the shell and
read only, which reflect the shell’s internal operation and
are not exported. The shell’s State is analogous to the
global store of a program during execution.

On termination, each UNIX process returns an in-
dication of its success to the operating system. This exit
status is also available to the process that invoked the
terminating process. The exit status is typically repre-
sented as an integer with the value zero indicating success
and any other value indicating some error condition. We
use the Exit domain to represent this exit status.

The metavariables ¢ and o and subscripted instances of
these are used to range over the Exit and State semantic
domains respectively. The semantic domains of the shell
are defined in Equation 2.

¢: Exit = Integer
o: State = I /0 x Env
I/0 = Inputl x Input2 xOutputl x
Output2
Env = (Name X Value xEnvtype)*
Inputl = Byte*
Input2 = Byte*
Outputl = Byte*
Output2 = Byte*
Envtype = Export+NoExport +Readonly

Equation 2. The Semantic Domains

2.4. Definition of Semantic Equations

Semantic equations define the denotations of constructs
in the abstract syntax. For each construct we define
corresponding mappings from initial instances of the
semantic domains to possibly modified instances. We
begin by defining a valuation function for each syntactic
construct. Each valuation function is further defined by
case analysis. For the Args, Redirection and Command
domains we define:

EA = Maxo,)—>(exay)
ER = A(p x0,)—>(ex0,)
EC = A(yxag,)—>(exa,)

Equation 3. The valuation functions for the Syntactic Domains

The definition of each construct in the Command domain
is grouped with similar constructs. Unlike conventional
programming languages, the UNIX command interpreters
do not support a Boolean domain for use in conditional
evaluation. Instead, instances of the Exit domain are
used to determine required evaluation. An Exit value of
zero is analogous to true. The syntactic constructs ; , &&
and | are interpreted as ‘and then’, ‘if then’ and ‘if not
then’ respectively. The & construct defines asynchronous
evaluation of two commands. The shell invokes a separate
instance of itself to evaluate the first command. The
original instance of the shell evaluates the second
command and uses this result as that of the equation.
The *sequential execution’ group of EC equations are:
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ECIyy5 7ol oy =

let (¢, 0,) = ECy,] o,

in EC[y,] o,
ECly, && .} 0, =

let {¢, 0,0 = EC[y,] o,

in (if success ¢ then EC[y,] g, else <¢, 7,))
ECly, Nl 2] 0, =

let <¢, 0,) = EC[y,] 0,

in (if success ¢ then (¢, 0,) else EC[y,] 7,)
ECly, &y, 0, =

let (g, g,> = SETINPUTZ[‘/dev/null’] o,

in (if success ¢, then PARALLEL[y, y,] g, o, else (g, 0,))

Equation 4. The sequential execution constructs of the EC function

The valuation function for the | construct requires the Commands are then evaluated asynchronously. The exit
creation of a temporary 1/O stream, or pipe. The pipe status of the | construct is defined to be the exit status of
connects the output stream of the left hand Command to the right hand Command. A more detailed examination
the input stream of the right hand Command. The two of the formal semantics of UNIX pipes is given in Ref. 12.

ECly1 175 0, =
let {&,, 0,) = PARALLEL[y, y,l0,0,

where n = PIPE
and (...xin2xnx..) =a,
and (...xzxoutlx...) =g,
in <{¢,0)
where (...xin2xoutlx...) =g,

Equation 5. The | construct of the EC valuation function

The EC function also defines conditional and iterative determine which branch of a condition is to be executed
sequences in the shell. As with the conditional operators, or if iteration is to be continued.
the exit status of a command is compared against zero to

EC[if y, then p, else p,]Jo, =
let {¢, 0,) = ECy] o,
in (if success ¢ then EC[y,] o, else EC[y,]0,)
EC[while y, do p,)o, =
let (¢, 0,) = EClyilo,
in (if success ¢ then (let {¢, 0,) = EC[y,] 0,
in EC[while y, do y,]0,)
else (¢, 6,))
ECfuntil y, do p,]o, =
let <¢,, 0,) = EC[yl o,
in (if success ¢ then {¢,0,)
else (let <e, 0,) = EC[y,] o,
in ECluntil y, do y,]0,))

Equation 6. The conditional and iterative constructs of the EC valuation function

The final EC equations include the definition of command or subshell first demands evaluation of any
evaluating the empty command ¢,. This is defined for required I/O redirection by evaluating the ER valuation
conditional commands in the concrete syntax which function.

require no ‘else’ branch. The evaluation of a simple

EC[4,] o, = SETSTATUS[0] g,
ECla plo, =
let (¢, 0,> = ER[p]a,
in if success ¢, then let (¢,,0,> = EAla]o,
in SETSTATUS[e,] o,
else SETSTATUS[e,] o,
EC[(y)) plo, =
let pid = FORK
in if pid =—1 then {1, PUTERR[‘cannot fork’]o,)
else if pid =0 then
let <&, 0,) = BERp]a,
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in if success ¢ then let (&, 0,) = EC[y,] o,

else EXIT[g o,

in EXIT[e,] 0,

else SETSTATUS[WAIT[pid]] o,

Equation 7. The empty, simple and subshell command definitions of EC

The ER valuation function defines 1/0 redirection in the
shell. ER accepts redirection information and a State
and returns a possibly modified State and an exit status
indicating if redirection was possible. The returned State
defines the new input and output streams for the shell

ER![¢,;]| o, =<0, 6,
ER[Kx plo, =

after redirection. Here three representative components
of the ER function are defined. Other components are
similarly defined by calling the SETOUTI and SET-
APPENDI1 valuation functions.

let a, = <{ay,a,,... > = EXPAND[a] s,

in if len a, =1 then

let {¢,0,) = SETIN2[x] 0,

in if success ¢ then ER[p]o,
else {¢, PUTERR[ ‘cannot open’ o)
else (1, PUTERR[‘ambiguous ¢ redirection from’ ala>

ERD & @ plo, =

let a, = {ay,@,,... ) = EXPAND[«] g,

inif lena,=1 then

let <{¢,0,) = SETOUT1[a,] 0,

in if success ¢ then (ER[p]) SETDUP12[0,]
else (¢, PUTERR[ ‘cannot create’ .a,)a,)
else (1, PUTERR[‘ambiguous)& redirection to’ .aJo,>

Equation 8. Representative components of the ER valuation function

The valuation function EA either evaluates a builtin
command, begins reading commands from a new input
file (a shellscript) or invokes an external program. Which
action is performed is determined by the first argument.
The ‘builtin’ commands define actions that must be

gla]::= GETENV][a] o

taken by the shell rather than external programs. These
typically include manipulation of the State domain. To
shorten the function definitions, the following abbrevia-
tion is used:

EAla)o, = let a, = (ay, a,, a,, ...a,> = EXPAND[«] g,

inif ay= ‘cd’ then

lete¢, = (if lena, =1 then CHDIR[o,[ ‘HOME’ ]
else CHDIR[x,])

in if success ¢ then {¢,0,)

else (¢, PUTERR[ ‘cannot cd’]a,)

elsif oy = ‘exit’ then

if len a, =1 then EXIT[0]g,

else EXIT[int < a,] 0,
elsif ay = ‘read’ then
if len a, = 2 then

let {a;, 0,) = READINZ2[g,]
in <0, g [(a,, NoExport)/a,]>

else (I, PUTERR[ ‘usage: read name’]a,)

elsif a, = ‘set’ then

if len a, = 3 then (0, o,[(a,, NoExport)/a,]>
else {1, PUTERR[‘usage: set name value’|a,)

elsif a, = ‘setenv’ then

if len a, =3 then <0, g,[(a,, Export) /a,])
else <l, PUTERR[ ‘usage: setenv name value’]o,>

elsif ay, = ‘shift’ then

let o, = al[(al[[‘2’]],NoExport)/ ‘1’, ... (0,9’ ], NoExport)/ ‘8’ ]

in <0, 6,[(*’, NoExport) /<9’ 1)

elsif ay = ‘unset’ then

if len a, =2 then else (0,q,[(*’, NoExport) /a,]>
else (I, PUTERR[ ‘usage: unset name’]o,)

else EXECUTE[x, a, a,...a,] 0,

Equation 9. The EA valuation function
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A number of auxiliary valuation functions are evaluated
by EC, ER and EA. The valuation function SETSTATUS
is used to represent the exit status of a command in the
State domain of the shell. The environment variable
referenced by *?” is defined as the string representation of
an exit status.

SETSTATUS[e) 0 = (¢, o[(str <&, Readonly)/ 2’ ])

The function PUTERR appends a string to the error
output stream of a given State.

PUTERR[x, )0, = <..., a,.0ut2, ...>
where (..., out2, ...> =g,

Before any redirection is attempted or any builtin
command evaluated or external command executed,
function EXPAND is evaluated to map required en-
vironment variable values and file names to arguments.
Expansion involves replacing environment variable
names by their values and performing standard file name
expansion. Variable expansion is requested by prefixing
a variable name with the ‘$’ character. File name
expansion is requested by using metacharacters such as
‘s’ which attempts to match characters in file names. For
example:

edit SHOME/sem. p* may expand to

edit/user/chris/sem. paper

The PARALLEL valuation function defines asyn-
chronous evaluation of two commands. This evaluation
is not performed by the command interpreter itself.
Instead, a request is made to the operating system to
create a copy of the calling command interpreter process.
Each instance of the command interpreter then evaluates
a single command. The scheduling of all processes is
asynchronous and remains the responsibility of the
operating system. The semantic definition of the com-
mand interpreter need not include a definition of this
scheduling. Methods for formally defining process
scheduling in an applicative manner have been presented
by Broy.'®

PARALLEL passes three i-expressions to the oper-
ating system function FORK. FORK first attempts to
create a new process to be scheduled. In the event that no
more processes may be created (an operating system
imposed limit has been reached), the third, error i-
expression is evaluated by the current process and its
value returned. If process creation is successful the
current process evaluates the first A-expression and the
new process evaluates the second. Each process then
returns its result as the result of FORK.

PARALLEL[y, .l 0,0, =

FORK(A() EXIT(EC[yle,), A() .EC[y,] o,,
4().<1, PUTERR[‘cannot fork’]s,>)

Equation 10. The PARALLEL valuation function

3. IMPLEMENTATION IN SML

As demonstrated by Watt,'* the denotational semantics
of significant subsets of programming languages may be
implemented and executed directly in metalanguages. As
Watt highlights, considerable exposition of denotational
semantics is provided by using a functional language as

the metalanguage. As a form of validation of our
denotational semantics we have implemented the denota-
tional semantic definition of our UNIX command in-
terpreter in Standard ML.

SML is an interactive, statically scoped functional
language. Expressions and definitions are presented to
the SML interpreter for evaluation. SML evaluates the
expression or definition and prints its result along with
the most general type information that can be inferred
for that result. The strict type checking and type
inferencing mechanisms of SML enable type-safe pro-
gramming without requiring excessive typing syntax
which ‘clutters’ the meaning of a program. This type
inferencing is in contrast to the requirements of the
MetalV metalanguage, described in Ref. 3, in which the
type of each specification must be explicitly provided.

SML supports abstract data types in which types and
interface functions are defined without their implemen-
tation being required outside the definition. SML also
permits tuples to be passed to and returned from
functions. This provides a distinct advantage over the use
of a metalanguage such as Pascal in which tuples can
only be supported using records and pointers to records.

Although we are defining a command interpreter
based on the standard UNix command interpreters,
most, if not all, of our definitions could be implemented
on other operating systems. Only six UNix specific
functions are required by our implementation. Each
function name is prefixed by the letters ‘UNIX’. All of
these functions support the creation and control of
processes and have equivalents in many other con-
temporary operating systems. For example, if a host
operating system could not support asynchronous ex-
ecution, the PARALLEL valuation function could be
implemented by transparently performing sequential
execution. Similarly, the shell’s definition of pipes could
be transparently supported by using a combination of
sequential execution and temporary files created by the
shell.

3.1. Implementation of Syntactic Domains

As an introduction to our SML implementation, consider
the definition of the shell’s syntactic domains. Each
syntactic domain is defined using SML’s recursive data
types. The abstract syntax constructs are defined with
value constructor functions as part of their type
definition.

type ARG = string;
type ARGS = ARG list;

datatype RED = nilR
| readfrom of ARG % RED
| writeto of ARG % RED
| appendto of ARG % RED
| writetoerr of ARG % RED
| appendtoerr of ARG * RED;

datatype C =nilC

| simple of ARGS % RED
| subshell of C % RED
[if_cmd of C % C  C
| while_ _emd of C * C
funtil__ecmd of C % C
| semicolon of C % C
| andand of C * C
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| oror of C % C
| background of C % C
| pipeto of C x C;

Program 1. The Syntactic Domains in SML

3.2. Implementation of Semantic Domains

The semantic domains for the shell are defined in SML
with abstract type definitions. The representation of each

abstype EXIT =state of int
with fun status s =...

fun exit s=...

fun exits (stat s) =...

fun success (stat s) =...
end;

domain and the interface functions are hidden from the
rest of the implementation. Access to and modification
of instances of each domain are only possible through
these interface functions. The definition in SML of the
semantic domains is presented below. Ellipsis is used to
emphasise that the implementation of the interface
functions is hidden from their calling environment.

datatype envtype = Export|NoExport |ReadOnly
abstype STATE = state of (instream*instream*outstream*outstreams
((string*string*envtype) list))

with val init_ state = ...

fun putout (str, state state0) = ...

fun puterr (str, state stateO) = ...

fun setinl (filenm, state stateO) = ...

(*..other STATE interface functions...*)

fun setenv (n, v, state state0) =...

fun setstatus (exitstatus, state stateQ) = ...
end;

Program 2. Implementation of Semantic Domains with abstract data types

3.3. Implementation of Semantic Equations

The implementation of the valuation functions for the
semantic equations is the most important task. As an

representative EC ‘sequential’ and ‘conditional and
iterative’ equations. Note the ease with which semantic
definitions may be represented in the syntax of SML.

example of these consider the implementation of some

fun EC(nilC, statel) = (statusO, statel)

| EC(simple(args, red), statel) =
statel)

let val (exl, state2) = ER(red,
in if success ex1l then

let val (ex2, state3) =EA(args,

in setstatus(ex2, statel)
end
else setstatus(exl, statel)
end
| EC(subshell (c, red), statel) =
let val pid =UNIXfork ()

statel)

in if pid = ~1 then (statusi, puterr( ‘‘Cannot fork subshell’’, statel))

else if pid =0 then

let val (exl, state2) =ER(red, statel)
in if success exl then
let val (ex2, state3) =EC(c, state2)

in (exists ex2, state3)
end

else (exists ex1l, statel)
end

else setstatus(status (UNIXwait pid), statel)

end

Program 3. Some representative EC valuation function constructs

fun EC(semicolon(left,

right), statel) =

let val (exl, state2) =EC(left, statel)
in EC(right, state2)

end
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| EC(andand(left,
let val (ex1,

else (exl,
end

right),
state2) =EC(left,
in if success exl then EC(right,
statel)

statel) =
statel)
statel)

Program 4. Some sequential EC components in SML

fun EC(if_ cmd(ecl,
let val (ex1,

else EC(c3,
end

f EC(while_ cmd(c1,
state2) = EC(c1,

let val (ex1,

c2,
state2) = EC(c1,
in if success exl then EC(cZ2,
statel)

c3), statel) =
statel)

statel)

c2), statel) =

statel)

in if success exl then

let val (ex2,

in EC(while_ cmd(ec1,

end
else (ex1,
end

state3) = EC(c2,

statel)

c2), state3)

statel)

Program 5. Some conditional and iterative EC components in SMIL,

3.4. Implementation of the ER valuation function

The ER valuation function associates indicated files with
either input or output streams in a given State domain.
New instances of the State domain are returned by a
number of interface functions of the STATE abstract

fun ER(nilR,

| ER(readfrom(filenm, red),

let val ax = expand([filenm],

in if length ax =1 then
let val (ex1,

in if success exl then ER(red,

state 0) = (status O,
stateO) =

statel) = setin2 (hd ax,

data type. The exit status returned by each of these
interface functions indicates if a given file could be
opened or created. Here three representative components
of the ER function are presented.

stateO)
stateO)

stateO)
statel)

else (status 1, puterr(‘‘cannot open’’ *(hd ax), state0))

end
else (statusi,
end

| ER(writecerr(filenm, red),

let val ax = expand([filenm],

in if length ax =1 then
let val (ex1,

in if success exl then ER(red,

puterr( ‘‘ambiguous < redirection’’,

statel) = setoutl (hd ax,

stateQ))

state0) =
stateO)

stateO)
setdupl? statel)

else (status 1, puterr(‘‘cannot create’’ " (hd ax), state0))

end
else (statusi,
end

buterr( ‘‘ambiguous >& redirection’’,

state0))

Program 6. Some components of the ER valuation function

3.5. Implementation of the EA valuation function

The EA valuation function evaluates a builtin command
of the shell, arranges for commands to be read from an
indicated file (a shellscript) or executes an external
program. The environment variable PATH is obtained

from the current State and used as list of locations in
which to search for a required command. Function
getpath is used to convert this environment variable to
a string list. For example:

GETPATH[ ‘PATH’]o = [ ‘/usr/ucb’, ‘/bin’. ‘/usr/bin’ ]
if o] ‘PATH’] = ¢/usr/ucb: /bin: /fusr/bin’

The implementation of EA, presented below, is a simple exercise in functional programming.

fun EA(args: ARGS,

state0) = let val xargs = expand(args,

state0)
val nargs = length xargs—1
val a0 =hd xargs
fun al() =hd(tl xargs)
fun a2( ) =hd(tl(tl xargs))
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in
if a0 = “‘exit’’ then (* builtin commands *)
if nargs =0 then (exit O, stateO)
else let val s =makeint (al())
in (exit(if s)=0 andalso s <128 then s else 1), state0)
end
else if a0 = “‘read’’ then
if nargs =1 then set(al(), readin2 stateO,
else (status 1, puterr(‘‘usage: read name’’,
else if a0 = ‘‘setenv’’ then
if nargs =2 then setenv(al(), a2(), stateO)
else (status 1, puterr(‘‘usage: setenv name value’’, stateO))
(*...other builtin commands... %)
else let val pid = UNIXfork( );

stateO)
stateO))

(* external commands *)

in if pid=~1 then (status 1, puterr( ‘‘Cannot fork’’, state0))
else if pid =0 then
let fun shellscript arg0 =
let val (ex, statel) = setinl(argoO, stateO)
in exits(if success ex then shell(setargs(xargs, statel))

else (puterr( ‘‘cannot open’’*arg0, state0); ex))
end
and tryexec path = status(UNIXexec(path, xargs, state0))

handle Exec => if access(path, 5) then shellscript path

else raise Exec

and trypath nil = raise Exec
| trypath (h::%t) = tryexec(h” ¢/’ *a0)
handle Exec => trypath t
in ((if member(‘‘/’’,explode a0) then tryexec a0
else trypath(getpath( ¢ ‘PATH’’, state0))), state0)

handle Exec = >

(puterr(a0” ‘‘not found’’,

end

stateO); (exit 1, state0))

else (status (UNIXwait pid), stateO)

end
end

Program 7. The EA valuation function

Function UNIXexec executes another UNix program,
The first argument indicates the file name of the program
to be executed. The new program receives a list of strings
as arguments. It also inherits the standard input, output
and error streams of the shell and receives all elements of
the shell’s environment that are tagged for export.

If an indicated file cannot be executed by UNIx but is
both readable and executable, as determind by access,
it is assumed to be a shellscript. The shell function is
evaluated recursively with a new State reflecting that
input is to come from this shellscript. The first ten
arguments to this shellscript are passed to the shellscript
in the environment variables ‘0’ to ‘9’. Function
setargs initializes these environment variables. The
action of assigning a shellscript’s arguments to en-
vironment variables in a shell is analogous to the
initialization of a function’s formal parameters in a
programming language.

3.6. Implementation of Input/Output

Input and output is not defined as part of the SML
language. Instead, input and output is supported by a
library of functions operating on character streams.®
Two primitive stream types are defined for input and
output, named instreamand outstream respectively.
With one addition, that of appending characters to a

given file, the SML 1/0 package is sufficient to support
our implementation of the UNix shell.

Each instance of STATE defines the four 1/0 streams
of the shell as I/O streams in SML. Two input streams
represent the incoming command stream of the shell and
the shell’s standard input which is inherited by sub-
processes. The distinction is necessary when executing a
shellscript — commands are read from an indicated file
but the ‘read’ builtin command reads from the standard
input stream. Two output streams represent the standard
output and standard error streams which are passed to
subprocesses. The initial STATE, init__state, con-
tains the shell’s initial 1/O streams when invoked.

3.7. Supporting an Interactive Interpreter

Denotational semantics of programming languages
usually define an initial store for a program consisting of
uninitialized or zeroed locations. The initial environment
of a program is empty and is modified with declarations
in the program. The corresponding State domain of a
UNIix command interpreter is provided with initial values
by the process invoking the interpreter. In our im-
plementation init_ state contains the initial en-
vironment variables exported by the invoking process.
Each initial variable is tagged for export by the shell.
Previous executable denotational semantic definitions
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have described ‘compile-and-execute’ programming
languages. Such definitions only require a simple parser
function accepting a character stream (possibly read
from an indicated file) to return an abstract syntax tree
representing a program in that language. This abstract
tree is then executed by the ‘outermost’ valuation
function. In defining an interactive system such as a
command interpreter the parser also requires semantic
definition. The parser is a function accepting input from
the command stream (initially the terminal), possibly
producing error messages announcing syntax errors and
finally returning the abstract representation of a Com-
mand. During evaluation, the parser also requires the
environment variables PS1 and PS2 from the current
State. These variables store the primary and secondary
prompt strings and are used when input is required. The
parser is thus defined as:

parser = A(g,) > (C * g,)

The 1/0 streams in o, are used for reading commands,
prompting for input and producing syntax errors. In the
event that the shell is not interactive (also determined

fun shell state0 =

from ,), no prompting is performed. The possibly
modified o, reflects this 1/0.

Being an interactive interpreter there are a number of
error conditions which may arise during evaluation from
which the interpreter must make a meaningful recovery.
Such conditions include the detection of syntax errors in
parsing input, the inability of the operating system to
create new processes, attempts to modify environment
variables tagged as Readonly and the detection of the
end of the command stream. SML provides a type-safe
mechanism using exceptions to indicate such error
conditions. Exceptions, when raised in nested functions,
may ‘percolate’ to outer functions. Wherever possible,
our implementation does not permit exceptions to escape
from the ‘inner’ valuation functions to the ‘outermost’
shell function. For example, the exception Syntax-
Error is raised and handled entirely within the parser
function.

When submitted to the SML compiler the desired type
information of the shell’s valuation functions is inferred
and reported:

let val (cmd, statel) = parser stateO
val (exitl, state2) =EC(cmd, statel)

in shell state2

handle io_ failure => exits exitl
| Interrupt => if interactive state2 then shell state2
else exits exitl

end
and sh () = shell init_ state;
>val sh=fn:unit->EXIT

val shell = fn: STATE - EXIT

val EA = fn: (ARGS * STATE) - (EXIT % STATE)
val ER = fn: (RED % STATE) —» (EXIT * STATE)
val EC = fn: (C * STATE) > (EXIT * STATE)

Program 8. The shell and valuation functions and their infered types

3.8. Additions to the Functional Abstract Machine

SML is interpreted by an SECD based interpreter named
the Functional Abstract Machine (FAM) [16]. FAM
supports rapid evaluation of typeless compiled expres-
sions, leaving the tasks of syntax and type checking to a
higher level language such as SML. FAM is defined by its
operational semantics of state transitions.

In implementing the denotational semantics of a
command interpreter it has been necessary to support a
number of functions which cannot be defined directly in
SML. These provide the interface between the shell and

val chdir = fn: string—->bool

the operating system. Functions have been provided to
invoke new processes, execute programs, open files for
appending data, waiting for indicated processes to
terminate and to terminate the shell itself. Each of these
functions has been added as an instruction in the
Functional Abstract Machine by defining its operational
semantics. Each new instruction consists of a number of
operating system or library calls with parameters and
return values consisting of character strings, integers and
I/0 streams. The new FAM instructions are declared as
the following type-safe SML functions:

val glob = fn: string-> (string list)
val is__term_in = fn: instream—bool
val is_ term_ out = fn: outstream—bool
val open_ app = fn: string—>outstream

val UNIXenv = fn: string—»string

val UNIXexec = fn: (string * (string list) * (string list) =
instream * outstream — outstream)»int

val UNIXexit = fn: int-—»>int
val UNIXfork = fn:unit - int

val UNIXpipe = fn:unit- (instream = outstream)

val UNIXwait = fn: int —> int

Program 9. New FAM instructions supported as SML functions
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4. CONCLUSION

We have presented a UNIXx command interpreter, or
shell, defined in terms of its denotational semantics. The
shell is both sufficiently complex to demonstrate the
usefulness of the denotational semantic definition and to
provide practical features. The definition of the shell can
easily be extended to provide other accepted shell facilities
such as I/O redirection through specified file descriptors
and further iterative constructs such as the Bourne’s
shell’s for statement.

Direct execution of the denotational semantics is made
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