
A Recovery Mechanism for Shells
IAN HOLYER AND HÜSEYIN PEHLIVAN

Department of Computer Science, University of Bristol, BS8 1UB, UK
Email: ian.holyer@bris.ac.uk

An undo facility is an essential component of most interactive applications. In current operating
system shells, whether textual or graphical, such facilities are typically very poor. Algorithms
are presented for adding a recovery mechanism to a shell which allows previous commands to be

selectively undone and redone, and previous versions of files to be recovered.
The recovery mechanism involves making the shell control resources in a more intelligent way.
Programs are run under greater control, with the shell monitoring and analysing their resource
requests. This provides better high-level information to the shell and, for example, provides
techniques to prevent foreign or untrustworthy programs from doing any damage, and to reduce

problems with conflicting resource requests from concurrent programs.
A prototype implementation calledbrush has been constructed to investigate the convenience and

natural feel of these facilities.

Received November 13, 1998; revised December 7, 1999

1. INTRODUCTION

A recovery ability is a crucial feature that many interactive
single-user applications provide to allow the user to reverse
the effects of previous commands. This capability of
applications enables the user to recover from unintentional
commands and repair any resulting damage at any point in
the interaction. An undo facility, for instance in an editor,
encourages a user to act more freely, without the fear of
losing useful information.

A shell is a program which provides a user interface to
an operating system. It may be a text-based command
line interpreter as in Unix, or it may be a graphics-based
file and process manager. Either way, the ability to repair
damage to permanent resources such as files is an important
one. The facilities which are typically provided at present
are rather primitive, consisting of a ‘waste bin’ directory
where old versions of files are stored when explicitly deleted,
together with various ad hoc backup mechanisms provided
by individual applications. It is ironic that one can always
undo the deletion of a single character in an editor, but not
the deletion of a permanent file in a shell.

The aim of this paper is to describe a way of designing
a more intelligent shell which keeps track of versions of
files on behalf of the user, together with information about
how they were created or manipulated. This enables it
to provide a more uniform and consistent mechanism for
undoing the effects of commands, recovering old versions of
files, repairing accidental damage, and otherwise managing
a user’s most permanent and valuable resources in a safe and
convenient way.

The ideas presented in this paper emerged from the desire
to design an operating system shell using a purely functional
language such as Haskell. This involves redesigning the
shell to remove as much non-determinism as possible.

However, the ideas potentially have a wider application,
so they are presented here without reference to functional
programming. The aim is to achieve a shell with the
following properties:

• Intelligent management of files and programs.
• The ability to undo commands and recover old versions

of files.
• The ability to kill rogue programs cleanly.
• The ability to run foreign programs with minimal risk.
• The ability to run programs concurrently with clean

sharing of resources.

Many of these points depend on the ability to undo and
redo commands, and this is the aspect which we concentrate
on in this paper.

The model for recovery which we present is concerned
with users’ recovery from their own prior commands. We are
not concerned with data loss through hardware failure, for
example, nor with the recovery of old versions of files from
overnight file system dumps, nor with the backups which
some application programs keep to guard against system
crashes.

Conventionally, a shell runs programs which are allowed
to access resources directly using system library procedures.
In order for a shell to be able to act in a more intelligent
way, and provide an undo mechanism, it needs to be able to
keep track of the changes which each command or program
makes to permanent resources such as files.

The remainder of this paper is organized as follows. In
Section 2, previous work on extending operating system
functionality is discussed briefly, and the literature on undo
support is reviewed. Section 3 deals with analysing the
effects of commands, determining to what extent they
are reversible, and handling untrustworthy programs. In
Section 4 a specification for a proposed undo and redo

THE COMPUTER JOURNAL, Vol. 43, No. 3, 2000



A RECOVERY MECHANISM FORSHELLS 169

mechanism is presented, as it might look from the user’s
point of view. Section 5 discusses the algorithms needed
to implement the proposed recovery mechanism. Section 6
deals with the issues which arise when concurrent programs
are supported by the shell. The results are summarized and
future work is outlined in Section 7.

2. PREVIOUS WORK

In this section, we review techniques for extending operating
systems, and we also review previous work on undo
facilities.

To be able to undo the effects of commands, we need to
monitor and control the permanent changes that commands
make. For example, if a command overwrites a file, we
must detect this and take a copy of the old version first,
so that we can restore it later if necessary. In addition,
in order to execute foreign programs safely, it is desirable
to apply suitable security policies to the changes which a
program attempts to make, beyond what can be done with
conventional user permissions.

A shell causes programs to run, and those programs
access operating system primitives directly, rather than via
the shell. What we need to do is to extend and adapt the
operating system primitives so that they cooperate with the
shell in managing resources, allowing the shell to monitor
and control what is going on. Thus, in effect, we need to
extend the operating system functionality, changing the way
in which its primitives work.

Various methods for extending operating system function-
ality have been proposed, and are discussed and compared
for example by Alexandrovet al. [1], who use the
extended functionality for adapting filing systems. Jones [2]
uses extended functionality for implementing interposition
agents, and Goldberget al. [3] use it for the secure execution
of untrusted programs. All these example applications are
relevant to our work.

One approach to extending the operating system is to
change the kernel itself. The main problems with this are
that it requires superuser privileges to make the changes, and
that the risk of compromising the integrity or security of the
system as a whole is very high.

A second approach is to change device drivers, libraries
or managers associated with the operating system. For
example, it is often easy to add new communication-based
file system managers, as with NFS, and one of these could
represent an alternative method of access to an existing
file system. The main problems are that programs may
need recompiling and/or relinking, and that the approach is
unlikely to be sufficiently general.

The most successful approach appears to be to intercept
system calls. In most operating systems, commands and
programs use system calls as the lowest level interface
to operating system facilities. The operating system may
provide a way of intercepting the system calls made
by programs. For example, many Unix-based operating
systems provide a device called/proc , described by
Faulkner and Gomes [4], which allows one process to gain

control over another at the system call level for debugging,
tracing or other purposes. This facility can be used without
needing special privileges, and is used in Unix commands
such asps , truss andstrace .

This approach is very suitable for implementing undo,
because system calls are the only way in which commands
or programs can make permanent changes to the system.
Moreover, no high-level knowledge about the intentions of
any particular program is needed. This approach is used in
thebrush prototype, described in Section 7.

Issues concerning undo support have drawn the attention
of many authors for some time. Some have examined
the relation between undo support and the interface of a
computer system and focused on the reasons why undo
support facilities are important, while others have described
a number of different undo models and implemented them
as part of various systems.

Undo support is a capability which is directly concerned
with maintaining the integrity of a user’s work [5] and
should allow easy reversal of actions as long ago in the
history as possible [6]. The psychological behaviour of a
user may make interactions with the system frustrating. For
example a command may give an unexpected response and,
therefore, a system should provide recovery from unwanted
actions conveniently and easily [7]. However, frustration
can be caused by irreversible actions such as the accidental
deletion of important data. As it is difficult to cope with
irreversible actions, interface actions should be made as
reversible as possible [8]. Also, the provision of undo
support may help users in minimizing the time spent in
correcting errors. To avoid such a waste of time, error-
recovery methods should be designed in terms of learnability
and efficiency [9].

Many programming environments, and application pro-
grams such as editors and word processors, support asingle
undo facility. The most recent command can be undone
and redone, but commands previous to that cannot be
reached. Examples are the Smalltalk system [10] and the
Vi editor [11].

More sophisticated environments and applications sup-
port a multiple undo facility in which the most recent
commands can be undone consecutively, back to some
previous commit point such as the beginning of the current
session. A general model for this has been presented by
Archeret al. [12] and examples include Microsoft products,
COPE [13], Interlisp [14], PECAN [15] and Sam [16].

Most systems with multiple undo also supportredo
facilities. The most important property of a redo facility
is recoverability, as described by Gordonet al. [17].
It should be possible to revert to any previous state that
the system has been in, including all states which were
abandoned by undoing some commands and then issuing
alternative commands. A number of approaches to the
provision of completely recoverable undo facilities have
been investigated by providing various undo, redo, skip and
rotate commands and defining how these act on each other,
for example by Vitter [18] and Yang [19]. The Emacs editor
[20] achieves a completely recoverable undo facility using

THE COMPUTER JOURNAL, Vol. 43, No. 3, 2000



170 I. HOLYER AND H. PEHLIVAN

only a single special undo command. Consecutive undo
commands provide a multiple undo facility, recovering from
any number of previous commands. However, any command
other than an undo command breaks the sequence of undo
commands and, at this point, any previous undo commands
are treated as ordinary changes that can themselves be
undone.

Beyond this, it is possible to provideselective undo and
redo facilities in which an arbitrary previous command
can be chosen and its effect undone or redone. General
models are described by Berlage [21, 22] and by Prakash
and Knister [23], who include issues to do with multi-user
interaction, and an example system is GINA [24]. Desirable
features of selective systems are that the current state should
correspond to the sequence of non-undone commands which
have preceded it, and that a command which is redone
should be executed in a state which agrees with the state in
which it was originally executed. Unfortunately, conflicts
can arise in which some commands cannot be undone or
redone without violating these desirable features. We will
discuss these conflicts later.

3. EFFECTS OF COMMANDS

To be able to reverse the effects of a command, it is
necessary to be able to detect and analyse those effects.
Often, the permanent effects of a command consist of the
files which it creates or alters. Using the mechanisms in
the previous section, these can be monitored, copies can be
taken of old versions of files before they are altered, and
the effects of a command on the file system can be reversed
by reverting to those old versions. However, commands
can have a wide variety of different effects, other than their
effects on files, some of which are difficult or impossible to
reverse.

First, there can be other local state changes such as
changing permissions or other attributes on files, or changing
the directory structure. These state changes can generally
be dealt with in the same way as with files. In the case of
directories, we will see in Section 5 that it is not necessary
to keep old versions of directories.

Second, there are changes to the state of the shell itself,
e.g. changing the current directory, altering the values of
environment variables, keeping track of command aliases
and so on. Similarly, some shell commands are intended to
be used in scripts as programming tools, e.g. for controlling
loops. These are all necessarily commands which are built
into the shell. As they are under the direct control of the
shell, they cause few problems; indeed, the shell state can
be stored in files and the mechanisms for keeping track of
versions of files can be used for these too.

Third, programs may have external effects, such as
interacting with the user, printing a document, sending an
email, communicating interactively with another user or
changing remotely stored files. Tracking these effects can
be difficult [25]. Although the relevant system calls can be
trapped, it may be difficult to determine what they do or
how to undo them. In general, these external effects cannot

be undone, and we regard these issues as being beyond the
scope of our shell.

Finally, some shell commands deal with concurrent
process control and interactions between multiple users.
This includes compound commands which run several
programs together, possibly communicating with each
other via pipes. It also includes direct process control
commands which create long-running processes which
execute concurrently with the shell and each other. Undoing
the effects of a complete process group may be relatively
easy, but undoing the effects of individual processes within
the group is more difficult. Concurrency issues are discussed
further in Section 6.

In addition to tracking the effects of commands in
order to undo them, it is also desirable to control the
effects of potentially untrustworthy foreign programs. It
is conventional for World Wide Web applets to be run in
extremely restricted environments which effectively prevent
them from making any local changes or accessing any local
information. In addition, Goldberget al. [3] discuss ways
to restrict helper applications which get run as a result
of downloading files from the Web. However, it is also
common to obtain complete application programs directly
from the Web or other untrustworthy sources and, at present,
such programs are usually run with no restrictions at all.

To some extent, providing an undo facility in itself
provides some protection from such programs; if a program
deletes files it shouldn’t, they can be recovered easily.
However, stricter knowledge and control of what a program
is doing is desirable. It is possible to use a restricted shell
to prevent a user from doing damage by forbidding access
to unsafe programs. However, our aim is rather different.
We want to allow a user to run any desired program, but
to prevent the program from doing damage by running it
in a restricted way. We want the program to run in its
normal environment, allowing it to do useful things such as
creating files. However, since all file accesses are monitored,
a security policy can be applied, and any unauthorized access
is forbidden or referred to the user for confirmation.

One further issue which needs to be addressed is the
question of aliases. If there are two names for the same
file and a command writes to the file using one name, it
also changes the contents visible via the other name. The
shell needs to know about this to keep track of the effects
of commands. In a concurrent setting, if two commands
attempt to access the same file via different names, the
resulting contention problem needs to be recognized and
addressed by the shell.

If all commands which create or manipulate aliases are
issued by the proposed shell, it has complete control and
can keep track of them. Otherwise, alias problems have
to be detected as and when they occur. Detection methods
differ from one operating system to another, and detection
of all cases of aliasing can be difficult. However, reasonably
good solutions are usually possible. For example, given a
pathname on Unix, a unique device identity number and file
identity number (inode number) can be obtained and used to
record where the file is physically held.

THE COMPUTER JOURNAL, Vol. 43, No. 3, 2000



A RECOVERY MECHANISM FORSHELLS 171

From now on, we will assume that mechanisms like this
are in place so that the shell knows exactly what each
command is doing to the system.

4. A PROPOSAL FOR UNDOING

The next few sections form a proposal for a simple version
of a shell with undo and redo facilities. In this section we
describe how the facilities look to the user. The description
concentrates on changes to individual files, but applies to
other permanent resources such as directories. Concurrency
issues are deferred to Section 6.

To allow the user to undo previous commands, the shell
provides a history list, i.e. a list of the commands which
have been issued recently, either up to some fixed number
of commands, or back to some previous commit point such
as a logout. Many text-based shells already provide such a
history list, where each entry records the text that was typed.
In the case of graphical interfaces, a textual description or
other visual representation of the recently issued commands
needs to be provided.

With text-based shells which provide a history list, it is
common to provide aresubmit facility. This allows the
text of a previously issued command to be copied, edited
if desired, and then submitted as a new command. This is
a cut-and-paste facility which saves time by reducing the
amount of typing the user needs to do. The undo and redo
facilities described here can be added without affecting the
resubmit feature.

A selective undo facility is provided where the user can
select one of the previously submitted commands and ask for
its effects to be reversed. Suppose that four commands are
issued, followed by a request to undo the second command,
which involved updating a filefileA :

write fileA
(edit fileA)
move fileB fileC
copy fileC fileD

We have used brackets here to indicate that the appearance
of the edit command in the history list has changed,
perhaps by being greyed out or having a different colour.
This change of appearance acts as a record of the undo
command, which does not appear explicitly in the history
list. The undo command causes the new version of the file
fileA to be removed from view and saved, and the old
version of the filefileA (which was saved when theedit
command was issued) to be reinstated.

From now on, we refer to the commands in the history
list as active or inactive according to their current status
and hence appearance. A redo command is provided to
reverse the effects of undoing. An inactive command such
as theedit command above is selected, and the original
effects of the command are reinstated. The appearance of
the command in the history list is also reinstated. Undo can
only be applied to an active command, and redo can only be
applied to an inactive command, so a single command name
or mouse button or keystroke can be used for both.

The redo feature is very different from the resubmit
facility. What happens is that the changes to file versions
carried out by the undo command are reversed. The new
version of fileA , which was saved when the undo was
issued, is reinstated. This contrasts with a resubmit where
the editor is re-executed.

The intention of these facilities is that when a command
is undone, the state of the filing system is exactly the same
as if the command had never been issued. When it is redone,
the state is exactly the same as if the undo had never been
requested. This is an important principle which makes it
easy to understand the meaning of undo and redo. It can be
stated as an invariance condition:

The current state should be completely determined
by the initial state and the active commands in the
history list.

This provides a very simple mental model for the user of
what undo and redo mean. However, it follows that undo
and redo are not always possible because of dependencies
between commands, as described by Prakash and Knister
[23]. For example, themove command above cannot be
undone becausefileC would not be available for the
following copy command. This brings into question a
second important principle:

It should be possible to return to any previous
state.

In fact this is possible with the facilities described so far,
though it is not necessarily very convenient. It is always
possible to undo the last active command in the history list,
and so to undo all the active commands sequentially, from
the last one backwards. After that, the active commands
in the desired previous state can be redone in a forward
direction. Of course, it may be possible to achieve the
desired result more efficiently in practice.

A feature of the system which would make undoing more
convenient would be that when an undo is requested for
which there are later dependent commands, the system could
offer to undo those later commands at the same time as the
requested command. Similarly, a request to redo may result
in an offer to undo or redo other commands as well, to make
the requested one possible. The issue of what constitutes a
dependency will be explored further later.

A further principle which needs to be addressed is
whether desired versions of files can always be recovered.
Specifically:

It should be possible to recover any desired
collection of versions of files, or other resources.

This is difficult if we want to recover two different versions
of the same file, or versions of two files which do not
correspond with each other. A simple example of this is the
following:

write fileA
edit fileA

THE COMPUTER JOURNAL, Vol. 43, No. 3, 2000



172 I. HOLYER AND H. PEHLIVAN

The first command creates one version offileA and
the second replaces it with a new version. Suppose it
is now discovered that important information was deleted
by accident during the editing session. Important new
information was also added during the editing session,
so both versions are needed in order to resolve the
situation.

A further feature of the design which takes care of this
sort of problem is the ability to insert a command into the
history at an arbitrary point. Inserted commands, as with
undo and redo, have to be checked for dependencies before
being allowed. In the simple example above, the recovery
procedure would be first to undo theedit command, then
insert a copy command before it, and then redo theedit
command, to give:

write fileA
copy fileA fileB
edit fileA

Now both versions of the file are available asfileA and
fileB .

It is important to make sure that the proposed shell
behaves correctly when commands fail. For example,
suppose the user typesmove fileA fileB at a time
when fileA does not exist. The state of the system
should be made the same as if the command had never
been issued. The command is added to the history list as
an inactive command, to allow editing of its text and re-
submission.

5. IMPLEMENTATION

In this section, we describe the algorithms which are
necessary to implement the desired shell features. We
assume that system calls are monitored in such a way
as to record all the operating system transactions which
a command or program carries out. For simplicity, we
will initially concentrate on the effects of commands on a
collection of files in a single directory.

In order to deal with different versions of the same file, the
shell distinguishes them according to their time of creation.
The shell numbers all the transactions which occur, and
uses these sequence numbers to represent time. The time
of creation of a file version is the sequence number of the
transaction which produces it. The shell simply needs to
keep track of the ‘current time’, i.e. the sequence number to
be issued when a transaction is next executed.

The shell keeps all old versions of files in a subdirectory
calledsave , say, using their times of creation as file names.
For example, suppose that the command sequence:

write fileA
write fileB
copy fileB fileA
edit fileB

results in the creation of the first version offileA at time
1, the first version offileB at time 2, the second version of

fileA at time 5 and the second version offileB at time
7. The files existing after these commands are:

fileA
fileB
save/1
save/2

If fileA andfileB are changed again at a later date, the
current versions are saved by moving them as:

fileA -> save/5
fileB -> save/7

Thus the directory is seen in a correct state by programs
outside the influence of the shell, except for the extrasave
directory.

The shell ensures that when a command is run, it does not
result in any file versions being deleted. File system requests
from the command are converted into actions which create
new file versions or move them as appropriate.

The shell stores the history list, with the time at which
each command was issued, and whether or not the command
has been undone. For example:

1> write fileA
2> write fileB
3> copy fileB fileA
6> edit fileB

The time at which a command is issued does not need to
be visible to the user, provided that there is some way for
the user to indicate which command to undo or redo as
necessary.

In addition, the shell stores the sequence of transactions
which occurs as commands are executed. For simple files,
we need only consider the creation of a file version, reading
from a file version, and deleting a file version. Other
file system requests can be handled as combinations; for
example, a request to open a file for appending can be treated
as aRead followed by aCreate . For each transaction, the
file name and version affected are stored. For example, for
the above command sequence, the transactions are:

1> Create fileA 1
2> Create fileB 2
3> Read fileB 2
4> Delete fileA 1
5> Create fileA 5
6> Read fileB 2
7> Create fileB 7

The history list and the transaction sequence allow the shell
to work out which versions of files are current, and which
versions were current at any particular time in the past. To do
this, the shell keeps track of deletions of file versions, which
are treated as separate transactions. If a command overwrites
a file, this is treated as two transactions; one to delete the old
file version, and one to create the new version. If we take
time t to mean the time just before the transaction tagged
with sequence numbert occurs, the file versions current at

THE COMPUTER JOURNAL, Vol. 43, No. 3, 2000



A RECOVERY MECHANISM FORSHELLS 173

time t are those with active creation times less thant and
active deletion times (if any) greater than or equal tot.

In addition, the shell keeps track of which transactions
are active or not, i.e. which transactions belong to
active commands. (In fact, the information about which
transactions are active, and the version numbers of the files,
are redundant and could be re-created from the remaining
information and the history list.)

This information about transactions does not normally
need to be visible to the user. For built-in commands, the
information can be generated from a knowledge of what the
commands do. For other commands, the information can be
gathered while the command runs by monitoring its system
calls, as discussed in Section 2.

It is possible to allow the user to see the transaction
sequence for a command, and to selectively undo or
redo individual transactions. If not, the fact that all the
transactions belonging to a particular command are undone
or redone together allows the transaction sequence to be
thinned out, if desired. For example, the transactions
belonging to one command need only contain at most one
Read and oneCreate or Delete for each file. For a file
version that existed before the command was issued, aRead
is stored if the contents of that file version may have been
read by the command, and aDelete if the version does not
survive after the command. For a new file version that the
command produces, aCreate is stored. Nothing needs to
be stored for temporary files, i.e. ones which are created and
deleted during the course of the command.

How does the shell implement undo? First, it has to detect
whether a request to undo a command is valid. If a file was
created or altered by the command, and the new version of
the file is mentioned in the transactions of any subsequent
active command in the history list, then the undo is invalid
because it would lead to a version inconsistency. If a file was
deleted by the command, and there is a subsequent command
which creates a new version, then again the undo is invalid
(because the behaviour of the command may depend on the
non-existence of the file, as with the use of theO EXCL
flag in Unix). There are no other restrictions; an undo
request is otherwise always valid. Next, the shell can use
the command’s transactions to determine how to change
the current state of the filestore, effectively undoing the
transactions one by one in the reverse order.

How does the shell implement redo? Again, as with undo,
files created, altered or deleted by the original command
must not be mentioned in any subsequent active transactions.
However, there are additional restrictions to ensure that the
redone command accesses the same versions of files as when
it was originally issued. Suppose that the original command
was issued at timet. If the command created a file without
first deleting an older version, and an older version of the file
is now current at timet, then the redo is invalid. Also, for any
file which was read or deleted by the command, the version
which was originally affected must match the version which
currently exists at timet. For example, suppose we have the
following situation:

1> write fileA
2> (edit fileA)
4> (copy fileA fileB)

with stored transactions:

1> Create fileA 1
2> (Delete fileA 1)
3> (Create fileA 3)
4> (Read fileA 3)
5> (Create fileB 5)

A request to redo thecopy command is not valid, because
the version offileA (version 3) which thecopy command
was supposed to act on does not currently exist at time
4. This restriction ensures that a redo can always be
implemented by manipulating file versions rather than by re-
executing the command itself. In this example, theedit
command needs to be redone before thecopy command
can be redone, perhaps inserting a command to save the old
version offileA , if desired.

The insertion of a command into the history list other than
at the end is handled in a similar way to a redo request,
except that the versions of the files affected can be taken to
be the ones existing at the time of insertion. The shell may
not discover that the inserted command is invalid until it is
part-way through execution, but the failure can be reported
and the partial effects of the command can be undone.

In the above, we have prevented undo or redo whenever
a file is involved which is mentioned later. It is possible
to be less restrictive. If two successive changes to a file
involve disjoint portions of the file, the changes may be
regarded as independent. This is the approach taken in
systems like CVS [26] where multiple developers may work
on the same program source file, the changes in the text
are stored using RCS and treated as independent whenever
they don’t overlap. In our setting, this would allow two
non-overlapping changes to a file to be undone or redone
independently of each other, and would in general reduce
the amount of space used for saved versions of files.

So far, we have only dealt with simple files. Other local
state changes are dealt with in similar ways. Consider
attributes of files, such as permissions and alias information,
for example. A change of attributes can be handled correctly
with the mechanisms already described by creating a new
version of the file with the new attributes attached. However,
the storage of multiple versions of the file contents can be
avoided by adding an extra transaction type which records a
change of attributes, and which can be undone by reversing
the change. Also, some undo and redo operations can be
allowed, which would otherwise have been invalid because
of the change of file version, provided care is taken to
ensure that the attribute changes do not affect the relevant
commands. Directories are handled by adding transaction
types which record changes to the directory structure. At
first sight, it appears that multiple versions of directories
need to be stored, as their contents change with time.
However, this is not necessary, as the state of a directory
at some previous timet can be inferred by working out the

THE COMPUTER JOURNAL, Vol. 43, No. 3, 2000



174 I. HOLYER AND H. PEHLIVAN

file versions which were current in it at timet, as described
earlier.

For the most part, external effects such as printing or
communicating with remote facilities are simply declared as
being outside the scope of the shell. Although these effects
are detectable in principle by monitoring the system calls
which access the relevant devices, in practice the effects
are not reversible, or the intentions implicit in the device
accesses are impossible to interpret. The user must be made
aware that an undo command only undoes the local effects
of a command, and other external effects are left to the user
to deal with.

In addition, some local files may not be suitable for
handling by the shell. For example, some files might carry
with them special security or system integrity implications.
To cover such cases, the shell provides a way of making
specific files or directories exempt from the usual version
handling, so that changes to them are treated in the same way
as external effects which the user must handle. Database
systems also often pose a problem. A database may be held
on a separate disk or disk partition outside the control of
the normal file system, or it may be held in a large file for
which multiple versions might take up too much space. On
the other hand, database systems often provide their own
recovery facilities, so it makes sense to exempt them from
the usual version handling too.

6. CONCURRENCY

In this section, we describe a number of complications
introduced by concurrency and non-determinism, and
propose some solutions. Concurrency arises from shell
commands which create and control processes. Most of the
problems involve concurrent access to shared data, which
is discussed at length in the database management literature.
The solution in databases is based on the idea of transactions
and the ACID properties of transactions, as described by
Date [27]. In our case, we can use the mechanism for
monitoring and adapting system calls described in Section 2.
The system call interface to operating system facilities which
it uses is effectively transaction based, and many of the same
principles can be applied.

The first issue we discuss is how to deal with single
commands which involve several processes. For example, in
Unix, a compound commandp1 | p2 creates two processes
p1 and p2 which communicate via a pipe. It is easy to
support undo and redo on the group as a whole, treating
it as a single command, but it is difficult to undo or redo
individual processes within the group. In the case ofp1
| p2 , the two processes can be dealt with separately if the
information sent along the pipe is stored in a file,tmp say.
Then the compound command can be treated in the same
way as two commandsp1 > tmp andp2 < tmp and the
parts can be undone individually.

A second type of problem arises when commands share
resources unnecessarily with the shell. For example, if
a program uses the shell window for standard input and
output, this leads to problems of arbitrary and confusing

interleaving of text. To avoid these problems in the proposed
shell, it makes sense to treat all commands, other than built-
in shell commands, as processes which run concurrently.
Each program should be run with a separate window being
provided for it, where needed, for standard input and output.
No special convention (such as the& symbol in Unix) is
needed. As each program is started up, the shell immediately
prompts the user for further commands.

There is then a problem if a program does not work
properly and gets stuck in an infinite loop, for example.
Conventionally, there is no clean and deterministic way to
shut it down. Signals sent to the program (e.g. triggered
by Control/C) may be ignored by the program. If a signal
is used which cannot be ignored, the filestore may be left
in an inconsistent state. However, there is a clean way
to kill a rogue program using the undo facility. If the
user undoes a previous program which is still running,
the shell destroys the process or processes associated with
the program, removes any new file versions created by
the program, whether complete or partial, and restores
everything to a state which is as if the program has never
been run. If redo is subsequently used on the program, it
must actually be re-executed from scratch, in contrast to our
previous description of redo.

Long-running programs which run concurrently with the
shell are likely to request resources dynamically. For
example, a user may want to insert a file into a document
while using a word processor. Problems arise if two
programs request the same resource; which one succeeds,
and what happens to the other? In conventional systems,
this sharing of resources leads to unpredictable behaviour.
For example, consider what happens if one program writes
to a file f and a second program reads from it. The second
program may ‘see’ the old or new version of the file (or on
some systems, something in between) in a timing-dependent
way. Where file locking is provided, this can add to the
unpredictability because the second access may succeed or
fail, depending on the relative speeds of the two programs.

To solve this, we want to ensure that all dynamic accesses
are correctly sequenced by the shell. In the example above,
the two relevant shell commands will appear in the shell’s
history in one order or the other, as determined by the user’s
sequence of interactions. If the read request appears first, the
reading program sees the old version of the file. If the read
request appears second, the reading program sees the new
version.

One way to achieve this is to treat a dynamic request
as a double action. A command is given to the shell to
provide the requested resource, and a command is given to
the running program to access it. In a graphical setting, such
a double action is quite natural. For example, the user may
select a file icon using a file manager window belonging to
the shell, and use a drag-and-drop operation to give the file
to the program. If all dynamic file accesses are mediated
by the user and involve an interaction between the user and
the shell, then the shell knows what sequence these requests
occur in, and any conflicts between programs accessing the
same resources can be resolved. It may seem restrictive

THE COMPUTER JOURNAL, Vol. 43, No. 3, 2000



A RECOVERY MECHANISM FORSHELLS 175

that all resource requests should involve the user, but we
have already seen that when running foreign programs, it is
desirable to ensure that every dynamic access is interactively
sanctioned. It is not unreasonable to apply this to all
programs, not just foreign ones, though some mechanism
for allowing a program to have silent access to files which
‘belong’ to it may be desirable.

Although a drag-and-drop interface is probably the most
natural way of presenting this to the user, a textual version is
also described here. For a request to read from a filef say,
the shell can provide a commandgive f n wheren is the
time at which a previous program was started up, or some
other identifier for the program. This makes filef visible
to the program. An attempt by the program to read the file
then succeeds. For a request to write a filef , a similartake
f n can be provided. The original command to start up the
program, and all the subsequent associatedgive andtake
commands have to be treated as a single group which are all
undone or redone together.

We have been assuming up to now that an operating
system transaction such as writing a file is indivisible. In
practice, a program makes several system calls to write a file;
one to open the file, several to write data into it, and one to
close it. This raises the question of what happens if another
program requests access to the same file while it is open. The
answer is that the second program must be suspended and
made to wait until the requested file becomes available, so
brush effectively implements a locking mechanism. This
raises the question of how we know whether it is the same
file that is being accessed. As mentioned in Section 3,
we need to find unique identifiers for files to get around
problems with aliases.

For some long-running programs, particularly search
programs, it is appropriate to stop them before they
terminate when the results produced so far are judged
sufficient. In this case, the user would want to save the
partial results. This can be accomplished by a commit
operation, also implemented as a double cooperative action
between program and shell, which effectively splits the
program run into two separate program runs.

A further question that arises is what happens if there are
multiple users, or if a single user runs several shells. In order
to avoid losing the deterministic properties of transaction
sequencing, we propose the use of directory locking. When
brush accesses a directory for updating, the directory is
locked, which prevents two users from updating the same
file at the same time. Also, when a shell attaches itself
to a directory to start reading files from it, we want it to
see a consistent view of the directory for the duration of
the attachment. This can be achieved reasonably easily,
because the old versions of files which are kept allow
a shell to ‘see’ a directory at any particular time in the
past, instead of the current state. A shell can thus keep
a consistent view of a directory, corresponding to the time
at which it attached. In the case of a directory which is
being updated, a shell which attaches for reading sees the
directory as it was before the updates started. In this way,
a series of updates within a directory is treated as a single

transaction from the point of view of other shells, so that
the set of files as a whole is always seen in a consistent
state. A commit command, equivalent to detaching and
reattaching, can be added to allow finer-grained control over
events.

7. CONCLUSION AND FUTURE WORK

The ability to undo and redo commands is an indispensable
facility of interactive systems which increases confidence
and productivity. We have proposed such a facility for shells,
whether textual or graphical, providing a mechanism for
recovery from accidental loss of files through unintentional
user commands. The facility is convenient, and has a clear
meaning for the user in terms of a visible command history.
The ability to select arbitrary commands to undo or redo, and
to insert commands at arbitrary points in the history, makes
it possible to recover any previous state or any collection of
desired files.

A prototype calledbrush has been constructed to
demonstrate the algorithms described. It is a textual shell
implemented under Unix, and it uses the Unix/proc
mechanism to intercept the system calls made by commands
and programs. Alexandrovet al. [1] use the same
mechanism to implement direct access to remote file stores
by intercepting file system calls and altering their arguments.
In our case it is not necessary to alter the arguments to
a system call before it goes ahead, merely to insert some
extra processing. Also, where file handling is concerned,
we need only interceptopen and close calls, and not
read or write calls. In practice, with typical use of the
shell, the time overhead involved in managing file versions
is acceptable.

The prototype currently keeps all versions of all files,
without compression. This has an obvious space overhead,
and the efficient storage of multiple versions of files needs
to be addressed. Also, methods are needed for determining
exactly which versions need to be kept and for how long,
for example by detecting which files are source files and
which files are generated files so that only source files need
be kept. In the long run, a shell which has much more high-
level information may be able to cooperate with the user in
managing a user’s file space better than at present.

The only system calls which are intercepted are file
system calls, and process control calls in order to monitor all
the processes created by a program. No attempt is currently
made to monitor external effects or communications or
signals. The prototype allows for concurrency in a limited
way, using the techniques described in Section 6. Aliases are
tracked using the Unix device number and inode number.

Further work needs to be done on monitoring and
handling programs with external effects, including programs
which cooperate with remote filestores or other services,
and on security issues. Work is being carried out on
adding further facilities based on the ability to monitor
commands centrally. For example, it is possible to add
an automaticmake facility, without the need for the usual
explicit Makefile dependency file.

THE COMPUTER JOURNAL, Vol. 43, No. 3, 2000



176 I. HOLYER AND H. PEHLIVAN

Overall, the facilities presented make a significant
contribution to an increase of intelligence in the management
of files and programs, reducing the risks of loss and
unpredictability.

REFERENCES

[1] Alexandrov, A. D., Ibel, M., Schauser, K. E. and
Scheiman, C. J. (1998) Ufo: A personal global file system
based on user-level extensions to the operating system.ACM
Trans. Comput. Syst., 16, 207–233.

[2] Jones, M. B. (1993) Interposition agents: transparently
interposing user code at the system interface.ACM SIGOPS
Oper. Syst. Rev., 27, 80–93.

[3] Goldberg, I., Wagner, D., Thomas, R. and Brewer, E. A.
(1996) A secure environment for untrusted helper
applications—confining the wily hacker.Proc. 1996 USENIX
Security Symp., USENIX Assoc., Berkeley, CA.

[4] Faulkner, R. and Gomes, R. (1991) The process file system
and process model in UNIX system V.Proc. 1991 Winter
USENIX Conf., USENIX Assoc., Berkeley, CA.

[5] Meyrowitz, N. and Van Dam, A. (1982) Interactive editing
systems: part 1.Comput. Surveys, 14, 321–352.

[6] Shneiderman, B. (1987)Designing the User Interface: Strate-
gies for Effective Human–Computer Interaction.Addison-
Wesley, Los Angeles.

[7] Foley, J. D. and Wallace, V. L. (1974) The art of natural
graphic man–machine conversation.Proc. IEEE, 62, 462–
471.

[8] Norman, D. A. (1983) Design rules based on analyses of
human error.Commun. ACM, 26, 254–258.

[9] Card, S. K., Moran, T. P. and Newell, A. (1983)The
Psychology of Human–Computer Interaction.L. Erlbaum
Associates, Hillsdate, NJ.

[10] Goldberg, A. (1984)Smalltalk80: the Interactive Program-
ming Environment.Addison-Wesley, New York.

[11] Bourne, S. R. (1983)The Unix System.Addison-Wesley, New
York.

[12] Archer, J. E. Jr, Conway, R. and Schneider, F. B. (1984)
User recovery and reversal in interactive systems.ACM Trans.
Program. Languages Syst., 6, 1–19.

[13] Archer, J. E. Jr and Conway, R. (1981)COPE: A Cooperative
Programming Environment. Technical Report TR81-459,
Department of Computer Science, Cornell University, Ithaca,
NY.

[14] Teitelman, W. and Masinter, L. (1981) The Interlisp
programming environment.Computer, 14, 25–33.

[15] Reiss, S. P. (1985) PECAN: program development systems
that support multiple views.IEEE Trans. Software Eng., 11,
276–285.

[16] Pike, R. (1987) The text editor Sam.Software—Practice and
Experience, 17, 813–845.

[17] Gordon, R. F., Leeman, G. B. and Lewis, C. H. (1985)
Concepts and implications of undo for interactive recovery.
Proc. 1985 ACM Ann. Conf., pp. 150–157.

[18] Vitter, J. S. (1984) US&R: a new framework for redoing.
IEEE Software, 1, 39–52.

[19] Yang, Y. (1988) Undo support models.Int. J. Man–Machine
Studies, 28, 457–481.

[20] Stallman, R. (1986)GNU Emacs Manual, version 17. Free
Software Foundation. Inc., Boston, MA.

[21] Berlage, T. (1993) Recovery in graphical user interfaces using
command objects. Arbeitspapiere der GMD, Sankt Augustin,
Germany.

[22] Berlage, T. (1994) A selective undo mechanism for graphical
user interfaces based on command objects.ACM Trans.
Human Comput. Inter., 1, 269–294.

[23] Prakash, A. and Knister, M. J. (1992) Undoing actions
in collaborative work.Proc. 4th ACM Conf. on Computer-
Supported Cooperative Work, Toronto, Canada, Oct 31–Nov
4, pp. 273–280.

[24] Spenke, M. and Beilken, C. (1990) An overview of GINA—
the generic interactive application. In Duce D. A.et al.
(eds),User Interface Management and Design, pp. 283–303.
Springer-Verlag, Berlin.

[25] Thimbleby, H. (1990) User Interface Design.Addison-
Wesley, New York.

[26] Loukides, M. and Oram, A. (1996)Programming with GNU
Software.O’Reilly and Associates Inc., Farnham, UK.

[27] Date, C. J. (1995)An Introduction to Database Systems.
Addison-Wesley, New York.

THE COMPUTER JOURNAL, Vol. 43, No. 3, 2000


